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The Probability Approach to the Treatment
of Uncertainty in Artificial Intelligence and

Expert Systems

Dennis V. Lindley

Abstract. Arguments are adduced to support the claim that the only satis-
factory description of uncertainty is probability. Probability is described
both mathematically and interpretatively as a degree of belief. The axio-
matic basis and the use of scoring rules in developing coherence are
discussed. A challenge is made that anything that can be done by alternative
methods for handling uncertainty can be done better by probability. This
is demonstrated by some examples using fuzzy logic and belief functions.
The paper concludes with a forensic example illustrating the power of
probability ideas.
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1. INTRODUCTION

Our concern in this paper is not with a general
discussion of artificial intelligence (AI) and expert
systems (ES) but with one particular aspect of them,
namely the occurrence of uncertainty statements
within Al or ES. We discuss how they should be made,
what they mean, and how they combine together.

Uncertainty is obviously present in most ES algo-
rithms because experts can rarely be totally sure of
the statements they make. Thus, in medical ES, the
presence of a symptom array does not invariably imply
the presence of one disease, so that diagnosis is in-
herently uncertain. Even the symptom may exhibit
uncertainty for doctors may differ in their interpre-
tations (see Section 10). Prognosis is clearly even more
uncertain. When discussing purely deterministic pro-
cedures there may be some merit in introducing un-
certainty. For example, chess is a game with perfect
information yet Al programs sometimes incorporate
uncertainty as a way of avoiding the terrible complex-
ity of the game. So uncertainty, while perhaps not
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ubiquitous, frequently occurs. Our task is to study
approaches to dealing with it within Al and ES.

2. THE INEVITABILITY OF PROBABILITY

Our thesis is simply stated: the only satisfactory
description of uncertainty is probability. By this is
meant that every uncertainty statement must be in
the form of a probability; that several uncertainties
must be combined using the rules of probability; and
that the calculus of probabilities is adequate to handle
all situations involving uncertainty. In particular, al-
ternative descriptions of uncertainty are unnecessary.
These include the procedures of classical statistics;
rules of combination such as Jeffrey’s (1965); possi-
bility statements in fuzzy logic, Zadeh (1983); use of

- upper and lower probabilities, Smith (1961), Fine

17

(1973); and belief functions, Shafer (1976). We speak
of “the inevitability of probability.”

3. MATHEMATICAL AND PHYSICAL MEANINGS
FOR PROBABILITY

Before defending the thesis, it had better be made
clear what we mean by probability. Most emphatically,
we do not just mean numbers lying between 0 and 1:
it is more interesting than that. There are two ways
of responding to a question about the meaning of
probability. One is to describe the concept mathemat-
ically. The other is to consider its interpretation in
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the physical world. We consider both of these re-
sponses.

Mathematically, probability is a function of two
arguments: the event A about which you are uncertain,
and your knowledge H when you make the uncertainty
statement. We write p(A | H); read, the probability of
A, given H. The function obeys the three rules:

Convexity0<p(A|H)<landp(A|H)=1ifHis
known by you logically to imply A.

Addition p(A; U A;|H) =p(A; |H) + p(A2 | H) —
p(Ai1N A | H).

Multiplication p(A; N Ay | H) =p(A; | H)
-p(A2| A1 N H).

We could elaborate on these rules, for example, by
discussing whether the events have to form a o-field,
whether the addition law holds for an enumerable
infinity of events, whether p(A | H) = 1 only if H is
known by you logically to imply A, and in other ways.
But these would merely add mathematical glosses to
the key ideas that probability lies between 0 and 1 and
obeys two distinct rules of combination. From these
three rules, perhaps modified slightly, all of the many,
rich and wonderful results of the probability calculus
follow. They may be described as the axioms of prob-
ability. We prefer not to describe them this way be-
cause, as will be seen below, they can be derived from
other, more basic, axioms and consequently appear as
theorems.

The interpretation of p(A|H) is that it is your
subjective belief in the truth of A were you to know
that H was true. It is often referred to as subjective
probability because it is ascribable to a subject, you;
and also to distinguish it from another use of proba-
bility called frequentist or objective. This latter we
shall call chance, thus avoiding the adjective for prob-
ability. It is convenient to think of p(A|H) as a
measurement: like a measurement of length or tem-
perature. It measures belief, not temperature. Like
all measurements it has a standard. We may take
the simple example of balls in an urn. For you,
p(A | H) = a if you are indifferent between receiving
a prize contingent on A, knowing H, and receiving the
same prize contingent on a black ball being drawn at
random from an urn containing a proportion a of
black balls. Of course, other ways are possible. It is a
defect.of many other approaches to the measurement

of uncertainty that they do not have a standard by

which to judge their statements.

4. THE USE OF SCORING RULES

Having interpreted probability in two, important
ways, let us turn to the defense of the thesis of the
inevitability of probability. The task is to study un-
certainty, particularly in the context of Al and ES. As

scientists and engineers we would expect to measure
our object of study, to describe the uncertainty nu-
merically. If we agree to do this, we have to decide
what rules the numbers obey: for example, can we add
them, like lengths? One way is to think of possible
rules and choose some that seem reasonable. This is
the method of classical statistics, fuzzy logic, and belief
functions. There is another method.

Suppose that in expressing your belief in A, given
H, you provide a numerical value a. In what sense is
a a “good” measurement of your belief? De Finetti
(1974/5) had the idea of introducing a score function,
which scores your measurement or, as we usually
prefer, your assessment of your uncertainty of 4, given
H. For the two functions, f, and f;, the score, when a
is announced as the assessment, is defined to be:

fi(a) if both A and H are true,
fola) if H is true, but A false, and
zero if H is false.

De Finetti used the quadratic or Brier score: fo(a) =
a?, fi(a) = (1 — a)® With the quadratic, a near 1(0)
will give a low score when A is true (false) and H true.
If H is false the statement about A is irrelevant since
it was made on the supposition of H.

Suppose now that you, or the expert in ES, does
this with several event pairs; (A;, H;) is scored on each
and the scores added. Then de Finetti showed for the
quadratic rule, that the values a; must obey the rules
of probability. Lindley (1982) generalized the result
and showed that virtually any score leads to probabil-
ity: some scores are eccentric and result in only two
possible values for a whatever be A and H. A conse-
quence of de Finetti’s result is that someone using
rules for the combination of the a; that are not prob-
abilistic—for example, those of belief functions—will
have a worse score, whatever be the truth or falsity of
the A’s and H’s, than the probabilist. Notice how
eminently practical this approach is. The “expertise”

- of an expert could be assessed by keeping a check on

his scores. Of two probabilists, either one may do
better than the other, but both will do better than
someone not using the probability calculus.

5. AXIOMATIC APPROACH

In an alternative approach we think about the con-
cept of uncertainty and try to latch onto simple, basic
principles that ought to be present in any study of
uncertainty; such that any violation of a principle
would, when exposed, make the argument look ridic-
ulous. The principles, self-evident truths, are called
axioms and from these we would hope to deduce, by
mathematical reasoning, the rules that the numbers



UNCERTAINTY IN EXPERT SYSTEMS 19

obey. Euclidean geometry is the famous example of
this procedure when applied to the measurement of
length. This program was first carried out for beliefs
in 1926 by Ramsey (1931). The best of the known
examples is Savage (1954). DeGroot (1970) presents
what is perhaps the most readable version. All of these
approaches lead to the result that the numbers must
obey exactly the three rules of probability above. In
other words, the “axioms” of probability have been
deduced from other, simpler ideas that more legiti-
mately can, because of their self-evidentiary nature,
be called axioms.

Let the converse be emphasized: any violation of
the rules must correspond to some violation of the
basic axioms, of those rules whose violation would
look ridiculous. We really have no choice about the
rules governing our measurement of uncertainty: they
are dictated to us by the inexorable laws of logic. Of
course, they are entirely dependent on the chosen
axioms and the history of mathematics warns us not
to be too complacent about the “sacred” rightness of
axioms. But at the moment, the axioms are unassailed
and all variants produce minor variants in probability.

6. COHERENCE

At this point we should perhaps digress to discuss
an important aspect of the Ramsey/Savage/de Finetti
approaches that is often over-looked. The discussion
will also help to explain why nonprobabilistic views
have had some success in Al or ES even though the
ideas are unsound. The rules of probability show how
different uncertainty statements have to fit together.
Thus, the multiplication rule above refers to three
assessments and says_that one of them must be the
product of the other two. Instead of “fitting together”
we talk of coherence. The results just described can
be stated as showing that coherence can only be
achieved by means of probability. We may say belief
functions are incoherent (they do not obey the addi-
tion rule).

Coherence is not peculiar to the measurement of
belief. It applies to all measurement: for example, of
length. If ABC is a triangle with a right angle at B, it
makes perfectly good sense to say AB = 2 or AC = 4
or BC = 3, or even to make two of these statements
together. But make all three together and you are
incoherent, for Pythagoras demands that AC? =
AB? + BC?, which is not true of the numbers given.
Similarly one can say that p(A,|H) = % or
p(A2]A; N H) =% or p(A; N Ag| H) = Y4, but one
cannot make all three statements simultaneously. The
multiplication law replaces Pythagoras. It is curious
that coherence is strictly adhered to with lengths but
often ignored with beliefs, reflecting the immaturity
of belief measurement.

And that explains why nonprobabilistic procedures
can sometimes appear sensible. The adherents never
make enough statements for coherence to be tested.
They only tell us the equivalent of AB = 2 and
AC = 4, never discussing BC, for to do so would reveal
the unsound nature of the argument.

7. BAYES THEOREM

One example of coherence is so important in Al and
ES that we should perhaps consider it now. Inter-
changing A; and A, in the above statement of the
multiplication law and recognizing that A; N A, =
Ay N A;, we immediately have that

p(A,|H)p(A2| Ay N H) =p(A;| H)p(A1| A2 N H).

By using the equivalent result but with A,, replacing
A,, we have

p(ézlAl N H) =p(A1|{1_20H)P(42|H)
p(A:|Ai N H) p(A|A:NH)p(A:|H)

This is Bayes theorem in odds form. (The odds (on)
A are simply the ratio ¢t of p(A) to p(A): the odds
against are the inverse of this. In practice they are
usually quoted as ¢t to 1 on or ¢ to 1 against with
t = 1.) To appreciate what it says, temporarily omit
H from the notation and language, recognizing that it
is present in every conditioning event in the statement
of the theorem. Then the result is that the odds,
p(A2)/p(A,), of A, are changed, due to the additional
knowledge of A;, into p(As|A;)/p(4,|A;) by multi-
plying by p(A; | A2)/p(A, | A3). The multiplier is called
the likelihood ratio. It is the ratio of the probabilities
of the additional knowledge A;, given A, and then
given A,. Thus an Al system faced with uncertainty
about A, and experiencing A; has to update its uncer-
tainty by considering how probable what it has expe-
rienced is, both on the supposition that A, is true, and
that A, is false. Any other procedure is incoherent.
Most intelligent behavior is simply obeying Bayes

. theorem. A high level of intelligence consists in rec-

ognizing a new pattern. This is not allowed for in
Bayes theorem, nor in any other paradigm known
to me. The simple Al systems that we have at the
moment must be Bayesian.

8. A CHALLENGE

Let us summarize where we have got to in the
argument. On the basis of simple, intuitive rules (or
using a technique of scoring statements of uncer-
tainty), it follows that probability is the only way of
handling uncertainty. In particular other ways are
unsound and essentially ad hoc in that they lack an
axiomatic basis.
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There is however more than just the inevitability of
probability. There is the consideration that probabil-
ity is totally adequate for all uncertain situations
encountered so far. This is often denied. The following
statements are taken from Zadeh (1983):

“A serious shortcoming of [probability-based]
methods is that they are not capable of coming to
grips with the pervasive fuzziness of information
in the knowledge base, and, as a result, are mostly
ad hoc in nature.”

“The validity of [Bayes rule] is open to question
since most of the information in the knowledge
base of a typical expert system consists of a
collection of fuzzy rather than nonfuzzy proposi-
tions.”

Shafer (1982) says, in comparing belief functions
and Bayesian methods, “The theory of belief functions
offers an approach that better respects the realities
and limitations of our knowledge and evidence.”

I offer a challenge to these writers and to all who
espouse nonprobabilistic methods for the study of
uncertainty. The challenge is that anything that can
be done by these methods can be better done with
probability. I think this is a fair challenge. It is a
requirement that the method has been used and is not
just a topic for theorizing, which rules out some spec-
ulations in the alternative paradigms. If the challenge
fails then we shall really have advanced: for an inad-
equacy in probability will have been exposed and the
need for an alternative justified. The challenge is in
the spirit of Popper who partly judges the merit of a
theory on its capability of being destroyed; for the rich
calculus of probability leads to many testable conclu-
sions. It is also relevant to Popperian ideas because
he has discussed certain inadequacies in probability.
These have been disposed of by Jeffreys (1961).

As these words are being written it is impossible to
know what challenges might arise. All that can be
done is to take material already in the literature and
examine that. I begin with fuzzy ideas.

9. PROBABILITY IN PLACE OF FUZZINESS

As an example of a fuzzy proposition Zadeh (1983)
cites “Berkeley’s population is over 100,000.” He says
it is fuzzy because “of an implicit understanding that
over 100,000 means over 100,000 but not much over
100,000” (his italics). (He might also have added that
Berkeley is fuzzy. Does it refer to the town in Glou-
cestershire or that in California? And population: does
it merely refer to permanent residents or are students
included? These are not jibes: my point is that nearly
all statements are imprecise.)

The probabilistic approach would be to give a prob-
abilistic statement about a quantity that can be eval-
uated. The qualification is important, de Finetti has
emphasized. As far as possible all probabilities should

refer to propositions or events that can realistically be
tested for truth or falsity. This is because we want to
use them. It may be necessary to introduce other
propositions but only as aids to the calculation of
testable ones. (In statistics parameters are used for
this purpose. An example in Section 14 will use guilt
of a suspect.) A possible quantity to discuss in the
fuzzy statement is the answer the relevant city official
in Berkeley would give when asked for the population
of Berkeley. If this is denoted X, then the probabilistic
statement corresponding to that quoted is p(X| H),
where H is the knowledge possessed by the maker of
the statement. It would have a mode a little over
100,000 if the statement is in H.

It is important to notice that in applications it may
not be necessary to specify the full probability distri-
bution p(X | H). For example, it may be enough to
quote its mean, the expectation of X given H; what de
Finetti calls the prevision of X given H. More sophis-
tication may require the variance of X, or equivalently,
the prevision of X 2 given H. Fractiles of X are another
possibility.

All fuzzy propositions of this type can be interpreted
probabilistically in a manner similar to our treatment
of Berkeley. “Henry is young” needs a little care. It
clearly refers to Henry (whom I take to be a well
defined person) and an uncertain quantity X, his age.
But the description is very vague. Made on campus,
Henry might be only 19; made at a faculty dinner
Henry might be 30; made in a home for senior citizens,
he might be 65. Consequently, H is very relevant to
this result. Without context p(X | H) will need to be
appreciable even for X = 65.

10. NUMERICAL EXPRESSION OF FUZZINESS

Another example is both more serious and more
elaborate. “John has duodenal ulcer (CF = 0.3)” (CF
is an abbreviation for certainty factor). It is a well
known feature of medical studies that many concepts
are imprecisely defined and that a difficulty in using
medical records resides in the varied use different
doctors make of the same term. Nevertheless doctors
find it useful to identify features like “duodenal ulcer.”
The situation can be described probabilistically by
introducing A, an ill-defined but supposedly real ail-
ment, duodenal ulcer, and also D; the appreciation of
duodenal ulcer by doctor i. The fuzziness of the con-
cept can be captured by considering p(D;| A) and
p(D;| A), the probability that doctor i will say John
has duodenal ulcer both when John has, and does not
have, true duodenal ulcer. (Useful comparison can be
made with Bayes theorem above: A replaces A,, D;
replaces A,, and H is omitted from the present nota-
tion.) Notice that A may not be a testable quantity. It
is introduced as a parameter to facilitate the calcula-
tion of quantities that are testable. For example, if the
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above statement is made by a first doctor, what is the
probability that a second will agree? p(D | D;) can be
evaluated by extending the conversation to include A.
For example, the D; might be independent, given A.

This second fuzzy statement introduces a numerical
measure in the form of a certainty factor, here 0.3.
This contrasts with the apparently similar numerical
assertion that the probability (on an undefined H)
that John has a duodenal ulcer is 0.3 in at least two
ways. First, certainty factors combine by rules that
are different from those of the probability calculus, so
that they would inevitability produce worse scores in
an adequate test than would probabilities. Further-
more, these rules have no axiomatic basis and are
merely inventions of fertile, unconstrained minds. The
second difference between certainty factors and prob-
abilities is that the operational meaning of the latter
is clear whereas that of the former is not. We may say
that probabilities have standards, possibilities do not.
One standard for probability was mentioned above:
balls in an urn. But expectation of benefit or a uniform
distribution may replace these. All measurement re-
quires a standard and certainty factors are dubious
because they do not have them. What does CF = 0.3
mean?

The literature on fuzzy logic is vast, complicated,
and somewhat obscure. I have surely missed some
examples that it would be useful to test against the
challenge which remains: anything fuzzy logic can do,
probability can do better.

11. INCOHERENCE AND BELIEF FUNCTIONS

We next turn from fuzzy logic to belief functions. I
have already considered a good example of Shafer’s
(1982) in the discussion to that paper. It is repeated
here partly because to do so is simpler for me than to
take another one; and also because it is then possible
to respond to Shafer’s reaction to my probabilistic
argument. Before giving this it might be useful to
exhibit incoherence in the use of belief functions. (The
argument also applies to fuzzy methods.)

We follow Shafer and write Bel(A) for the belief in
A, omitting reference to the conditioning event. Now
it is possible that

Bel(A) + Bel(4) <1

(similarly for certainty factors). Write Bel(4) = a,
Bel(A) = b so that a + b < 1. (Necessarily a, b = 0.)
Let us score such a belief using the quadratic rule.
The possible scores are:

A true (a—1)%+ b
A true a’®+ (b — 1)~

Now replace a by a’, b by b’ where @’ = a + ¢,
b =b+e¢ and e = Yo(1 — a — b). It easily follows that

a’ + b’ =1 and that both

@ —-12+b?%<(a—-1)7%+b?
and :

a?+ (b —-1)?<a*+ (b—- 1)~

Consequently it is certain (irrespective of whether A
or A is true) that beliefs @ and b will score worse than
probabilities a’ and b’, adding to one. The result
generalizes with any score.

12. PROBABILITY IN PLACE OF BELIEF
FUNCTIONS

Now for Shafer’s example. Imagine a disorder called
“ploxoma,” which comprises two distinct “diseases”:
6, = “virulent ploxoma,” which is invariably fatal, and
0, = “ordinary ploxoma,” which varies in severity and
can be treated. Virulent ploxoma can be identified
unequivocally at the time of a victim’s death, but the
only way to distinguish between the two diseases in
their early stages seems to be a blood test with three
possible outcomes, labeled x,, x;, and xs. The following
evidence is available: (i) Blood tests of a large number
of patients dying of virulent ploxoma showed the
outcomes x;, X», and x3 occurring 20, 20, and 60% of
the time, respectively. (ii) A study of patients whose
ploxoma had continued so long as to be almost cer-
tainly ordinary ploxoma showed outcome x; to occur
85% of the time and outcomes x, and x3 to occur 15%
of the time. (The study was made before methods for
distinguishing between x, and x; were perfected.)
There is some question whether the patients in the
study represent a fair sample of the population of
ordinary ploxoma victims, but experts feel fairly con-
fident (say 75%) that the criteria by which patients
were selected for the study should not affect the dis-
tribution of test outcomes. (iii) It seems that most
people who seek medical help for ploxoma are suffer-
ing from ordinary ploxoma. There have been no care-
ful statistical studies, but physicians are convinced
that only 5-15% of ploxoma patients suffer from
virulent ploxoma.

My reply was as follows. The first piece of evidence
(i) establishes in the usual way that the chances for a
person with virulent ploxoma to have blood test results
of types %1, %2, and x; are 0.2, 0.2, and 0.6. The
second (ii) is subtler for two reasons: x, and x; are not
distinguished in the data, and the patients in the study
are not judged exchangeable with other patients so
that the chances 8 in the study and vy for the new
patients are not necessarily equal. The first presents
no difficulty since the likelihood for the data is
B5(B2 + Bs)"", where r = 0.85n and n is the number of
patients in the study. The distribution of 8 given
the data can therefore be found. Let p(y | B) be the
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conditional distribution of v, given 8. This concept
replaces the single figure of 75% quoted by Shafer and
which yields a discount rate of a = 0.25. It would be
possible to suppose ¥ = 8 with probability 0.75 and is
otherwise uniform in the unit interval in imitation of
belief functions; but this may be an unrealistic descrip-
tion of the situation. The third piece of evidence (iii)
says the distribution of the chance 6 that a patient
has virulent ploxoma, p(f), is essentially confined to
the range (0.05 to 0.15). We are now ready to perform
the requisite probability calculations.

Let G be the event that a new patient, George, has
virulent ploxoma and let g; be the result of his blood
test. We require p(G | g;, E) where E is the evidence.
From (iii) p(G) = [6p(0) db. From (i) p(g& |G, E) =
0.2 fori=1, 2 and 0.6 for i = 3. From (ii)

p(gl|G, E) = f f vip(y |B)p(B| E) dB dy

= f E(vi| 6)p(8| E) df

and the calculations can be completed in the usual
way using Bayes’ theorem. If E(0) = 0.10, E(v;|8) =
B:;, and E(B:| B1) = (1 — B;) then the probabilities
of G given g; are, respectively, 0.025, 0.229, and
0.471.

It may be objected that this analysis virtually ig-
nores the uncertainty about the study and about 6. It
does so because they are irrelevant. The interested
reader may like to consider the case of George and
Henry and their blood tests. Then the uncertainties
will matter: for example, E(y?|B), involving the
conditional variance of v;, will arise.

Shafer in response.says that “Lindley insists that
the uncertainties affecting this study are irrelevant
and should be ignored. Is this reasonable? Suppose
that instead of having only 75% confidence in the
study we have much less confidence. Is there not some
point where even Lindley would chuck out the study
and revert to the prior 5-15%7?” My reply is that
Shafer is correct and that the uncertainty does matter
a little, for it affects E(y|B8). Were we to have no
.confidence at all in the study then- E(vy | 8) would not
depend on B, and p(g;|G, E) would be simply E(y;)
about which no information is given. (The prior on 4
seems irrelevant.) '

Consequently I feel that the challenge has been well
met with the example and, by a Popperian argument,
the credibility of probability theory is increased.

13. COMPLEXITY, COVERAGE, DECISIONS
AND RICHNESS

Here are four miscellaneous remarks.
1. It should be noted that fuzzy logic and belief
functions are considerably more complicated concepts

than those of probability. With belief functions we
start effectively with probabilities over the power set
of the original events, itself much more complicated
than the original set, and then have to elaborate on
that. Dempster’s rule of combination is vastly more
involved than Bayes and then only applies in certain
cases. Fuzzy logic leads to nonlinear programming and
contains great complexities of language and ideas. Yet
probability is extremely simple, using only three rules
and containing rich concepts like independence and
expectation.

Certainly if my challenge fails it will be necessary
to introduce some change into probability ideas, which
will almost surely increase the complexity, yet be
necessary and rewarding. But until that happens is it
not best to accept the advice of William of Ockham
and not multiply entities beyond necessity?

2. It is not implied in the challenge that probability
can handle every problem involving uncertainty: the
claim is merely that probability can do better than the
alternatives. I believe that it has the potentiality to
solve every uncertain situation but there are some for
which the available techniques are inadequate. It is
absurd to think that any paradigm can quickly resolve
every relevant puzzle; some may resist solution for
decades. For example, the medical problem of han-
dling large numbers of indicants in diagnosis is cur-
rently unresolved because we do not have adequate
techniques for handling the complicated dependencies
that exist. (And certainly belief functions do not.) We
need more research into applied probability and less
into fancy alternatives.

3. Why do we want to study uncertainty? Aside
from the intellectual pleasure it can provide, there is
only one answer: to be able to make decisions in the
face of uncertainty. Studies that do not have the
potentiality for practical use in decision making are

_seriously inadequate. An axiomatic treatment of de-

cision making shows (Savage, 1954; DeGroot, 1970)
that maximization of expected utility is the only
satisfactory procedure. This uses, in the expectation
calculation, the probabilities and these, and only
these, are the quantities needed for coherent decision
making by a single decision maker. Only the utilities,
dependent on the consequences, not on the uncertain-
ties, need to be added to make a rational choice of
action. How can one use fuzzy logic or belief functions
to decide? Indeed, consider a case where Bel(4) +
Bel(A) < 1. Because you have so little belief in either
outcome do you, like Buradin’s ass, starve to death in
your indecision between A and its negation? Reality
demands probability.

4. It is sometimes said, as in the quotes from Zadeh
above, that probability is inadequate. This sense of
inadequacy sometimes arises because people only
think of probability as a value between 0 and 1,
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forgetting the whole concept of coherence and, in
particular, ignoring the addition and multiplication
laws. In fact probability is a rich and subtle concept
capable of dealing with beautifully delicate and im-
portant problems. This richness is hard to convey
without deep immersion in the topic. In order to
display this, and also to try to avoid the impression
that this paper is entirely concerned with bashing
other ideas, I conclude by discussing a situation that
arises in forensic science or criminalistics. It.has been
much discussed in the literature; a convenient refer-
ence is Eggleston (1983). An almost identical problem
has been considered by Diaconis and Zabell (1982)
using Jeffrey’s rule. For reasons given below, I think
their treatment is unsatisfactory.

14. A PROBABILITY EXAMPLE

A crime has been committed by a person who is to
be found among a population of (n + 1) people. One
of these is referred to as the suspect, the others are
labeled in a noninformative way from 1 to n. Let G,
be the event that the suspect is guilty, G; that person
iis (1 =i < n). Initially, p(G,) = 7, p(G) = (1 — 7)/n
for all i. (Some forms of the problem have 7= =
(n + 1)7', which probabilistically does not distinguish
the suspect from the other n.)

An investigator studying the crime says “the evi-
dence suggests the criminal is left-handed.” This is a
fuzzy statement and its probabilistic interpretation
requires care. After discussion the investigator says
that the probability that the criminal is left-handed is
P. This is still ambiguous. Diaconis and Zabell appear
to interpret it to mean that the probability that the
criminal will be found-among the left-handers in the
group of (n + 1) is P. I think a British forensic scientist
would mean that if he had the criminal in front of
him, the probability that he would be found to be left-
handed is P. The former is the chance of guilt among
left-handers; the latter of left-handedness among
the guilty. Also the former requires reference to the
population, and the latter does not. Typical forensic
evidence makes no mention of a population, only of
the criminal, and so the latter interpretation is appro-
priate. There is a confusion between p(A|B) and
p(B|A).

Working with the forensic interpretation, the for-
mal statement is p(l;| G;) = P, where [; denotes the
event that person i is left-handed (1 = i = n and
i = S). It was emphasized in the discussion of Bayes
theorem that it is essential to consider the evidence
A, both on A, and on A,. So here we need, in addition
to p(l;| G), p(l;] G)). The latter is the chance that
anyone is left-handed and may ordinarily be equated
to the frequency of left-handedness in the population,
psay. Sop(l;| G)) = p for all i, including S. Presumably

P > p. (In some forms of the problem P = 1 and the
forensic evidence is firm. This can realistically arise
when dealing with blood types that can be identified
without error.) Diaconis and Zabell do not consider p.
This seems strange because the presence of an unusual
trait intuitively carries more weight than a common
one. The formal analysis below will confirm this.

15. THE ROLE OF ADDITIONAL EVIDENCE

Now consider various forms of additional evidence.

Evidence E,. The suspect is found to be left-
handed. In the notation this is the event . Simple
use of Bayes theorem

p(Gs|L) = ps| G)p(G,)/p (L)
yields
(1) p(Gs| L) = Pr/{Px + p(1 — =)}

which clearly exceeds =. E; is indicative of the sus-
pect’s guilt.

Evidence E,. Person no. 1 is left-handed. This is
ll. Now with both El and E2

p(G, | Lh) « p(Ll| G)p(G) = Pp.
Similarly,
p(Gi| k) « Pp(1 — 7)/n
and
p(Gi| L) < p*(1 — 7)/n for 2<is<n.
Thus,
@ p(Gs| L) = Px/{Px + P(1 — w)/n
+p(l = 7)(n - 1)/n}.

Rearranging the denominator as Pr + p(1 — «) +
(P — p)(1 — 7)/n we see that (2) is less than (1): the
knowledge of another left-handed person in the pop-

“ulation has slightly decreased the probability that S

is guilty. Notice that when n = 1, p(G,| l;l;) = =: the
evidence that all the population is left-handed has not
changed the suspect’s probability for guilt at all.

Evidence E;. There are no left-handers among the
n people.

Combined with E; this means that the suspect is
the only left-hander. Denoting E; by Iy, a use of Bayes
theorem similar to that employed with E, and E, gives

p(Gs| L) < p(Lly | Gp(Gs) = P(1 — p)'=
and
p(Gil ko) @ p(sly | G)p(G)
=p(l —p)"'(1 - P)(1 - m)/n.
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Hence,
p(Gs | Lslo)
= Pr/{Pr + p(1 — x)(1 — P)/(1 — p)}.

This clearly exceeds p(G;| L), equation (1), if P > p,
showing that E; increases the probability that the
suspect is guilty. Indeed, if P = 1, (3) gives 1 as it
should.

Evidence E,. There is at least one left-hander
among the n people.

E, is the negation of E; and may be written 7,. It
differs from E, in that the latter names a specific left-
hander, person no. 1. We have

p10|G) = p(s|G) — plb| G) = P — P(1 = p)°
and
pT0|G) = p(l|G) — pUslo | G))
=p—-pl—-p)"'1-P).
A further use of Bayes theorem gives
4) p(G;|LTy) = [Px — P(1 — p)"x]/C
where
C=Pr+p(dl-—m
- (1 =p)"{Pr + p(1 — 7)(1 — P)/(1 = p)}.

If n = 1 this gives 7 in agreement with p(G;| L),
equation (2). It is easy to see that p(G,| T) <
p(G; | l,), equation (1), so that E, slightly decreases the
probability of the suspect’s guilt.

Now for a subtlety: compare (2) and (4), that is the
probability that the.suspect is guilty given, in (2), the
name of a left-hander and in (4) the mere presence of
a left-hander. These are different. It is not too hard
to verify by induction on n that

p(G| L) < p(Gs|ilo)

for n > 1, so that the definitive knowledge of the left-

handedness of person no. 1 reduces the suspect’s guilt
probability by more than does the mere evidence of
> someone’s left-handedness.

.Ileave the reader to think out whether the following
argument is correct. Knowing there is a left-hander in
the n (E,), no information about the suspect’s guilt
can possibly be provided by telling me the number of
one of them. Accepting this, you are told it is person
no. 1. Since (2) and (4) differ (and calling person no.
1 Smith for dramatic effect) the evidence “Smith is

left-handed” and “There are left-handers, one of
whom is called Smith” have different evidential value.

16. CONCLUSION

Our argument may be summarized by saying that
probability is the only sensible description of uncer-
tainty and is adequate for all problems involving
uncertainty. All other methods are inadequate. The
justification for the position rests on the formal, axi-
omatic argument that leads to the inevitability of
probability as a theorem and also on the pragmatic
verification that probability does work. My challenge
that anything that can be done with fuzzy logic, belief
functions, upper and lower probabilities, or any other
alternative to probability, can better be done with
probability, remains.
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