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Abstract

The paper considers generalizing the classical Dutch Book argument
for identifying degree of belief with probability to yield the correspond-
ing analogs of probability functions for various non-standard propositional
logics for example modal, intuitionistic, and paraconsistent logics.

1 Introduction and Notation

The purpose of this modest note is to explicitly point out some consequences of
applying the classic Dutch Book justification for rational belief being identified
with probability in the context of alternate, non-Tarskian, semantics. Whilst the
formal version of the Dutch Book Theorem that we shall need is well know from
the work of De Finetti, see [5] p90, our observations concerning the consequences
of this theorem for characterizing rational belief functions in the context of certain
alternate, non-standard, semantics would, with the exception of a specific earlier
example due to Jaffray, [8] (see also Regoli, [13]), appear not to be widely appre-
ciated. Some related work on the many-valued Lukasiewicz logics L, 1 (in this
note we are primarily concerned with two valued semantics) has been published
by Gerla in [7] and will be discussed briefly in the concluding section.

Before formally stating these results we need some notation. Let L be a finite
propositional language and SL the set of sentences of L, say using the standard

*This is a slightly revised version of a paper of the same title which appeared in the Pro-
ceedings of the 2nd International Symposium on Imprecise Probabilities and their Applications,
Ithaca, New York, 2001.



connectives V, A, -, —. As usual we use p, g, ... etc for the propositional variables
of L and 0, ¢, ... etc for elements of SL.

Let V be a subset of the set of all functions from SL into {0,1}. We should
think of V as the set of ‘possible worlds’, where for V€ V and 0 € SL, 0 is
true/false in V if V(@) = 1/0. To start with we shall assume that V is finite.

Let B be the set of all functions from SL into [0,1]. We are thinking of the
elements of B as possible subjective belief functions on SL. In other words for
6 € SL and B € B we should think of B(f) as a measure of an agent’s ‘belief’
(on the scale [0, 1], 1 signifying maximum possible belief etc) to 6 ‘being true’ in
the actual world, V (V € V).

One particularly relevant example of such a set V is the set V7' of (classical)
valuations on SL, that is functions V' : SL — {0, 1} satisfying the Tarski truth
conditions that for 0, ¢ € SL

(T1) V(=0)=1 <<= V(0) =0,

(T2) V(IOANY) =1 «—= V(@) =1&V(p) =1,
(T3) V(OV¢)=0 <= V(@) =0& V(p)=0,
(T4) V(0 —-¢)=0 <= V(@) =1&V(s)=0.

In this case V' is finite since L is finite and every V € V' is determined by its
values on the propositional variables alone.

Theorem 1 [4],[5]

The function B € B is a probability function, that is satisfies' that for all
0,0 € SL,

(P1) If =60 then B(f) =1,

if = =6 then B(§) =0

(P2) If 8 = ¢ then B(6) < B(9)

(P3) B(8V ¢)+ B(OA¢)=B(#)+ B(o)
if and only if there does not exist a Dutch Book against B. That is, there do not
exist some 01,0, ...,0,, € SL and 51, 53, ..., Sm € R such that for all V € V7,

The relevance of the term ‘Dutch Book’ here is as follows. Suppose that we
identify one’s belief in 6, B(6), with one’s limiting willingness to bet that 6 is
true in the actual world V' (V' a member of the set V' of possible worlds). In
other words B(f) is characterized by the properties that for stake s > 0 and
n < Bel(f) one is willing to pay out at least sy to receive s if V(0) = 1 (and
nothing if V(f) = 0) whilst for any ¢ > Bel(f) one is willing to accept the
‘reverse bet’ in which one receives at least s¢ on penalty of having to pay out 1

IThere is some redundancy in these conditions but they are presented in this way to facilitate
comparison with subsequent definitions



if V(#) = 1 (and nothing if V(#) = 0)2. In this case the expression on the left
of the inequality in this theorem is easily seen to be the greatest lower bound on
one’s profit (negative profit = loss) from simultaneously entering into such bets
on the 6;, + = 1,2,...,r, at stakes s;. Thus having a Dutch Book against one
means that for a suitably tight choice of n’s and (’s it would be possible arrange
a finite set of bets, each of which was individually acceptable to one but whose
combined effect would guarantee one a loss no matter what the true state, V', of
the world was.

The upshot of this then is that if we identify one’s belief with the limit of one’s
willingness to bet then one’s beliefs can be rational, in the sense of avoiding any
Dutch Book, if and only if they determine a probability function.

Theorem 1 applies to the classical situation where the semantics are given by
Tarski’s conditions (T1)-(T4) and ‘worlds’ are equated with valuations V' € V7.
However these are certainly not the only sorts of ‘worlds’ which are possible. In
non-standard logics it is customary to consider semantics for languages contain-
ing additional features, for example modalities, and where the connectives have
alternate interpretations. Within the context of these semantics we can still con-
sider beliefs as reflecting limiting willingness to bet on what holds in the ‘true
world’. Furthermore, just as in the classical case, avoidance of a Dutch Book (the
Dutch Book method of our title) provides a criterion of rationality for judging such
belief functions.

In the literature concerned purely with justifying probability as the rational
quantification of belief, see for example the early sections of [4], [9], Theorem
1 is commonly proved directly in the right to left direction by showing that
from any failure of (P1)-(P3) one can directly construct a Dutch Book. However
splitting the argument up into two steps clarifies the role played by the underlying
semantics.

The first step is just the following special case of the ‘full Dutch Book The-
orem’, see [5], where a ‘Dutch Book against B’ is defined as in Theorem 1 but
with the set of possible worlds V in place of V7. For the sake of completeness we
include a proof.

Theorem 2 ForV finite a function B € B does not permit a Dutch Book if and
only if B s a conver combination of the functions in 'V, i.e. B = Y ycyayV
where the ay > 0 and Y ey ay = 1.

2We should emphasize here that the existence of such a value B(f) is predicated on the
assumption, which we shall make throughout this paper, that for any 6 € SL, stake s > 0 and
n € [0,1] either one is willing to accept a bet in which one pays out sy to receive s from a
bookmaker if # turns out to be true (and nothing otherwise) or one is willing to reverse the
roles and sell the bookmaker a bet in which s/he pays you sn to receive s from you if 6 turns
out true (and nothing otherwise). [For full details of this argument within the current context
see [10] p20.]



Proof. Suppose on the contrary that B was a convex combination > y oy ayV of
functions in V but that for some 6, € SL and s; € R, i =1, ..., m,

for all V € V. In that case

3 av {3 s(vi0) - B0} <o.

Vev =1

But changing the order of summation gives

f}{sl(‘;}avvwl)) — (Vz:VaV)szB(Gz)} < 0,

i.e.

in:l{SlB(gl) — SZB(GZ)} < 0,

a contradiction.

The converse is a special case of a well known result from linear algebra but for
the sake of completeness we shall give the details. So suppose that B is not a con-
vex combination of elements from V. Then we can find sentences 6y, ...,0,, € SL
such that B | {6, ...,0,} (i.e. B restricted to the set {61, ...,0,}) is not a convex
combination of the functions V' | {6,,...,0,,} for V€ V (otherwise by taking
a suitably convergent subsequence as the 6, ..., 0, extend through all of SL we
could contradict our initial assumptions). This means that < B(6,), ..., B(0,,) >
is not in the closed convex set Y of vectors of the form

Z ay < V(gl), ,V(gm) >
Vvev

where the ay > 0, and Y}y cyay = 1. Hence by the well known Separating
Hyperplane Theorem for convex sets (see the appendix for a proof) there must
be a vector § =< s1, ..., S, >€ R™ such that

(< V1, ey Uy > — < B(6y),..., B(6,,) >)-§<0

for all < vy, ...,v,, >€ Y. In particular then substituting < V(6,),...,V(0,,) >
for < vy,...,v,, > for V ranging over V shows that we have here a Dutch Book
for B. |

This result, of course, applies to any (at present) finite set of ‘possible worlds’,
indeed the restriction to just the truth values 0 and 1 can clearly be relaxed,
we imposed it simply to remain on reasonably familiar territory®. The standard

3Related to this see [7].



Dutch Book argument for belief as probability now follows if we take V = V7. For
then to avoid a Dutch Book B must be of the form Yy cyr ayV with Yy cyray =
1, ay > 0. But each V € VT is uniquely determined by the (unique) atom ay,
that is sentence of the form 4+p; A £py A ... A £p,,, such that V(ay) = 1. So
B(ay) = ay and for § € SL,

B) = ZT ayV(0)
= Z{Ozv | VEVT,Oév)Ze},
since V(0) =1 <= ay 0,

= Z{ B(av) | Ve VT,OéV ): 9} (1)

and it is well known (see for example [10]) that every probability function on SL
arises in this way, and conversely.

Were one only interested here in Theorem 1 this would certainly be a pretty
long winded proof! The advantage of this derivation however is that we have in
Theorem 2 a general result which can be applied to many other situations where
our notion of ‘truth’ is not simply confined to be Tarskian, i.e. satisfying (T1-4).
At the same time it highlights the dependence of belief as probability on the
classical, Tarskian, interpretation of truth.

A second nice property of this proof is that it gives as a simple corollary
a generalization of a theorem of Lehman, [9] (see also theorem 1 of [13]). The
generalization concerns the possibility of forming a Dutch Book when the function
B is only partial (so in the definition of a Dutch Book the 6, ...,0,, are also
required to be in the domain of B). In the following theorem V is, as usual, a
subset of the set of all functions from SL to {0, 1}.

Corollary 3 Let B be a partial function from SL into [0,1]. Then B does not
permit a Dutch Book if and only if B has an extension to a function in B which
does not permit a Dutch Book, equivalently has an extension to a convexr combi-
nation of functions in V.

Proof. Clearly the implication follows from right to left by Theorem 2. In the
other direction suppose B is partial and does not permit a Dutch Book. For
V € V let V~ be the restriction of V' to the domain of B. Clearly B does not
permit a Dutch Book with respect to the set of ‘valuations’ {V~ | V € V} so
by an immediate adaption of Theorem 2 B is a convex combination ) -y ayV ™.
The required extension of B to a total function is >y oy ayV. |

Up to now we have required V to be finite. For possibly infinite V theorem 2
becomes:



Corollary 4 For V possibly infinite, a function B € B does not permit a Dutch
Book if and only if for every finite ' C SL B | T" is a convex combination of the
functions in {V [T | V € V}.

2 Applications to Non-Tarskian Truth

We now turn to considering some other applications of Theorem 2 to alternate
notions of ‘truth’. As we shall see the vital, and often missing, ingredient turns out
to be an argument corresponding to (1) above for giving local characterizations
of those B € B which are convex combinations of the V € V.

Our first example is a very simple modification of the classical Dutch Book
Theorem given above. Namely, if we replace VI' by a non-empty subset, V-
say, of this set, effectively then saying that only certain worlds (valuations) are
possible, then any B € B avoiding a Dutch Book must be a convex combination
of these valuations, equivalently must be a probability function on SL which
assigns zero probability to the atoms ay for V € V' — V= (and conversely).

For a second example, which is an already well known result due to Jaffray,
[8], (see also [13]) suppose that our possible worlds might not yet be fully created
(maybe it’s still only the fifth day, or maybe these are worlds in a book where some
details have not been made explicit) so that in any world our total knowledge
might consist of knowing the truth of some non-contradictory § € SL (and hence
all logical consequences of #) where 6 is not necessarily an atom. So it may be
that not all questions of classical truth and falsity are determined. In that case
if we were to identify true with ‘known true’ in the classical sense (with falsity
equated with not known to be true) then our set of valuations, denoted V” would
consist of { Vy | @ € SL } where for § € SL Vj is the function from SL to {0,1}
such that

Vi) =1 < 0F 0.

In this case by results of Shafer the functions B € B which are convex combi-
nations of functions in V” (equivalently by Theorem 2 avoid a Dutch Book) are
precisely the Dempster-Shafer belief functions on SL (see [14] or, in the notation
of this note, [10]). That is functions B € B such that for all 0, ¢, 01, ...,0,, € SL

(DS1) If =6 then B(A) =1, B(—0) =0,
(DS2) If = (0 <> ¢) then B(6) = B(9),
(DS3) B(ViZ 6i) > 25(=1)*" ' B(Aes 0:),
where in (DS3) S ranges over the non-empty subsets of {1,2,...,m}.

Again we might note that as with probability the ‘hard’ part of this Dutch
Book result is in Shafer’s derivation of the equivalence of convex combinations of
functions in V¥ with Dempster-Shafer belief functions.



For our next examples we point out a generalization of the conclusions fol-
lowing Theorem 2 to certain logics containing, possibly as derived connectives,
conjunction and disjunction satisfying (T2) and (T3). Precisely let £ be a fi-
nite propositional language with at least the connectives A,V (and possibly also
modalities). Let SL be the set of sentences of £ and suppose that the logic carries
with it a notion of a valuation (world, interpretation) V : SL — {0,1}. Let V£
be the set of such valuations of £. As usual for # € SL, I' C SL define

PEd <= VWeVE ifV(g)=1forallp el
then V(0) = 1.

As usual we write =, 6 (corresponding to I' = () if § is an L-tautology, i.e.
V(#) =1 for all V € V£, and write 6 = if § is an L-contradiction, i.e. V() =0
for all V € V£, Let B® be the set of functions from S£ into [0, 1]. The following
theorem is already covered by the general theorem 41.1 of Choquet’s seminal [3]
but again for completeness we give a direct, elementary, proof.

Theorem 5 Let B € B* and suppose that for V. € V£, (T2) and (T3) hold.
Then B | T is a convex combination of functions in {V | T | V € V£} for every
finite I' C SL if and only if B satisfies that for all 0,¢ € SLC,
(L1) If 6 then B(A) =1,
if 0 = then B(#) =0,
(£2) T£0 ¢ 6 then B(8) < B(9),
(L3) B(OV ¢)+ B(OA¢p)=B(0) + B(g).

Proof. Clearly (£1-3) hold for V' € V* and hence for any convex combination
of such functions.

To prove the other direction let I' be a finite subset of SL which is closed
under subformulae. Now for each ) # A C T set

aA:B(/\a) _B(/\m v ¢)
N N pel—A
and pick, if possible, a Va € V* such that
VA</\9>:1, VA(/\Q/\ \/ Qﬁ)zo
N N peT—A

Notice that by (£2) aa > 0 since

ANON N ke NP

feA pel'—A N

Notice also that if no such Va exits then

NokEc Non ) ke N0,

0eA PeA $pel—A PeA
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so by (£2) an = 0.
For A = () let

aAzl—B<\/ QS)
¢el

and pick, if possible, Vo € V* such that V(¢) = 0 for all ¢ € I'. Notice that by
(L1) such a VA does exist if an > 0.

Finally for A = I" define
an = B (/\ 9)
ger

and pick, if possible VA € V£ such that V(f) = 1 for all € I'. Again by (£1)
such a Va does exist if ap > 0.
Then, by induction on the size, |I'|, of T,

> aa=Y o=

ACTaaso ACT

2 (a) - (ar v o))
0£ACT feA feA pel—A
.H_B(v¢)+B(A@

el oer

=1

In more detail, this result is true for |I'| = 1 whilst for |T'| > 1, say I' = QU{x}
where x ¢ Q, the term

= ) e )
0#£ACT e feA peT—A

can, using (£2), be written as

B(X)—B(X/\ \/¢)>+B</\ 9)—3(/\ 9/\)()

peQ 0cQ 0cQ

+ Y {B(X/\/\9>—B(X/\/\9/\ \V qﬁ)}
DAACQ feA feA PEQ—A

+ £ do(po)-m(ponay v o)l
DAACQ feA feA PEQ—A
Using (£2) and (£3) on this final term gives

8



B(/\ OA(xV ¢>)>:

0eA pEQ—A

B(/\ HAx)+B</\ on '\ gb)

0eA PeA pEQ—A

—B(/\ OAxA \/ ¢>>

0eA pEQ—A

Making this substitution and cancelling terms gives the original expression with
Q2 in place of I" and the result follows by induction.

Similarly, by induction on the size of [ again, we have that for ¢ € I,

B(¢) = B (Aper 9)
+ Xypeacr {B (Aoea0) — B (/\GGA 0 A Vger-a ¢)}
But this righthandside equals

Y. aan= > ar= Y, aaVa(y)

YEACT YEACT, apn>0 ACT, ap>0

and hence, on I', B is, as required, the convex combination 3, -oaaVa of ele-
ments of V-, |

Notice that as a consequence of the proof of this result, given any finite sub-
set I' of SL we can precisely specify a finite ' C SL such that if B satisfies
(L£1),(£2),(£3) whenever 0, ¢ € T” then there is no Dutch Book against B with
the 6y, ..., 0, restricted to being elements of I". Or putting it another way if
01, ...,0,, (with suitable stakes) constitute a Dutch Book against B then we can
generate a finite set of sentences amongst which is a contradiction to B satisfying

(L£1),(£2),(L£3).

Theorem 5 applies to a number of well known propositional logics, for example
the standard modal logics K, T, Sy, S5 etc. and intuitionistic logic. It also applies
to certain paraconsistent logics in which conjunction and disjunction retain their
classical interpretation. To expand on this point, one common way to specify
a paraconsistent logic (for example in [1]) is to specify a semantics based on a
variation of the usual Tarskian interpretation of the connectives. So, for example,
in Batens’ Negation Glut logic N the set of valuations VV are those functions
V : SL — {0, 1} satisfying (T2-4) and, in place of (T1),

(N1) V(@0)=0 = V(-0) =1,
the resulting consequence relation being defined, as expected, by

IeEyfd <= YWeW, ifV(ip)=1forallpecl
then V' (0) = 1.



In these semantics one might interpret the negation in —f as asserting that that
there were reasons to reject @, thus allowing the possibility of taking —f to be
true even though one had already assigned 6 truth value 1. Corollary 4 now
says that according to these semantics (i.e. interpretation of the connectives) it
is not possible to construct a Dutch Book against B € B just if for every finite
subset I' of SL B restricted to [, B | I, is a convex combination of functions in
{V | T|V € VW}, equivalently by Theorem 5* if

(N1) If |=u 0 then B(O) = 1,
(NV2) If 0 |=u ¢ then B(0) < B(9),
(N'3) B(OV ¢) + B0 A ¢) = B(0) + B(o).

It is worth observing that the conditions (DS1) and (DS2) for a Dempster-
Shafer belief function could be replaced, by analogy to (£1), (£2), with the con-
ditions

(1) If Epg @ then B(F) =1,
if 0 ):DS then B(G) = 0,
(2) If 6 =ps ¢ then B(#) < B(¢),

since, with the obvious meaning, =pg equals classical logical consequence. Note
however that the Vj in V¥ do not necessarily satisfy condition (T3). In turn then
Jaffray’s result hints that perhaps an analog of Theorem 5 might also be provable
without assuming (T3).

For our last example we show that Theorem 2 may also be applicable in the
other direction to provide a ‘justification in terms of betting’ for certain ‘belief
functions™ even where their original formulation made no direct reference to
‘possible worlds’.

The idea of an Ent belief function was introduced (except for some minor mod-
ifications) in [11] and might be loosely described as qualitative case-based belief.
Unlike belief as probability Ent belief functions can be seen to arise naturally
from an agent’s past experiences and are not dogged by the problems of compu-
tational infeasibility and internal inconsistencies commonly associated with real
belief as probability. On the other hand Ent belief values can be viewed as impre-
cise probabilities in the sense that if an agent’s past experiences are determined
by a fixed probability function then the corresponding Ent belief function tends
to this in the limit.

For the purpose of this note we may take Ent belief functions on SL to be
characterized (see [11],[12],[2] for precise details) as those functions B : SL —
[0, 1] which satisfy that for 0, ¢, 1, x, X' € SL,

“In these semantics there are no N-contradictions.

5This, of course, could also be said to be the case for the second example above concerning
Dempster-Shafer belief functions.
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If k=6 then B() = 1.

B(#V ¢) = B(0) + B(—0 A ¢).

If B(O A ¢) > 0 then B(¢ A ) > 0.

B(x) = B(x') whenever X’ is the result of
(respectively) replacing a subformula of y

HEEH
\_/\_/\l}j/\_/

B

of the form
——f ) (0
(0N ) =6V ¢
0 N -6 -0 A0
NN 0N
0N (dNAY) b ONnd)V (0N
OV 6) A Y)Y 0A) V(0N (6 AY)
0N (pAY) (ONB) AN
AVEY OV (=0 A1)
ONO 0
(YVv—)Vve | [ YV Y

Given such belief functions it is natural, in the context of this paper, to ask if
they can also be justified in terms of avoiding a Dutch Book for some notion of
‘a world’. As observed by Richard Booth and the author this essentially follows
from lemma A.8 of [11]. Namely, worlds can be thought of as the product of
lazy and capricious gods who only bother to decide the truth or falsity of a
propositional variable when specifically required to do so. [One might compare
this to a situation where, say the laws of physics, were only determined at the
stage at which the critical experiments were conducted!] Thus to decide the
truth or falsity of a sentence € the god simply reads € from left to right filling in
truth values for the propositional variables as s/he goes along (depending only
on the order in which they appear, so not on 6 per se). With this notion of
a world/valuation the results in [11] show that B : SL — [0, 1] satisfying (E3)
avoids a Dutch Book if and only if B is an Ent belief function in the sense of
satisfying (E1)—(E4).

3 Conclusion

In this short note we have pointed out that the ‘Dutch Book Method’ is applicable
not just to classical propositional logic, where it yields probability as the only
rational belief (as willingness to bet) but also to a range of non-standard logics
with alternate notions of truth and possible worlds. For these it in turn produces
a spectrum of ‘rational’ belief functions.

Whilst we have focused on two-valued semantics Theorem 2 is equally ap-
plicable in the case of logics with, for example, truth values in the real interval
[0, 1], again the ‘tricky’ part is finding the ‘local’ equivalent of being a convex
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combination of valuations/worlds. In this regard it is shown in [7] that if in the
Lukasiewicz logic Ly (i.e. the possible truth values are 0,1/k,2/k, ..., (k—1)/k, 1
and negation, disjunction, conjunction, implication are defined respectively by the
truth tables/functions, 1 —z, min{l,z+y}, max{0,z+y—1}, min{l,1—z+y})
B avoids a Dutch Book then B satisfies
(Lpy 1) If ):L;m 0 then B(#) =1,
if 0 ):LHI then B() =0,
(Ly13) BV e)+B(ONA)=DB(0)+ B(o).
As subsequently observed, the converse of this result is also true by the ana-
logue of Theorem 2 since by a result in [6] functions B satisfying (L;411,3) are

convex combinations of L, -valuations. Whether or not similar results hold for
other ‘fuzzy logics’ (and in particular for L.,) apparently awaits clarification.

Appendix

Let b =< B(6)), ..., B(6,,) > and let @ be the closest point in Y to b. Since Y is
closed convex there is a unique such point and since b ¢ Y, b # €. Let € = 5(b+0)
and let H be the plane of vectors & such that

(Z—@)-(b—¢&)=0.

Then Y cannot intersect H, since if it did, at @ say, then there would be a point
on the line between @ and ¢in Y and closer to b than ¢ Hence Y must lie entirely
on the opposite side of H from b and

-, -,

b-(E—b) <0< -(€—0)

for all ¥ € V, giving

as required.
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