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Abstract

With insufficient knowledge, the conclusions made by a reasoning
system are usually uncertain. If the system is open to new knowledge,
it also suffers from a higher order uncertainty, because the first or-
der uncertainty evaluations are uncertain themselves — they can be
changed by future evidence.

Several approaches have been proposed for handling higher order
uncertainty, including the Bayesian approach, higher-order probability,
and so on. Though each of them has its advantages, none of them is
satisfactory, for various reasons.

A new measurement, confidence, is defined to indicate higher or-
der uncertainty, which is understood as relative stability of first order
uncertainty evaluation, and is processed accordingly.

1 Introduction

Non-Axiomatic Reasoning System (NARS for short) is an intelligent rea-
soning system ([20, 21]). As a reasoning system, it accept knowledge from
its environment in a formal language, and answer questions according to its
knowledge. As an intelligent system, it works under the assumption of insuf-
ficient knowledge and resources . More concretely, the following assumptions
are made about its working environment:

1. The system’s computing power, as well as its working and storage
space, is limited and often in short supply;

2. The tasks that the system has to process, that is, new knowledge and
questions, can emerge at any time, and all questions have deadlines
attached with them;



3. The system not only can retrieve relevant knowledge and derive sound
conclusions from it, but also can make defeasible hypotheses and guesses
based on it when no certain conclusion can be drawn;

4. No restriction is imposed on the relationship between old knowledge
and new knowledge, as long as they are representable in the system’s
interface language.

NARS can adapt its behavior according to its experience, that is, to
accommodate itself to new knowledge, and to adjust its memory structure
and resources distribution to improve its estimated time and space efficiency,
under the assumption that future situations will be similar to past situations.

These assumptions are chosen because of their theoretical importance
(they can explain many aspects of intelligent behaviors) and their practical
usage (many domains have these properties). For a more detailed discussion
about the assumptions, see [21].

It follows directly from the assumptions that the system’s judgments
are usually uncertain, since the input knowledge is not necessarily conflicts-
free, and the system need to make plausible inferences when the available
knowledge is incomplete for a judgment task.

As aresult, for a given question, the system usually cannot find a unique
“correct” or “optimal” answer, but a set of uncertain, competing answers.
To make a reasonable choice among them, a quantitative measurement for
uncertainty is necessary.

Let’s assume that there is a well-defined way to measure the weight of
evidence for a statement (for how such a measurement is formally defined,
see [20]). It is natural to judge the uncertainty of the statement by the
frequency (or proportion) of available positive evidence whose weight is w,
among all relevant evidence whose weight is w, that is, by %

Since the system is always open to new knowledge, and the system works
in an incremental manner, that is, to take knowledge into consideration piece
by piece, the frequence evaluation itself is uncertain, too — it need to be
adjusted according to new knowledge or further consideration.

For example, “Birds can fly” is a statement, then “90% birds can fly” is
a higher order statement, which expresses the uncertainty (according to the
system’s available knowledge) of the original statement. Because “90%” is
an estimation that is changeable in the future, the higher order statement
is uncertain, too.

It is easy to see that the higher order uncertainty is also a matter of
degree. In the above case, we can easily distinguish the following two situ-



ations:
1. 10 birds are observed, and 9 of them can fly; and
2. 10000 birds are observed, and 9000 of them can fly.

Obviously, they lead to different higher order uncertainty for “90% birds can
fly”, and the latter is much more certain than the former in the higher-order
sense, though their uncertainty are the same at the first-order, that is, in
the two situations “Birds can fly” has the same frequency.

Therefore, NARS do need a measurement about higher order uncer-
tainty of judgments, which indicate how easily a frequency evaluation can be
changed, so it is related to the concepts of confidence, ignorance, credibility,
reliability, stability, sensitivity, susceptibility, and so on.

2 Why to define a new measurement

At the beginning, we may (and I did) expect that there is a ready-made
mathematical tool to represent and process this type of uncertainty, since
the idea of higher order uncertainty is not novel at all. In the following, let’s
check several approaches suggested previously, to see whether they can be
applied to the situation of NARS.

According to the advocates of the Bayesian paradigm, there is no need
to introduce a new measurement, since the information about the higher
order uncertainty, often referred as confidence or ignorance, is a “build-in
feature” of a probability distribution function, though the information is
implicitly represented there ([3, 14, 18]). Since the higher order uncertainty
is actually about the susceptibility of a probability assignment BEL(E) in
light of future evidence, they suggest to “to associate partial confidence in
BEL(E) with the susceptibility of BEL(E|c) to the various contingencies
in C”, then confidence can be measured by the “fluctuations in BEL(E|c)”
or the “narrowness of the distribution of BEL(E|c)” ([14]).

What is wrong about this approach, as argued in [19], is the assumption
that all re-evaluation of BEL(E), caused by new knowledge c, can be put
into the form BEL(E|c), that is, by conditionalization on c.

This assumption is not always valid, since in the above formula ¢ must
satisfy the following constraints: (1) ¢ is a binary proposition, (2) c is already
in the proposition space upon which BEL(FE)is defined, and (3) BEL(c) >
0.



Extending Bayes’ Theorem to Jeffrey’s Rule doesn’t solve all the prob-
lem, but make another problem of this approach more obvious: the operation
is updating (by which one judgment is replaced by a competing one, then
other judgments are adjusted accordingly), rather than revision (by which
two competing judgments are combined in a symmetric way) ([4, 19]).

Therefore, confidence defined in this way only reflects the stability of a
probability (or frequency) assignment to certain relevant evidence, and the
restrictions upon new knowledge will severely limit the learning ability of
the system. Especially, they make the system only open to certain types of
new knowledge, therefore inconsistent with the definition of NARS.

Generally speaking, as argued in [19], the higher order uncertainty dis-
cussed above cannot be derived from a first order probability distribution,
because it is about the background knowledge of the distribution, with is
not totally accessible from the distribution function itself. Therefore, we do
need a measurement which is specially for this type of uncertainty.

One natural idea is to apply probability theory once again, which leads
to the concepts like “probability of probability”, “second order probability”,
“higher order probability”, and so on.

This type of approaches have been proposed by several authors ([8, 9,
13]). Though they have the advantage that probability theory provide a solid
mathematical foundation, their semantics and utility have been challenged
strongly ([12, 14]). In this paper, I only want to argue that they are (at
least) inapplicable to the representing and processing of the higher order
uncertainty described above, for the following reasons:

1. For a “second order probability” to make sense, it is necessary to as-
sume the existence of an “objective first order probability”, that is,
the frequency of a judgment always has a limit. However, such an as-
sumption is inconsistent with the “insufficient knowledge” assumption

accepted by NARS.

2. Even when such an objective probability exist, it is impossible for the
system to know how close the current frequency is to it, because such
accuracy information is not available to the system. If the second
order probability is interpreted as an estimation itself, a “third order
probability” will be introduced, --- so to cause an infinite regression

([15])-

3. Even if a second order probability can be properly interpreted, it is
still not the measurement of confidence or ignorance discussed above.



Let’s say that p and ¢ measure the first and second order of uncer-
tainty of statement 5, respectively. When ¢ = 1, it means the same
thing when interpreted as “second order probability” or “degree of
confidence”, that is, p is the “true probability” of S in the sense that
it will not be changed by future evidence. However, when ¢ = 0, the
two interpretations are different ([23]). If ¢ is a probability, a 0 means
“the probability of ‘the probability of S is p’ is 0”. If ¢ is a measure-
ment of confidence, indicating how sensible p is to future evidence, a
0 means “the system know nothing about the probability of 5”.

There are other attempts to measure the higher order uncertainty, and
keep it different from a probability of probability. For examples, both
Shafer’s reliability and Yager’s credibility are such measurements, where
0 is interpreted as “The frequency value is unknown”, rather than “The
frequency value is incorrect”. These approaches reduce the higher order
uncertainty in a judgment either to the reliability of its information source
([17,23]), or toits compatibility with higher priority evidence ([23]). Though
these two factors do influence the stability of a frequency value, they can
hardly explain all the related phenomena. In many situations, it is possi-
ble for information provided by the same source to have different stability,
and the difference can be detected before the information is compared with
background knowledge to check their compatibility. For example, if after
observing 10000 birds, you find that 90% birds can fly, you are more confi-
dent to say “90% birds can fly” than after observing 9 flying birds among 10
of them, regardless your evaluation about the reliability of your eye. Gen-
erally speaking, the principal factor for the higher order uncertainty is the
amount of available evidence, to which other factors, like the reliability of
information sources and compatibility with background knowledge, can be
used to make further “discount”.

Confidence measurements are also introduced in the study of human
judgment and decision making under uncertainty, where it is often related
to the accuracy of predictions, that is, for all propositions assigned a given
probability g, whether ¢% of them are really true ([6, 7]). This kind of
measurement has its value in psychological studies, but they cannot be used
on our current situation, because the “accuracy of probabilistic predictions”
and the “stability of probabilistic predictions” don’t determine each other.
On the other hand, such an interpretation of confidence presumes that every
probabilistic prediction will become either true or false, after the related
event happens. Such a presumption is not shared by NARS.



3 How i1s confidence defined in NARS

For the reasons discussed in the previous section, a new measurement of
confidence is introduced in NARS.

As discussed at the beginning of the paper, the higher order uncertainty
appears as the result of insufficient knowledge. For the same reason, it
doesn’t make sense to talk about an “objective” or “correct” frequency, and
to use its relation to the current frequency as a measurement of higher order
uncertainty. The current frequency value is uncertain, not because it is
an estimation of an “objective value”, but because it will be influenced by
future evidence, and its stability is a matter of degree.

How to measure the stability (or its contrary, susceptibility) of a fre-
quency value f? A natural idea is by “how much it will be changed by
future evidence”. Because NARS is always open to new evidence, and new
evidence may conflict with current belief, f can be anywhere in [0, 1] in the
infinite future, no matter what its current value is. So no frequency is stable
in the absolute sense.

However, what we are interested in is the relative stability of different
frequency assignments, that is, given the same amount of new evidence, how
much each of them will change.

Let’s say (as defined in the first section) that the current frequency of
a statement is f = %, 0 < wT < w, where w™ and w are the weight of
positive and total relevant evidence, respectively. If in the near future some
new evidence is available, and its weight is k£ (k > 0), then where f will be?

Obviously, if the new evidence is completely negative, f will be wt

w+k?
if the new evidence is completely positive, f will be 1f+—l;ck Therefore, no
matter what content that amount of evidence has, the frequency will stay
in the interval [u’)"—_:k, ’”J:;ck]. The width of the interval, wL—I—k’ provides a good
measurement for the ignorance (or susceptibility) of the judgment, and its
complement (to 1), 4% provides a good measurement for the confidence
(or stability) of the judgment.

To use the width of an interval to represent ignorance is not a novel
idea, and it has been accepted by the “probability interval” approaches
([2, 10, 11]) and Dempster-Shafer theory ([16]). What makes NARS different
from the other approaches is the definition of the interval: here it is the
interval where the frequency will be in the near future (see [22] for why the
other interval definitions cannot be used in NARS).

Let’s take k£ = 2 (see [20] for an further explanation of k), if 10 birds are




observed and 9 of them can fly, then “Birds can fly” has a frequency 0.9000

and a confidence 0.8333; if 10000 birds are observed and 9000 of them can

fly, then “Birds can fly” has a frequency 0.9000 and a confidence 0.9998.
Let ¢ be ;7% is consistent with our previous discussions about confidence:

1. ¢ = 0 is identical with w = 0, that is, no evidence, maximum igno-
rance, minimum confidence. The future frequency will be completely
determined by new evidence.

2. ¢ = 1 is identical with w — oo, that is, infinite evidence, minimum
ignorance, maximum confidence. The current frequency will no longer
be influenced by new evidence. Such a situation cannot be reached by
the accumulation of evidence, but can be used to represent definitions
and conventions in the system.

3. ¢ increases monotonically with w, that corresponds to the psycho-
logical phenomenon that confidence “increase as a function of of the
amount of information available” ([1, 6]).

4. Though ¢ can be represented as a ratio, that is, the weight of evidence
the system has at current to the weight of evidence the system will have
in the near future, it is not a probability, since it doesn’t follow the
axioms of probability theory.

5. The higher a judgment’s confidence is, the harder the judgment’s fre-
quency can be changed by future evidence. However, it doesn’t mean
that the judgment is “more accurate” ([6, 7]) in an objective sense.

6. The frequency and confidence of a judgment are independent to each
other, that is, from the value of one, the other’s value cannot be de-
termined, or even estimated or bounded.

The < f, ¢ > pair is referred to as the truth value of a judgment in
NARS. According to the previous discussion, such a truth value cannot
have a model-theoretic semantics, that is, it doesn’t tell us to what extent
the statement matches “state of affairs”. However, it can tell us to what
extent the statement is supported by available knowledge. This is what we
can get under the assumption of insufficient knowledge and resources.

Defined in this way, there is no “third-order uncertainty” to worry about.
The “stability” of a confidence value can be derived from the confidence

value itself. Because the current confidence is ¢ = wL—I—k’ in the near future,



with the coming of new evidence whose weight is &, the new confidence will
be fj—zkk’ that is, 2ch So we don’t need another measurement, and there is
no infinite regression.

The last question is: is this kind of information available for the system?
Even Bayesian network and fuzzy logic, both require the users to assign a
single number to each proposition, meet the objections of “nowhere to get
the numbers”, how can we expect the users to provide a pair of numbers for
each judgment?

To me, the hardness of value assignments comes mainly from the unclear
interpretation about what are measured by these values. NARS attempts
to be user friendly by unifying different uncertainty representations, so to
make the users easier to understand them. Users can even mix different
forms of truth value, in terms of weight of evidence, frequency, confidence,
ignorance, frequency interval, and so on, in the knowledge they provided.
NARS also accept truth values represented as a single number (by taking
accuracy into consideration) or a linguistic variable (by translate it into an
frequency interval). A detailed description on this issue can be found in [22].

4 How is confidence processed in NARS

After given a definition and interpretation of confidence, let’s see how it
is processed in by the various inference rules in NARS. In the following
discussion, we’ll concentrate on confidence. For a more complete description

of NARS, see [20, 21].

4.1 Negation

If the truth value assigned to a statement is < f, ¢ >, then what truth value
should be assigned to the negation of the statement?

According to above discussion, we know that f = %, and ¢ = 4%.
By definition, the positive evidence of a statement is negative evidence for
its negation, and vice versa. Therefore, the truth value for the negated
statement is < 1 — f, ¢ >. Here we can see again that f is a probability
function, but ¢ is not.

For example, if “Birds can fly” has a frequency 0.9000 and a confidence
0.8333, that means its weight of positive evidence is 9, and its weight of
total evidence is 10. Therefore, the positive evidence for “Birds cannot fly”
has a weight 1, and the total evidence is unchanged. Consequently, it get a
frequency 0.1000 and a confidence 0.8333.



4.2 Expectation

How to estimate the future frequency from the past frequency and confi-
dence? From probability theory we know that with a large sample space,
we can simply use the past frequency as our expectation e, that correspond
to the case when c is close to 1 in NARS. For a small sample size, say w*
successes in w tests, a popular formula used to estimate the probability of

. . . +
success in the next test is Laplace’s low of succession: e = “;U—_I:"zl
+1k
NARS uses a generalization of this rule, e = %, where k is the

constant mentioned above. When expressed as a function of the truth value,
we get e =c(f — %) + % Intuitively, f is “squashed” by the factor ¢ to the
“no preference point” % to become e. As results, we have

1. When ¢ = 0, e = 0. That is, with null evidence, the system has no
preference on whether a statement can be verified by future evidence.

2. When ¢ =1, e = f. That is, with complete evidence, the expectation
equals the frequency. As discussed previously, this corresponds to
the situation that f is not come from empirical evidence, but from
definition or convention.

3. In all other cases, e is always “more conservative” (closer to the “no
preference” point) than f. This conservatism can be explained by
the consideration that past experience may be different from future
experience. The smaller ¢ is, the more conservative the result is. Sim-
ilar conservatism has been observed in human information processing

behaviors ([5]).

4.3 Revision and updating

In NARS, revision indicates the process by which evidence from different
sources are combined.

For example, assuming the system’s previous truth value for “Birds can
fly” is < 0.9000, 0.8333 > (we know that it corresponds to “10 birds, 9
can fly”), now a piece of new knowledge comes, which is “birds can fly”
<0.7500, 0.6667 > (so it corresponds to “4 birds, 3 can fly”). If the system
can determine that no evidence is repeatedly counted in the two sources (see
[20] for how this is defined and checked), then the truth value of the revised
judgment should be < 0.8571, 0.875 > (corresponding to “14 birds, 12 can

fly”).



The revision function, represented as from a pair of truth values of the
premises to that of the conclusion, has the following form:

f = wy f1+ws fo
w1 +ws
c = wy t+wy
w1 twa+k

where w; = k7% is the weight of total evidence of judgment ¢ (z = 1,2).

The revision function has the following properties:
1. The order of the premises doesn’t matter.

2. As a weighted average of f; and f5, f is usually a “compromise” of
them, and is closer to the one that is supported by more evidence.

3. cis smaller than neither ¢; nor cs, that is, the conclusion is supported
by no less evidence than a premise.

4. If ¢y = 0, then f = f5 and ¢ = ca, that is, a judgment supported by
null evidence cannot revise other judgment.

5. If ¢4 = 1 and ¢3 < 1, then f = f; and ¢ = ¢, that is, a definition
(supported by complete evidence) cannot be modified by empirical
evidence.

What will happen if the evidence of the two premises are “correlated”,
that is, some evidence are repeatedly counted in them? In such a case, NARS
applies the updating rule, to pick up the premise with a higher confidence,
since it is supported by more evidence. Such a confidence-based updating is
different from the updating in the Bayesian approach, where new evidence
always suppress old evidence ([4, 19]).

4.4 Syllogisms

The syllogisms in NARS are rules for deduction, abduction, and induction.
These rules also include functions calculating the truth value of the con-
clusions from those of the premises. The concrete form of the rules can be
found in [20], which is beyond the scope of this paper. In the following, I
only mention two facts about these rules that is related to confidence:

1. The confidence of a conclusion is not larger than the confidence of
either premise, that is, confidence “declines” in syllogistic inference.
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2. Confidence declines much slower in deduction than in induction and
abduction. In deduction, if both premises have a confidence value 1,
the conclusion may also have a confidence value 1 (so it is a derived
definition or convention). In induction and abduction, as a contrary,
the confidence of the conclusion has a upper bound which is far less
than 1. So, by saying “induction and abduction are more uncertain
when compared with deduction”, what is referred to is not the “first-
order uncertainty” f, but the “higher-order uncertainty” c.

5 Summary

With insufficient knowledge, the conclusions made by a reasoning system
are usually uncertain. If the system is also open to new knowledge, there
is a higher order uncertainty, which indicating the stability of first order
uncertainty evaluations.

Several approaches have been proposed for handling higher order uncer-
tainty. Though each of them has its suitable application domain, they are
not appropriate for the uncertainty described above, for various reasons.

Confidence is defined in NARS as a measurement of higher order un-
certainty, which is understood as relative stability of first order uncertainty
evaluation (frequency), and is processed according to such an interpretation.
It is also defined in such a way that closely related to other uncertainty mea-
surements.

Since NARS is designed as a general purpose intelligent reasoning sys-
tem, the confidence measurement is domain-independent.

Like all other approaches, the NARS approach for uncertainty represen-
tation is based on certain assumptions about the environment. For NARS,
the fundamental assumptions are: the system’s knowledge and resources are
usually insufficient, and the environment is relatively stable. Concretely, its
confidence measurement and processing are based on the availability of an
additive weight of evidence function. This function is not really used to
evaluate each piece of evidence, but to provide a semantic interpretation for
truth values.

NARS is not necessarily better than the competing approaches in all
kinds of environment, but (hopefully) is better in the environment described
at the beginning of the paper, which has special theoretical and practical
interests from the view point of artificial intelligence and cognitive science.
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