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Abstract

In this paper we consider decision making under hierarchical imprecise un-
certainty models and derive general algorithms to determine optimal actions.
Numerical examples illustrate the proposed methods.

Keywords

decision making, generalized expected utility, imprecise probabilities, second-order
uncertainty, natural extension, linear programming

1 Introduction
Consider the basic model of decision theory: One has to choose an action from a
non-empty, finite set A = {a1, ...,an} of possible actions. The consequences of ev-
ery action depend on the true, but unknown state of nature ϑ ∈Θ = {ϑ1, ...,ϑm}.
The corresponding outcome is evaluated by the utility function

u : (A×Θ)→ R
(a,ϑ) 7−→ u(a,ϑ)

and by the associated random variable u(a) on (Θ,P o(Θ)) taking the values
u(a,ϑ). Often it makes sense to study randomized actions, which can be under-
stood as a probability measure λ = (λ1, ...,λn) on (A,P o(A)). Then u(·) and u(·)
are extended to randomized actions by defining u(λ,ϑ) := ∑n

s=1 u(as,ϑ)λs.
This model contains the essentials of every (formalized) decision situation

under uncertainty and is applied in a huge variety of disciplines. If the states
of nature are produced by a perfect random mechanism (e.g. an ideal lottery),
and the corresponding probability measure π(·) on ((Θ,P o(Θ))) is completely
known, the Bernoulli principle is nearly unanimously favored. One chooses that
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action λ∗ which maximizes the expected utility Eπu(λ) := ∑m
j=1 (u(λ,ϑ j) ·π(ϑ j))

among all λ.
In most practical applications, however, the true state of nature can not be

understood as arising from an ideal random mechanism. And even if so, the cor-
responding probability distribution will be not known exactly. An efficient ap-
proach for solving this problem in the framework of imprecise probability theory
(Kuznetsov [13], Walley [18], Weichselberger [20]) has been proposed by Au-
gustin in [1, 2].

A related, quite commonly used, way to deal with complex uncertainty is to
apply second-order uncertainty models (hierarchical uncertainty models). These
models describe the uncertainty of a random quantity by means of two levels.
Many papers are devoted to the theoretical [4, 5, 11, 14, 19] and practical [7, 9, 12]
aspects of second-order uncertainty models. A comprehensive review of hierar-
chical models is given in [6] where it is argued that the most common hierarchical
model is the Bayesian one [3, 10, 21]. At the same time, the Bayesian hierarchical
model is unrealistic in applications where there is available only partial informa-
tion about the system behavior.

Most proposed second-order uncertainty models assume that there is a precise
second-order probability distribution (or possibility distribution). Unfortunately,
such information is often absent and making additional assumptions may lead to
wrong results. A new hierarchical uncertainty model for combining different types
of evidence was proposed by Utkin [15, 16], where the second-order probabilities
can be regarded as confidence weights and the first-order uncertainty is modelled
by lower and upper previsions of different gambles. We will call these hierarchical
models second-order probabilities of type 1.

It is worth noticing that there are cases when the type of the probability distri-
bution of the states of nature is known, for example, from their physical nature, but
parameters or a part of the parameters of the distribution are defined by experts.
In reality, there is some degree of our belief to each expert’s judgement whose
value is determined by experience and competence of the expert. Therefore, it is
necessary to take into account the available information about experts to obtain
more credible decisions. This model can be also considered in the framework of
hierarchical models and will be called second-order probabilities of type 2.

Decision making for both models of type 1 and type 2 are studied in the pa-
per. In particular, we give general and efficient algorithms for calculating optimal
actions and illustrate them in detailed examples.

One should note explicitly that throughout the paper we assume the utility
and the description of the uncertainty on the state of nature are given. Alterna-
tively, there are quite sophisticated approaches directly extending the Neumann-
Morgenstern point of view. They construct separated utility and imprecise prob-
ability from axioms on behaviour and preferences (see, e.g., the work of [8] and
the references therein).
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2 Second-Order Probabilities of Type 1
Suppose that there is a set of weighted expert judgements related to some mea-
sures of the states of nature E fi(ϑ j), i = 1, ...,r, i.e., there are values bi, bi of lower
and upper previsions. Suppose that the credibility of each of r experts is charac-
terized by a subjective probability γi or interval of probabilities [γ

i
,γi], i = 1, ...,r.

It should be noted that the second-order probabilities γ
i

and γi form an imprecise
probability, described by a set N of distributions on the set M of all distribu-
tions π on (Θ,P o(Θ)). We assume that the second-order imprecise probability
is avoiding sure loss, i.e., N is not empty. Denote for any gamble f the lower
(upper) second-order expectations by LEN f (UEN f ), respectively. Generally, the
judgements can be written as follows:

Pr
{

bi ≤ Eπ fi ≤ bi
}
∈ [γ

i
,γi], i = 1, ...,r, (1)

or
LEN IBi (Eπ fi)=γ

i
, UEN IBi (Eπ fi) = γi, i = 1, ...,r.

Here the set {bi, bi} contains the first-order previsions, Bi = [bi,bi], the set {γ
i
,γi}

contains the second-order probabilities and Eπ fi = ∑m
j=1 fi(ϑ j)π(ϑ j).

The problem here is that the resulting set of distributions may be rather com-
plex because the functions fi are different, especially, if the value of m is large.

2.1 Decision Making
Since there exists the set N of distributions on the set M of all distributions π, the
expected utility Eπu(λ) can be considered as a random variable described by dis-
tributions from N , and there exist lower LEN (Eπu(λ)) and upper UEN (Eπu(λ))
expectations of this random variable, which depend on the action λ. These expec-
tations can be roughly called also by lower and upper “average” expected utilities.
With this respect, we can assert that every action is evaluated by its minimal “aver-
age” expected utility. By representing the interval [LEN (Eπu(λ)) ,U EN (Eπu(λ))]
by the lower interval limit alone, we can write the criterion of decision making.

Throughout the paper we evaluate interval-valued expectations by their lower
interval-limits only — more complex interval orderings are a topic of further re-
search, see also Section 4. Therefore, an action λ∗ is optimal iff for all λ

LEN (Eπu(λ∗))≥ LEN (Eπu(λ)) . (2)

Then the optimal action λ∗ can be obtained by maximizing LEN (Eπu(λ)) subject
to ∑n

s=1 λs = 1, λs ≥ 0, s = 1, ...,n. In other words, the following optimization
problem has to be solved:

LEN (Eπu(λ))→max
λs
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under the constraints
n

∑
s=1

λs = 1, λs ≥ 0, s = 1, ...,n.

Due to arguments similar to those used in [17], this problem can be rewritten as

LEN (Eπu(λ∗)) = max
c∈R,ck∈R+,dk∈R+,λs∈R+

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(3)

subject to

c+
r

∑
k=1

(ck−dk) IBk (Eπ fk)≤ Eπu(λ), (4)

n

∑
s=1

λs = 1. (5)

By substituting the expressions for Eπ fi and Eπu(λ∗) into the constraints, we get

c+
r

∑
k=1

(ck−dk) IBk

(
m

∑
j=1

fk(ϑ j)π(ϑ j)

)
≤

m

∑
j=1

(u(λ,ϑ j) ·π(ϑ j)) , ∀π ∈M . (6)

It is worth noticing that the maximal number of different expressions for the left
sides of the constraints (6) is 2r because they involve indicator functions. Let
us write a vector i = (i1, ..., ir), i j ∈ {0,1}, whose values correspond to those
situations. In accordance with possible values of the binary vector i, the set M
can be divided into 2r subsets M1, ...,M2r such that the i-th subset is formed by
the set of constraints

Eπ fk ∈
{

Bk, ik = 1
Bc

k, ik = 0 , k = 1, ...,r. (7)

Here Bc
k = [infEπ fk,supEπ fk]\Bk is the (relative) complement of the interval Bk.

Introduce the set K j ⊆ {1, ...,r} corresponding to the set M j such that for
any π ∈ M j and k ∈ K j there holds IBk (Eπ fk) = 1, and for l /∈ K j there holds
IBl (Eπ fl) = 0.

Let π = (π(ϑ1), ...,π(ϑm)) be a probability distribution belonging to M j. It
should be noted that some elements from the set {M j, j = 1, ...,2r}may be empty,
i.e., there are no such distributions π that satisfy all constraints (7). This means
that the corresponding vector of indices i provides inconsistent judgements (7)
and corresponding constraints (4) must be removed from the list of 2r constraints.
Therefore, as the first step, it is necessary to determine the consistency of judge-
ments. The consistency of the set of constraints, corresponding to a realization of
the vector i, can be determined by solving a linear programming problem with
an arbitrary objective function and constraints (7). If any solution exists, then the
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feasible region is non-empty and there exists at least one probability distribution
π satisfying all constraints (7), i.e., M j 6= /0. Otherwise, M j = /0 and the corre-
sponding constraint (4) must be removed.

Let L ⊆ {1, ...,2r} be a set of indices for all consistent constraints or all non-
empty sets. Suppose that π1 ∈M j and π2 ∈M j are two distributions from M j, j ∈
L, such that Eπ1 u(λ)≥ Eπ2u(λ). Since π1 ∈M j and π2 ∈M j, then the constraint

c+ ∑
k∈K j

(ck−dk)≤ Eπ1u(λ),

follows from the constraint

c+ ∑
k∈K j

(ck−dk)≤ Eπ2u(λ),

because the left sides of constraints are the same. This implies that from all con-
straints, corresponding to the set M j , we have to keep only one constraint

c+ ∑
k∈K j

(ck−dk)≤ min
π∈M j

Eπu(λ).

So, problem (3)-(5) becomes

LEN (Eπu(λ∗)) = max
c∈R,ck∈R+,dk∈R+,λs∈R+

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(8)

subject to
c+ ∑

k∈K j

(ck−dk)≤ min
π∈M j

Eπu(λ), ∀ j ∈ L, (9)

n

∑
s=1

λs = 1. (10)

Write G j = minπ∈M j
Eπu(λ), j ∈ L. Then there holds

LEN (Eπu(λ∗)) = max
c∈R,ck∈R+,dk∈R+,λs∈R+,G j

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(11)

subject to
c+ ∑

k∈K j

(ck−dk)≤ G j, (12)

Eπu(λ)≥ G j, π ∈M j, ∀ j ∈ L,
n

∑
s=1

λs = 1. (13)

One can see that the variables Gk are linear for all k ∈ L. This implies that the
optimization problem (11)-(13) is linear, but, in the way it is written, it contains
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infinitely many constraints. In order to overcome this difficulty, note, however,
that the set of distributions M j for every j can be viewed as a simplex in a finite
dimensional space. According to some general results from linear programming
theory, an optimal solution to the above problem is achieved at extreme points of
the simplex, and the number of its extreme points is finite. This implies, similar
to the solution in the first-order decision problem [1, 2], that the infinite set of
constraints (13) is reduced to some finite number, and standard routines for linear
programming can be used to determine optimal actions. If one wants to concen-
trate on unrandomized actions (pure actions), where λs ∈ {0,1}, then Boolean
optimization can be used.

2.2 Numerical Example
Suppose that 2 experts evaluate 3 states {1,2,3} of nature as follows: the proba-
bility that either the first state or the second one is true is less than 0.4; the mean
value of states is between 1 and 2. The belief to the first expert is 0.5. This means
that he (she) provides 50% of true judgements. The belief to the second expert
is between 0.3 and 1. This means that he (she) provides more than 30% of true
judgements. Values of the utility function u(as,ϑ j) are given in Table 1.

Table 1: Values of the utility function u(as,ϑ j)

ϑ1 ϑ2 ϑ3
a1 6 3 1
a2 2 7 4

Table 2: Consistency of constraints
i set consistent

(1,1) EπI{1,2}(ϑ) ∈ [0,0.4], Eπϑ ∈ [1,2] no
(1,0) EπI{1,2}(ϑ) ∈ [0,0.4], Eπϑ ∈ [2,3] yes
(0,1) EπI{1,2}(ϑ) ∈ [0.4,1], Eπϑ ∈ [1,2] yes
(0,0) EπI{1,2}(ϑ) ∈ [0.4,1], Eπϑ ∈ [2,3] yes

The above judgements can be written in the formal form as follows:

Pr
{

0≤ EπI{1,2}(ϑ)≤ 0.4
}

= 0.5, Pr{1≤ Eπϑ≤ 2} ∈ [0.3,1].

Let us find the set L ⊆ {1,2,3,4}. It can be seen from Table 2 that L = {2,3,4}.
Let us find the optimal strategies λ∗1, λ∗2. For doing so, it is necessary to find
extreme points for subsets M2, M3, M4.
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Subset 2:

{π1 = 0,π2 = 0,π3 = 1}
{π1 = 0,π2 = 0.4,π3 = 0.6}
{π1 = 0.4,π2 = 0,π3 = 0.6}

Subset 3:

{π1 = 1,π2 = 0,π3 = 0}
{π1 = 0,π2 = 1,π3 = 0}
{π1 = 0.5,π2 = 0,π3 = 0.5}

Subset 4:

{π1 = 0,π2 = 1,π3 = 0}
{π1 = 0.5,π2 = 0,π3 = 0.5}
{π1 = 0,π2 = 0.4,π3 = 0.6}
{π1 = 0.4,π2 = 0,π3 = 0.6}

So, the following optimization problem has to be considered:
LEN (Eπu(λ∗)) = max

c,ck ,dk,λs,G j
{c+0.5c1−0.5d1 +0.3c2−1d2}

subject to ci ≥ 0,di ≥ 0,λi ≥ 0, i = 1,2,

c+1 · (c1−d1)+0 · (c2−d2)≤ G2,

c+0 · (c1−d1)+1 · (c2−d2)≤ G3,

c+0 · (c1−d1)+0 · (c2−d2)≤ G4,

(λ1 +4λ2) ·1≥ G2,

(3λ1 +7λ2) ·0.4+(λ1 +4λ2) ·0.6≥ G2,

(6λ1 +2λ2) ·0.4+(λ1 +4λ2) ·0.6≥ G2,

(6λ1 +2λ2) ·1≥ G3,

(3λ1 +7λ2) ·1≥ G3,

(6λ1 +2λ2) ·0.5+(λ1 +4λ2) ·0.5≥ G3,

(3λ1 +7λ2) ·1≥ G4,

(6λ1 +2λ2) ·0.5+(λ1 +4λ2) ·0.5≥ G4,

(3λ1 +7λ2) ·0.4+(λ1 +4λ2) ·0.6≥ G4,

(6λ1 +2λ2) ·0.4+(λ1 +4λ2) ·0.6≥ G4,

λ1 +λ2 = 1.

Solution of the problem: c = 3.143, G2 = G3 = G4 = 3.143, c1 = c2 = d1 =
d2 = 0, λ1 = 0.2857, λ2 = 0.7143.
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3 Second-Order Probabilities of Type 2
Suppose that the states of nature are described by a discrete probability distribu-
tion of a certain type, for example, binomial, hypergeometric or Poisson distri-
butions. The certain type of the distribution is often known from some physical
properties of the considered object. However, the parameters of the corresponding
distribution may be uncertain. Denote by α = (α1, ...,αh) a vector of parameters
for some discrete distribution π(ϑ,α). Consider a case of continuous real param-
eters, i.e., αi ∈ R. If we suppose that the experts provide some evidence about
parameters, then the vector α can be considered, just as in classical Bayesian
statistics, as a random variable. This is due to the following reasons: First, experts
may provide some information about statistical characteristics of parameters, for
example, about intervals of mean values or about some probability that the i-
th parameter is in an interval. Second, even if experts provide only information
about intervals of possible values of parameters, we can not totally believe in the
experts because they may be unreliable. This implies that every expert is charac-
terized by a probability or by an interval-valued probability of producing correct
judgements. Generally, if we suppose that the vector of parameters is governed
by some unknown joint density ρ, then the expert judgements can be formally
written as follows:

γ
i j
≤ Eρ fi j(αi)≤ γi j, i = 1, ...,h, j = 1, ...,ri. (14)

Here ri is a number of judgements related to i-th parameter; fi j is a function
corresponding to information about the i-th parameter provided by the j-th expert.
For example, if an expert offers information about the probability that the i-th
parameter is in an interval B, then fi j(αi) is the indicator function of the event B,
i.e., fi j(αi) = IB(αi). If the expert provides the mean value of the i-th parameter,
then there holds fi j(αi) = αi. The values γ

i j
and γi j are the bounds for the provided

characteristic Eρ fi j(αi) of the i-th parameter1.

3.1 Decision Making
We assume that there are some bounds for all parameters [αi,αi], i = 1, ...,h. This
means that the i-th parameter belongs to the interval [αi,αi] with probability 1.
Inside this interval, the parameter is distributed according to an unknown proba-
bility density ρi.

So, we have some infinite set of discrete probability distributions π(ϑ j,α)
defined by different parameters. Then the expected utility corresponding to one

1For simplicity, it is assumed that either experts with weights provide intervals for unknown pa-
rameters or experts without weights provide some statistical characteristics of random parameters. Of
course, we could consider more complex cases when experts with weights provide statistical charac-
teristics of random parameters, but the study of these, so-to-say third-order level, cases may hide the
main results behind complex notation.
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realization of the vector α is

Eπu(λ,α) =
m

∑
j=1

(u(λ,ϑ j) ·π(ϑ j,α)) .

By averaging the expected utilities Eπu(λ,α) over all possible vectors α, we get

EρEπu(λ,α) =

Z

Ωh

(
m

∑
j=1

(u(λ,ϑ j) ·π(ϑ j,α))

)
ρ(α)dα.

Here Ωh is a sample space and Ωh = [α1,α1]× ...× [αh,αh].

Now we define an optimal action. An action λ∗ is optimal iff
LEP (Eπu(λ∗,α))≥ LEP (Eπu(λ,α)) . (15)

Here P is a set of all possible density functions ρ(α) satisfying the constraints

γ
i j
≤ Eρ fi j(αi)≤ γi j, i = 1, ...,h, j = 1, ...,ri,

or

γ
i j
≤

Z αi

αi

fi j(αi)ρi(αi)dαi ≤ γi j, i = 1, ...,h, j = 1, ...,ri.

Then the optimal action λ∗ can be obtained by maximizing LEP (Eπu(λ,α))
subject to ∑n

s=1 λs = 1, λs ≥ 0, s = 1, ...,n. In other words, the following optimiza-
tion problem has to be solved:

LEP (Eπu(λ∗,α))→max
λs

(16)

under the constraints
n

∑
s=1

λs = 1, λs ≥ 0, s = 1, ...,n. (17)

If we assume that there is no information about independence of parameters, i.e.,
the joint density ρ(α) can not be represented as a product of marginal ones, then
problem (16)-(17) can be rewritten as

LEP (Eπu(λ∗,α)) = max
c∈R,ck j∈R+,dk j∈R+,λs

{
c+

h

∑
k=1

rk

∑
j=1

(
ck jγk j

−dk jγk j

)}
(18)

subject to

c+
h

∑
k=1

rk

∑
j=1

(
ck j−dk j

)
fk j(αi)≤ Eπu(λ,α), ∀α ∈Ωh, (19)

n

∑
s=1

λs = 1, λs ≥ 0. (20)
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This is a linear programming problem having an infinite number of con-
straints. However, for many special cases problem (18)-(20) can be simplified. Let
us consider the most important and realistic case when experts provide h intervals
B1, ...,Br for unknown parameters and each expert is characterized by some prob-
ability γk j or interval-valued probability [γ

i j
,γi j]. Moreover, in order to give the

reader the essence of the subject analyzed and make all the formulas more read-
able, we will also assume that h = 1 and α = (α), i.e., there is only one parameter
of the distribution π(ϑ j,α). We also denote r1 by r. In other words, constraints
(14) are represented as

γ
j
≤

Z α

α
IB j(α)ρ(α)dα ≤ γ j, j = 1, ...,r. (21)

Then problem (18)-(20) can be rewritten as

LEP (Eπu(λ∗,α)) = max
c∈R,ck∈R+,dk∈R+,λs

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(22)

subject to

c+
r

∑
k=1

(ck−dk) IBk(α)≤ Eπu(λ,α), ∀α ∈ [α,α], (23)

n

∑
s=1

λs = 1, λs ≥ 0. (24)

Denote i = (i1, ..., ir), i j ∈ {0,1}. In accordance with possible values of the
binary vector i, the interval B = [α,α] of all values α can be divided into 2r subin-
tervals B(1), ...,B(2r) such that the i-th subinterval is formed by

B(i) =
r

\

k=1

{
Bk, ik = 1
Bc

k, ik = 0 . (25)

Let L⊆ {1, ...,2r} be a set of indices for all non-empty subintervals B( j) 6= /0.
Then from all constraints corresponding to the subinterval B( j), we have to keep
only one constraint

c+
r

∑
k=1

(ck−dk) ik ≤ min
α∈B( j)

Eπu(λ,α).

So, problem (22)-(24) becomes

LEP (Eπu(λ∗,α)) = max
c∈R,ck∈R+,dk∈R+,λs

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(26)
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subject to

c+
r

∑
k=1

(ck−dk) ik ≤ min
α∈B( j)

Eπu(λ,α), ∀i, (27)

n

∑
s=1

λs = 1, λs ≥ 0. (28)

Let us introduce the variable G j = minα∈B( j) Eπu(λ,α). Then problem (26)-
(28) can be rewritten as

LEP (Eπu(λ∗,α)) = max
c∈R,ck∈R+,dk∈R+,λs,G j

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(29)

subject to

c+
r

∑
k=1

(ck−dk) ik ≤ G j, ∀i, (30)

Eπu(λ,α)≥ G j, ∀α ∈ B( j), ∀i, (31)
n

∑
s=1

λs = 1, λs ≥ 0. (32)

In this case, we obtain the linear programming problem with infinite number
of constraints. However, if it is known that the function Eπu(λ,α) is monotone
with α, then it is sufficient to consider only boundary points of intervals B( j).
Constraints (31) can be written as

m

∑
j=1

(
n

∑
s=1

(u(as,ϑ j)λs) ·π(ϑ j)

)
≤ G j,

or
n

∑
s=1

(
m

∑
j=1

(u(as,ϑ j)π(ϑ j))

)
λs ≤ G j.

Hence it is obvious that the constraints are linear with λs.

3.2 Numerical Example
Suppose that 3 states {1,2,3} of nature are governed by the binomial distribution

π(ϑ j,α) =

(
3−1
j−1

)
α j−1(1−α)3− j−1, j = 1,2,3.

Two experts provide their judgements about the parameter α ∈ [0,1] as follows:
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1. the parameter α is in interval [0.8,1];

2. the parameter α is in interval [0.7,1].

The belief in the correctness of the first expert is 0.5. The belief in the sec-
ond expert is between 0.3 and 1 (see Section 2.2). The above judgements can be
written in the formal form as follows:

Z 1

0
I[0.8,1](α)ρ(α)dα = 0.5,

Z 1

0
I[0.7,1](α)ρ(α)dα ∈ [0.3,1].

Let us find the set L⊆ {1,2,3,4}.

i intervals non-empty
(1,1) [0.8,1]∩ [0.7,1] yes
(1,0) [0.8,1]∩ [0,0.7] no
(0,1) [0,0.8]∩ [0.7,1] yes
(0,0) [0,0.8]∩ [0,0.7] yes

Table 3: Intersections of intervals

It can be seen from Table 3 that L = {1,3,4}.
Let us find λ1, λ2. In this case, there holds

LEP (Eπu(λ∗,α)) = max
c∈R,ck∈R+,dk∈R+,λs,G j

{c+0.5c1−0.5d1 +0.3c2−1d2}

subject to

c+1 · (c1−d1)+1 · (c2−d2)≤ G1,

c+0 · (c1−d1)+1 · (c2−d2)≤ G3,

c+0 · (c1−d1)+0 · (c2−d2)≤ G4,(
α2−6α+6

)
λ1 +

(
10α−8α2 +2

)
λ2 ≥ G1, α ∈ [0.8,1],

(
α2−6α+6

)
λ1 +

(
10α−8α2 +2

)
λ2 ≥ G3, α ∈ [0.7,0.8],

(
α2−6α+6

)
λ1 +

(
10α−8α2 +2

)
λ2 ≥ G3, α ∈ [0,0.7],

λ1 +λ2 = 1, λ1 ≥ 0,λ2 ≥ 0.

By solving this problem approximately (for a finite number of values of α), we
get c = 3.636, G1 = 2.773, G3 = G4 = 3.636, c1 = c2 = d2 = 0, d1 = 0.864,
λ1 = 0.409, λ2 = 0.591.

4 Concluding Remarks
Two models of decision making based on different types of initial hierarchical
information about states of nature have been studied in the paper. We have shown
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that both models can be brought into a form which allows us to give general
algorithms to determine optimal solutions.

It should be noted that we have focused in this paper on the basic decision
problem. However, the fundamental ideas of this paper should be also applicable
to more complex decision problems, like multi-criteria decision making and data-
based decision problems. Another topic of furhter research is to extend the results
obtained here to other optimality criteria which are more sophisticated than the
criteria from (2) and (15), which take into account only the lower interval limits.
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