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ABSTRACT

The main thesis of the paper is that in the case of modern statistics, the differences

between the various concepts of models were the key to its formative controversies. The

mathematical theory of statistical inference was mainly developed by Ronald A. Fisher,

Jerzy Neyman, and Egon S. Pearson. Fisher on the one side and Neyman–Pearson on

the other were involved often in a polemic controversy. The common view is that

Neyman and Pearson made Fisher’s account more stringent mathematically. It is

argued, however, that there is a profound theoretical basis for the controversy: both

sides held conflicting views about the role of mathematical modelling. At the end, the

influential programme of Exploratory Data Analysis is considered to be advocating

another, more instrumental conception of models.

1 Introduction

2 Models in statistics—‘of what population is this a random sample?’

3 The fundamental lemma

4 Controversy about models

5 Exploratory data analysis as a model-critical approach

1 Introduction

The mathematical theory of statistical inference was developed during the

1920s and 1930s mainly by three scholars: Ronald A. Fisher (1890–1962),

Jerzy Neyman (1894–1981), and Egon S. Pearson (1895–1980). The theory

of testing hypotheses is ‘one of the most widely used quantitative methodo-

logies, and has found its way into nearly all areas of human endeavour’

(Lehmann [1993], p. 1242). The present contribution will discuss the conflict

between Fisher on the one side and Neyman and Pearson on the other over a

‘controversy between classical theories of testing’ (Hacking [1965], p. 89) that

already began in the 1930s and was never settled. My main intention will be
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to reinterpret this controversy as a dispute about different conceptions of

mathematical–statistical modelling.

The essay ‘On the Mathematical Foundations of Theoretical Statistics’

([1922]) published by Fisher in 19221 can be considered to be one of the

cornerstones of mathematically oriented statistics. It contains a wealth of

new concepts such as the level of significance, a concept that is pervasive

today, introduced by Fisher in order to establish a logic of statistical infer-

ence. The construction of infinite hypothetical populations plays a central

role for this logic.2 In more precise terms: for Fisher, the specification of

an infinite population represents the essential step in establishing a (paramet-

ric) model. This is indeed where Fisher introduces the concept of the mathe-

matical model to statistical inference.

About a decade later, Neyman and Pearson developed what is known

today as the Neyman–Pearson theory of statistical testing. During this

time, they cooperated closely, and they can be considered as a unit for our

purposes here, even though they ended their cooperation a short time later.

The founding date for their theory is most probably 1933, when they pub-

lished ‘On the Problem of the Most Efficient Tests of Statistical Hypotheses’,

([1933a]) an essay that they referred to between themselves as ‘the big paper’.3

This is the location of the so-called fundamental lemma that makes a mathe-

matical claim for the existence of a certain optimal test method. This lemma

forms the backbone of the Neyman–Pearson theory, and was considered by

its authors as a justification of Fisher’s older approach. The Neyman–

Pearson theory is closely linked to a class of models that serves as prerequisite

for the mathematical reasoning, and hence it is no wonder that Neyman and

Pearson admired Fisher’s approach to modelling, considering the concept of

model to be an eminent mathematical acquisition.

What caused the bitter controversy to spring up suddenly between Fisher

and Neyman–Pearson? Their scientific rivalry over the ‘correct’ logic of infer-

ence was certainly fostered by their close proximity to each other. For some

years, they resided in the same building after Karl Pearson retired and his

post had been split into two: in 1934, Egon Pearson and Fisher accepted the

chairs for statistics and eugenics, respectively. In the literature, you find

remarks like ‘because of Fisher’s remarkable talent for polemic, the debate

never lacked for overblown rhetoric’ (Gigerenzer et al. [1989], p. 105). An

impression of the heated and polemical atmosphere can be obtained from the

1 His book on statistical methods (Fisher [1925]) that explains this approach further became a real

bestseller.
2 Just such infinite populations, or more exactly their constructive surplus over any observation,

had prompted Fisher’s conflict with Karl Pearson, the father of Egon Pearson and the director of

the London Galton Laboratory (cf. Morrison [2002]).
3 Other important joint works of the two authors are (Neyman and Pearson [1928], [1933b]).
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Royal Statistical Society’s records of debate. Following the presentation of

Neyman’s contribution ‘Statistical Problems in Agricultural Experimenta-

tion’ ([1935], p. 193), the record says: ‘Professor R. A. Fisher, in opening

the discussion, said he hoped that Dr Neyman’s paper would be on a subject

with which the author was fully acquainted, and on which he could speak

with authority.’ Upon which there followed prompt retribution.

Dr Pearson said while he knew that there was a widespread belief in

Professor Fisher’s infallibility, he must, in the first place, beg leave to

question the wisdom of accusing a fellow-worker of incompetence with-

out, at the same time, showing that he had succeeded in mastering his

argument (op. cit., p. 202).

Where discussion runs like this, serious debate is hardly intended. The

polemics most certainly played a role in the course of the controversy, and,

moreover, it is widely recognized that the fiducial argument on which Fisher

insisted, is erroneous—as incisively pointed out by Neyman—or at least

obscure. On the whole, Neyman and Pearson believed their own

approach to have smoothened, or filled up some weaknesses and gaps in

Fisher’s argumentation. According to accepted opinion in the literature, it

is quite possible to reconcile the two approaches in terms of the deployed

statistical methods.

I should like to argue that the controversy rests, besides all personal

aspects, on a profound conceptual basis. There is a common nucleus to

both approaches and this is where one can find the reason for the contro-

versy. They differ about a fundamental methodological issue: Both sides held

conflicting views about the function of mathematical models and about the

role of modelling in statistical inference.

In what follows, I should like to look at the systematic standpoints in more

detail, arguing finally in favour of the hypothesis that Neyman–Pearson

intended to deal with behaviours in the framework of their theory, that is,

to integrate a new kind of object, as it appears in their lemma. This can be

viewed as an attempt at mathematization: mathematical functions, for

instance, first served to describe dynamic relations, then themselves become

objects of mathematical theory. In a quite similar way, hypothesis testing now

becomes an object of mathematical theory. Neyman–Pearson saw hypothesis

testing as a course of action in the frame of a reiterated process, like sampling

for quality control. The fundamental lemma is about mathematical properties

of ‘courses of action,’ and it establishes the existence of an optimal

procedure—on the basis of certain assumptions on what possible procedures

look like. Neyman–Pearson intended to establish an objective basis for the

logic of inference that no longer depended on constructing hypothetical

populations—a method too subjective in their eyes.
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With regard to modelling, Fisher held quite a different view, stressing that

a model had to mediate between questions of application to real problems

and data on the one hand, and questions of mathematical properties and

arguments on the other. According to him, Neyman–Pearson had founded

their theory on too strong prerequisites, thus too closely restricting the pos-

sibilities of application. Even worse, they had hardly left any room for the

basic mediating role of models, because their concept of testing rested on a

more or less complete description of the situation in mathematical terms. This

is a remarkably ironic point: What precisely Neyman–Pearson admired as

Fisher’s major achievement, his own concept of model, gave rise to their

controversy with him!

The disputes over the activity of mathematical modelling, and about how

to deal with problems of application, however, concern a permanent problem

of applied science. I think one cannot beg the question by simply assenting

either to Fisher or to Neyman–Pearson whose views were characterized by

mediation versus integration, respectively. They form indispensable, comple-

mentary aspects of applied mathematics. The balance of these aspects is

decisive as was shown by an interpretation of John W. Tukey’s Exploratory

Data Analysis (EDA), which was elaborated in the 1960s and 1970s. While it

represents an influential current in applied statistics, it is nevertheless fre-

quently ignored in philosophical reflections about statistics. It started as a

critical assessment of the use of models in statistics and in the end, it is

argued, EDA provides a new systematic role for models. In my view, an

adequate reconstruction of the controversies characterizing modern statistics

of the 20th century can be attained only by distinguishing between the various

conceptions of models and of modelling.

2 Models in statistics—‘of what population is this a
random sample?’

Until the 1920s, Karl Pearson, director of the London Galton Laboratory,

assumed a leading, even dominant position in statistics. He founded the bio-

metric school, represented by the renowned journal Biometrika, whose inci-

sive dispute with the so-called Mendelians, namely Bateson, on the correct

way of formulating population genetics acquired some fame. As Margaret

Morrison has recently pointed out ([2002]), the conflict, in retrospect, appears

completely superfluous, because Fisher had found a way of representing a

kind of synthesis between the two positions. Fisher, as a declared Mendelian

convinced of the fundamental importance of the stochastic laws of hereditary

transmission, at the same time used mathematical models and sophisticated

mathematical techniques.
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Whereas infinite populations have an important role in Fisher’s model

approaches, they do not, of course, correspond directly to reality. It was only

the inferences from the idealizing dynamic within the model, e.g. diffusion

limits, that could be compared with observations; and to deviate like this by

way of a mathematical model world that acquired independent status4 led

Fisher to strongly oppose Karl Pearson who advocated a more limited use of

mathematical methods and models. However fruitful these approaches were

for population genetics (which was to a large part initiated by them, cf.

Provine [1986]), Pearson categorically rejected something like infinite hypo-

thetical populations, in complete agreement with his positivist ‘bible,’ ‘The

Grammar of Science’ (Pearson [1892]). Fisher, who was also personally hurt

by Pearson’s verdict against mathematical modelling, found himself com-

pelled to accept the newly created position of a statistician at the Rothamsted

Experimental Station specializing in agricultural science in order to avoid

becoming head statistician at the Galton Laboratories under Pearson as

director. He initially considered himself to have been banished from the aca-

demic environment, but, in retrospect, his daily confrontation with practical

problems prompted him to conceive of an effective statistical method. Apart

from that, Fisher loved in later years to use his practical experience as an

argument against overly academic positions. The following description can

also be understood as a continuation of the story told by Morrison: While

introducing idealizing mathematical models brought about the breakthrough

for population genetics, grafting mathematical modelling onto the method of

inference led to conflicts within theoretical statistics.

In Rothamsted, Fisher elaborated his own approach to a comprehensive

‘logic of inductive inference’, as he called it, the leading role again being

assigned to constructing mathematical models. What is more, the cornerstone

of Fisher’s conception of inference logic, his presumably philosophically fun-

damental innovation, consists in precisely describing what is to be understood

by a model, and how models are to be imbedded in the logic of inference.

If one wished to give a year for the emergence of inference logic and of

testing hypotheses one might choose 1922, when Fisher published his seminal

contribution ‘On the Mathematical Foundations of Theoretical Statistics’

([1922]). Fisher himself later described it as ‘the first large-scale attack on

the problem of estimation’ ([1971], p. 277), and this is where we find a number

of influential new concepts, among them the level of significance and the

parametric model,5 whose systematic role within statistical inference was

4 Winsberg ([2003]) uses the term semi-autonomous to specify Morrison’s ([1999]) somewhat

stronger, but basically correct characterization of ‘models as autonomous mediators.’
5 For the purposes here, it is adequate to use models and parametric models synonymously.
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elaborated for the first time. Fisher describes the general goal of statistics as

follows:

In order to arrive at a distinct formulation of statistical problems, it is

necessary to define the task which the statistician sets himself: briefly, and

in its most concrete form, the object of statistical methods is the reduction

of data. A quantity of data, which usually by its mere bulk is incapable of

entering the mind, is to be replaced by relatively few quantities which shall

adequately represent the whole, or which, in other words, shall contain as

much as possible, ideally the whole, of the relevant information contained

in the original data ([1922], p. 311).

At first glance, it may seem that Fisher’s concern is merely a technical

question of the reduction of data. This, however, is not the case, for the

problem of whether certain standard quantities ‘adequately represent’ the

entirety of data cannot be solved on the basis of the data themselves. The

same holds for ‘relevant information’—whether it is still contained in a data-

reducing statistic will have to be measured according to further criteria.

Fisher continues:

This object is accomplished by constructing a hypothetical infinite popu-

lation, of which the actual data are regarded as constituting a random

sample. The law of distribution of this hypothetical population is specified

by relatively few parameters, which are sufficient to describe it exhaus-

tively in respect of all qualities under discussion ([1922], p. 311).

Fisher explicitly mentions the constructive character of this undertaking,

which consists in conceiving of the data observed as of an instance of the

underlying model-type population. The merit of this is that such a population,

i.e. its distribution law, is exhaustively (‘in respect of all qualities under discus-

sion,’ i.e. with regard to a concrete question of application) described by a

small number of parameters. Of course, everything will depend on whether a

model population appropriate to the respective application situation has been

selected. The mathematical properties of this model population play a decisive

role in this, for it is these that permit a reduction of data. It is this ideal,

constructed, mathematical world of hypothetical populations that lends itself

to be specified by ‘relatively few parameters.’ The birthday of mathematical

statistics and the introduction of parametric models occur at the same time.

Fisher subdivided the general task of statistics into three types of problems:

1. Problems of specification. ‘These arise in the choice of the mathematical

form of the population’ ([1922], p. 366). This step thus consists in forming a

model, and it cannot be derived, but requires deliberations, like those on the

basis of practical experience gained with similar situations. Fisher attributes

this step to the logic of inference. It could even be considered typical for his

inductive inference, for, after all, it is the transition from concrete data to

mathematical models that makes this step ‘inductive.’ He was also aware of
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the fact that choosing an adequate model depended on the mathematical

structures available and treatable. Progress in these matters would instantly

change the reasoning about modelling: ‘[. . .] problems of Specification are

found to be dominated by considerations which may change rapidly during

the progress of Statistical Science ([1922], p. 366).6

2. Problems of estimation whose formulation already requires framing by a

mathematical-statistical model. For this second type of problem, he saw a

general solution in his ‘logic of inductive inference’ of 1922: ‘The principal

purpose of this paper is to put forward a general solution of problems of

Estimation’ ([1922], p. 366). This is where mathematical theory formation

in the strict sense takes place, for instance the introduction of the concept

of the sufficiency of a statistic and the derivation of mathematical proposi-

tions connected with it.

3. Problems of distribution. The matter here is tractability—that abstract rea-

soning is profitable in estimation only if it eventually leads to concrete

numerical results. The most beautiful model is good for nothing if it yields

no distribution curves. Fisher continued:

As regards problems of specification, these are entirely a matter for the

practical statistician, for those cases where the qualitative nature of the

hypothetical population is known do not involve any problems of this

type. In other cases we may know by experience what forms are likely to be

suitable, and the adequacy of our choice may be tested a posteriori. We

must confine ourselves to those forms which we know how to handle, or

for which any tables which may be necessary have been constructed

([1922], p. 314).7

At this point, it is appropriate to remark on the terminology and then to

provide an example of its application. For Fisher, a model is an entire class

of hypotheses, and he terms the process of selecting one hypothesis from this

class (among those possible according to the model) specification. The crucial

aspect in this is that both modelling, i.e. framing the subsequent mathemati-

cal analysis, and specification belong to the process of inference.

A very important feature of inductive inference, unknown in the field of

deductive inference, is the framing of the hypothesis in terms of which the

6 Fisher saw clearly that the constructive step of building a model can be justified by a comparison

of the implications of the model with the empirical observations: ‘the adequacy of our choice

may be tested a posteriori. . . . For empirical as the specification of the hypothetical population

may be, this empiricism is cleared of its dangers if we can apply a rigorous and objective test of

the adequacy’ ([1922], p. 314).
7 The availability of numerical methods has radically changed the situation: even in quite com-

plicated models the distribution functions can be determined quasi-empirically by simulation.

This has made a greatly extended class of models applicable whose analysis is in no way

dependent on pre-existing tables and quantiles.
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data are to be interpreted. The hypothesis is sometimes called a model,

but I should suggest that the word model should only be used for aspects of

the hypothesis between which the data cannot discriminate (Fisher [1955],

p. 75).

A model may assume a certain family of distributions whose parameters have

to be specified by estimation from the data. Hence the data cannot discriminate

between the assumed family of distributions and another one. A simple, admit-

tedly very simplified, example may explain the terminology: During his work in

Rothamsted, Fisher was intensely engaged in agro-science experiments such as

estimating the effect of a certain fertilizer. A model could look as follows:

Consider n lots of land 1, . . . , n. Let Ei be the yield of the lot i, and let Ei be

normally distributed for all i with mean m and variance s2. This is to say that

the yield of the various acreages is equally distributed, that is, normally dis-

tributed to the two parameters (m, s2). This establishes essential assumptions

of the model. The effect of the fertilizer, it is further assumed, will only change

the parameter m. In other words, the yield of a fertilized acreage is normally

distributed to a mean m0. A typical question regarding the statistical inference

to be drawn from the data (E1, . . . , En) would then be: which effect is pro-

duced by treating with the fertilizer? The null hypothesis H0 would be that the

fertilizer has no effect at all; that is, that the means are equal, and all differ-

ences observed are random:

H0 : m ¼ m0:

What is at issue here is not to derive an answer from some data, the method

being explained in every textbook of statistics, but only of the use of terms: A

hypothesis is specified by m and s2 being given; all information contained in

the data not concerning these parameters is irrelevant (under the model’s

assumptions). Given the model, the specification is achieved by assigning

the values of the two parameters: It is a mathematical fact that the normal

distribution is characterized by mean and variance. In Fisher’s terms, the

normal distribution is part of the model while assigning concrete values to

the parameters specifies a hypothesis.

Thus, in the case of the normal distribution, the probability of an obser-

vation falling in the range dx, is

1

s
ffiffiffiffiffiffi

2p
p e� x�mð Þ2=2s2

dx

in which expression x is the value of the variate, while m, the mean, and s, the

standard deviation, are the two parameters by which the hypothetical popu-

lation is specified. If a sample of n be taken from such a population, the data

comprise n independent facts. The statistical process of the reduction of these

data is designed to extract from them all relevant information respecting the
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values of m and s, and to reject all other information as irrelevant (Fisher

[1922], p. 312).

Hence the assumption of a model made it possible to speak of ‘relevant

information’ contained in the data and, furthermore, offered a way to discard

a hypothesis in light of the data on the basis of the famous ‘level of signifi-

cance’ that guaranteed Fisher’s approach seminal influence. This 1922 paper

also saw the first use of what are now quite familiar terms of a statistic’s

efficiency and sufficiency that also require argumentation in the frame of a

model. Fisher defines:

Sufficiency.—A statistic satisfies the criterion of sufficiency when no other

statistic which can be calculated from the same sample provides any

additional information as to the parameter to be estimated ([1922], p. 310).

It needs to be noted that the judgement whether a statistic encompasses all the

relevant information must be based on the assumption of a model. There is an

entire cosmos of concepts formed by Fisher, but not all are of interest in our

context here.8 I should again like to emphasize two aspects of Fisher’s

approach:

1. Modelling is an essential part of inference logic. A model forms the frame

for formulating testable hypotheses, and some kind of platform for further

mathematical argumentation.

2. The constructive and mathematically idealizing character of modelling is

emphasized. Assuming a model will always make one of several possibili-

ties ‘real’ and exclude others, the applied mathematician’s (or statistician’s,

or researcher’s) power of judgement taking an important role in this.

In short: the framing by means of a model is located at the beginning of the

statistical treatment of a problem of application: ‘The postulate of ran-

domness thus resolves itself into the question, ‘‘Of what population is this

a random sample?’’ which must frequently be asked by every practical

statistician’ (Fisher [1922], p. 312–3).

3 The fundamental lemma

During the following decade, Jerzy Neyman and Egon Pearson elaborated

the theory of statistical inference that bears their names. Egon Pearson was

the son of Karl Pearson, and he worked in London at the Galton Laboratory.

For several years, he cooperated closely with Jerzy Neyman, a Polish

8 I should like to stress that his curious concept of fiducial probability does not contribute

anything to the theory of models to be treated here—although it did give rise to controversies,

see Hacking ([1965]). The experimental design (cf. Fisher [1935]) will not be treated either—while

the production of data already has to do with models, this aspect plays no role in the controversy

between Fisher and Neyman–Pearson.
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mathematician and statistician. This is why Egon’s personal reminiscences on

the occasion of a festschrift for Neyman is titled ‘The Neyman–Pearson

Story’ ([1966]). Jerzy Neyman had come to London as a postdoc to stay

with Karl Pearson in 1925, and it soon turned out that Neyman fitted into

the theoretical–mathematical line of development represented by Fisher, which

Karl Pearson disliked and was dismissive of. Revealingly, Gosset, the inven-

tor of the t-test who published under the pseudonym of Student, prepared

Fisher in Rothamsted for Neyman’s arrival by writing: ‘He is fonder of

algebra than correlation tables and is the only person except yourself I have

heard talk about maximum likelyhood as if he enjoyed it’ (Reid [1982], p. 59).

The seminal essay ‘On the Problem of the Most Efficient Tests of Statistical

Hypotheses’ ([1933]) can be considered to be the most important contribu-

tion, and perhaps the founding document—an essay referred to by the

authors as ‘the big paper.’9 The theoretical backbone of the Neyman–

Pearson theory is formed by the so-called fundamental lemma proved in

this essay. It is an expression of the two authors’ systematic approach.10

What is this lemma about? The two authors had begun by finding deficits in

the logic of testing that mainly concerned two points. First, Neyman–Pearson

criticized the asymmetrical treatment of the null-hypothesis as a deficit of

Fisher’s logic of testing. Fisher started with the null hypothesis that no effect

could be observed, and a test might lead to accepting another hypothesis,

thereby rejecting the null hypothesis. The name alone already testified the

asymmetrical conception. Neyman–Pearson insisted at an early stage, that

is, prior to their ‘big paper,’ that the situation must in a certain sense be con-

ceived of as symmetrical. This was to say that a model should consist of two

competing hypotheses (‘hypothesis’ versus ‘alternative’), and observing the

data should lead to the decision on which hypothesis was to be preferred.

To confront two hypotheses certainly represents a conceptual progress,

inasmuch as accepting or rejecting a hypothesis will always tell us something

about the alternative. On the mathematical level, this view is reflected in the

emphasis on the so-called likelihood quotient. This quotient relates the plau-

sibility values of the data observed under the various hypotheses to one

another. Neyman–Pearson indeed focussed on this quantity, and not on the

9 Actually, the intense cooperation between Neyman and Egon Pearson ended soon after that,

and the latter distanced himself from some positions taken by Neyman in later years. For the

purposes of the present argument, however, it is permissible to treat the two as a unity, that of

Neyman–Pearson.
10 Like Fisher, Neyman and Pearson initiated innovations in diverse directions. In particular, they

coined the concept of the confidence interval, which is indubitably of fundamental importance

in modern statistics. Ian Hacking, for instance, has gone as far as to speak of an independent

‘confidence-interval approach’ ([1980]) that he contrasts with Fisher’s ‘logicist’ approach. For

the controversy on which we are focusing here, it is sufficient, however, to examine the

fundamental lemma and the approach to the logic of testing it implies.
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likelihood function itself, which assigns a value to data observed under the

assumption of a hypothesis.

Above all, however, Neyman–Pearson introduced the ‘error of the second

kind’, thus finding a name for the problem. Choosing one of two competing

hypotheses, of course, can be wrong every time, just as choosing the other one

can be. One can thus commit errors of the first kind (incorrectly accepting a

false hypothesis), and errors of the second kind (wrongly rejecting a true

hypothesis), and one should therefore make the relative assessment of the

two an object of the method as well. In a conference at the Royal Statistical

Society, Neyman described this as follows:

I have met several cases while considering questions of practical experi-

mentation, in which the level of significance a¼ 0.01 proved definitely too

stringent. It is the business of the experimenter to choose a proper level in

any particular case, remembering that the fewer the errors of one kind, the

more there are of the other ([1935], p. 180).11

The second focus of the Neyman–Pearson theory was to justify using the

likelihood principle, that is, the prescription to choose the value of the likeli-

hood function, or the likelihood quotient derived from it, as the quantity to be

maximized. It was one thing to establish a symmetry of situation with regard to

two hypotheses, but quite another thing to select a standard quantity for the

purpose of weighing the two hypotheses, a second step that had to be concep-

tually separated from the first. Neyman–Pearson were pursuing some kind of

justificatory logic, that would have to consist in a mathematical argument in

favour of the likelihood principle whose validity, incidentally, they did not

doubt. ‘If we show that the frequency of accepting a false hypothesis is mini-

mum when we use (likelihood) tests, I think it will be quite a thing’ (Neyman in

a letter to Pearson, cited according to Reid [1982], p. 92).

The fundamental lemma yielded success for both goals: proving the lemma

represented a mathematical achievement, but what was of at least equal

importance was to formulate the problems adequately so that the lemma’s

assertion offers a solution. The following is a succinct description by Hacking

that does without mathematical formalism:

According to this theory, there should be very little chance of mistakenly

rejecting a true hypothesis. Thus, if R is the rejection class, the chance of

11 An interesting detail is that Fisher was among those listening to Neyman in the Royal Society’s

auditorium, and he must have felt a bit challenged. For Neyman examined methods introduced

by Fisher like that of ‘Latin squares’ as to their consistent use regarding the weighing of

hypotheses, a problem which Fisher had failed to see. Thus, Neyman–Pearson repeatedly

pointed out that the tests of significance suggested by Fisher could be ‘worse than useless,’

as one could reject a badly supported alternative while insisting on the original hypothesis that

may be supported even less. Some short quotes from the subsequent dispute have been given in

the Introduction above.
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observing a result in R, if the hypothesis under test is true, should be as

small as possible. This chance is called the size of the test; the size used to

be called the significance level of the test.

In addition to small size, says the theory, there should be a good chance of

rejecting false hypotheses. Suppose simple h is being tested against simple

i. Then, for given size, the test should be so designed that the chance of

rejecting h, if i is true, should be as great as possible. This chance is called

the power of h against i (Hacking [1965], p. 92).

From their analysis of two types of statistical error, Neyman–Pearson had

derived the concepts of size and of power. In this, size corresponds to the level

of significance, whereas power corresponds to the analogous quantity for the

error of the second kind. The mode in which the problem is posed here is

quite crucial: When two hypotheses confront one another, the first thing to

do is to fix the size of a test, and the second is to optimize its power. These

reflections are transformed into a theory by a mathematical proposition: The

Fundamental Lemma of Neyman and Pearson: In the case of a simple

dichotomy of hypotheses, there exists, for any possible size, a uniquely

most powerful test of that size.12

The proof of the lemma had been seen, as is proper for mathematical

theorems, by Neyman in a sudden flash of intelligence in 1930, as he vividly

recounts in his talks with Reid (Reid [1982]). Neyman–Pearson chose to

embed a test within a certain logic of method that does not consider the

individual case, but rather what happens if one proceeds in accordance

with such a rule (as described by Hacking above). Framed in this way, the

possible courses of action can be treated as mathematical objects that form

risk sets with topological properties, namely they are convex. The problem

whether a most powerful test exists could then be solved by variational cal-

culus. There is a unique element with minimal distance (maximal power) to

the point specified by size. The crucial step is the outline of the problem (iter-

ated procedure, two alternatives, first determine size, then maximize power)

that yielded, roughly speaking, convexity. Another conceptualization of the

problem would not have allowed that abstract-geometrical argument.

Formulating the problem in this way led to a fundamental shifting of

emphasis, for Neyman and Pearson started by searching for a mathematical

justification for the likelihood principle. They were successful, because (in

the simplest case) the likelihood principle coincides with the most powerful

test. Later, however, the most powerful test became the theoretically

more fundamental concept, i.e. the likelihood principle was subsumed as a

special case.

12 The lemma speaks of a simple hypothesis and a simple alternative, that is, a simple dichotomy.

Treating more complicated cases proved to be a research program over several decades.
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Neyman and Pearson considered the double task of establishing symmetry

between competing hypotheses and of finding a justification for the likeli-

hood principle to be basically achieved. Introducing the conception of a

most powerful test, in their eyes, yielded the justification sought. The deter-

mination of possible rational methods (two hypotheses, first determine size,

then optimize power) had been the clue to treat the possible courses of testing

as mathematical objects. This approach implies that a model has to fit into

the methodological framework that is conceived of as more fundamental, or

prior, to modelling. The feasibility of Neyman–Pearson’s solution obviously

depends on how the problem is formulated. This approach led to a violent

controversy with Fisher that was never settled.

4 Controversy about models

Whereas Neyman–Pearson, notwithstanding the bitterness of the debate, saw

their own contribution as an important supplement to Fisher’s position, mak-

ing it mathematically consistent, Fisher took a contradictory view, rejecting

this ‘improvement’ in a roundabout way—and doing this frequently in a

polemic style that seems to have been his speciality. Fisher judges the

Neyman–Pearson theory as follows:

[The unfounded presumptions] would scarcely have been possible without

that insulation from all living contact with the natural sciences, which is a

disconcerting feature of many mathematical departments ([1955], p. 70).

Fisher states that his own approaches had been reinterpreted in a way that

could not claim to have developed it further:

There is no difference to matter in the field of mathematical analysis,

though different numerical results are arrived at, but there is a clear

difference in logical point of view, . . . this difference in point of view

originated when Neyman, thinking that he was correcting and improving

my own early work on tests of significance, as a means to the ‘‘improve-

ment of natural knowledge’’, in fact reinterpreted them in terms of that

technological and commercial apparatus which is known as an acceptance

procedure ([1955], p. 69).

That a decisive change had occurred here would certainly be admitted by

Neyman and Pearson. Whereas Fisher considers his own logic of inference

distorted, Neyman–Pearson mainly see a mathematical rounding off and

improvement of Fisher’s approaches. In the literature, this controversy has

repeatedly been treated both under mathematical and under philosophical

aspects (cf. Braithwaite [1953], Hacking [1965], Kyburg [1974], Seidenfeld

[1979], Gigerenzer et al. [1989], Lehmann [1993]). According to the common

interpretation, the reason for the bitter controversy lasting several decades

lies chiefly in the polemics, mainly from Fisher’s side, that heated up the
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atmosphere. In retrospect, however, the viewpoints do not look so incom-

patible at all, and there have been attempts at ‘reconciliation’ (e.g. Lehman

[1993]). Some state that the reconciliation would consist in fusing the best

parts of the two approaches, while others hold that Neyman and Pearson

were actually right in their surmise of having mainly filled in the gaps in

Fisher’s conception. The latter view is indeed so widespread that Hacking

was led to write: ‘The mature theory of Neyman and Pearson is very nearly

the received theory on testing statistical hypotheses’ ([1965], p. 92).

The present contribution, however, follows another direction, for the

matter is not to systematically evaluate the justification of certain statistical

procedures, but rather to analyse the controversy between Fisher and

Neyman–Pearson, elaborating its underlying fundamental philosophical dif-

ferences about the role and function of mathematical models. I shall like to

argue that from the models based approach it becomes clear, or at least rea-

sonable, why the controversy was not resolved—the function of models and

the process of building models were conceived of in a different and

incompatible manner by both sides.

It is revealing that Neyman–Pearson criticized Fisher for having introduced

infinite populations as constructed entities. Although they certainly did not

repeat the positivist critique in Karl Pearson’s vein, they considered the con-

struction and selection from several possible hypothetical populations a far

too subjective method. Consequently, they designed a competing approach in

order to escape the manifold interpretability of possible hypothetical popu-

lations. By the mathematization described above, they intended to attain a

more complete and more formal description of the application process.13

The key to analysing the controversy is the concept of model, emphatically

assigned a role by both parties. Neyman circumscribes the concept as follows:

A model is a set of invented assumptions regarding invented entities

such that, if one treats these invented entities as representations of appro-

priate elements of the phenomena studied, the consequences of the

hypotheses constituting the model are expected to agree with observations.

([1957], p. 8)

13 Quite in line with these intentions, Neyman introduced his famous concept of inductive beha-

viour as a counter-design to inductive inference in order to emphasize the reference to a course of

action instead of to a process of construction (cf. Neyman [1957]). Subsequent to Neyman’s

1938 move to the United States and his entrenchment at Berkeley, where he created an institute

for statistics that formed a school of its own, the so-called decision theory was elaborated, a

theory also called Neyman–Pearson–Wald theory, for instance, cf. Wald’s volume ‘Statistical

Decision Functions’ ([1950]). Connected to this is the emergence of operations research, a field

combining statistical decision theory and economics. The mathematical treatment of decisions

also drew many hints from game theory that combines strategic decisions and maximizing

benefits. Gahmari-Tabrizi ([2000]) speaks in another connection of the ‘quintessential

behaviouralist thesis of the 1950’ in the United States, a pronouncement that might well be

extended to mathematical statistics.
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This is where essential components of how Fisher conceived of the relation

between mathematics and its application in the real world resurface. Whereas

mathematical entities and models must be distinguished from the world of the

‘phenomena studied,’ they are necessary for mathematical arguments to be

applied. In this respect, statistical models are similar to mathematical models

in physics whose methodological importance for modern natural science has

often been emphasized, cf. for recent examples of that time-honoured debate of

Cartwright ([1999]), Giere ([1999]), or Morrison ([1999]). Models hence remain

central concepts of the mathematical approaches developed by both parties of

the controversy.14 There is, however, a profound difference in the views about

both the function of models and the scope and meaning of model construction

that marks the controversy between Fisher and the Neyman–Pearson schools.

That Fisher and Neyman–Pearson started from quite different basic coor-

dinates in their controversy is nicely illustrated by how the two parties related

to W. S. Gosset. Both referred to his undisputed reputation as an experienced

statistician for confirmation of their views (see also the description in

Gigerenzer et al. [1989], p. 105). In his eulogy for Gosset in the Annals of

Eugenics ([1939]), Fisher stresses that Student (Gosset’s pen name), too, had

always assumed a plurality of possible models that had to be adequately

specified for the purposes of an applied problem. Fisher uses this indication

to confirm his own view that mathematical models do not ‘fit’ real applica-

tions without further ado, and that mediating between the two was the

applied statistician’s (or mathematician’s) task—and, above all, his view

that this problem will arise ever anew whenever the questions or data vary.

Fisher’s opponents quoted Gosset’s view with regard to the symmetry

between hypothesis and alternative. As late as 1968, Pearson still published

letters from Gosset in Biometrica (Pearson [1968]) in which the latter

emphatically argued with him that using the likelihood quotient, which

stands for the comparison of two hypotheses, was much more convincing

than using the likelihood function. This statement represented an implicit

criticism of Fisher; and, moreover, the effort to find a mathematical justifica-

tion for using the likelihood quotient had been the initial ignition for the

Neyman–Pearson theory, as we have seen. This is where Gosset bears witness

to the incompleteness of Fisher’s conception.

Both parties to the controversy saw modelling as a fundamental step in

applying mathematical statistics. For both grasping the mathematical–

statistical model conceptually was the decisive step forward that made a logic

14 There are systematic reasons for that as well: the frequentistic interpretation of probability,

which was more or less advocated by all of the participants in the conflict, refers to a mathe-

matical limit of frequencies, that is, an idealized model. Fisher had shown how effective

statistical inference was possible without using Bayesian knowledge about prior distributions.

Realizing this, Neyman–Pearson thought Bayesianism obsolete.
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of inference possible. The ‘problems of estimation’ (Fisher’s name for the

second type of inference problems) were seen quite similarly by everybody con-

cerned, and both approaches relied on solving these problems on the basis of

mathematical argumentation, which was only possible on the basis of models.

How the two parties conceived of a model as a platform for further argumen-

tation (size, power, sufficiency, etc.) thus seems to be quite comparable at first.

On the other hand, they held very divergent views on the function that

should be assigned to models, or better, what is the task of building a

model. Neyman and Pearson stand for the programme of mathematizing

behaviour (courses of action). The paradigm they had in mind was the meth-

ods of quality control in industrial production in which the rationality of

action is fixed to a large extent. This does not mean that an optimal behavi-

our is evident, but rather that the criteria of optimality are given, or can at

least be formalized in principle. This, in turn, permits making this behaviour

an object of mathematics, just as Neyman–Pearson did with their fundamen-

tal lemma.

In the frame of the Neyman–Pearson theory, the reiterated application of a

procedure forms the basis for the statistical inferences (just think of an accep-

tance procedure, a method of taking random samples of shipments and of

accepting or refusing the latter in accordance with the results). This particular

conceptualization was the only way that Neyman–Pearson could provide an

objective basis for the logic of inference, thereby excluding the merely hypo-

thetical infinite populations as superfluous elements. It can be said that

Neyman–Pearson rely on a concept of model that includes much more pre-

conditions, according to which much of the statistician’s method is already

fixed. In short: the achievement of mathematization represented by develop-

ing the fundamental lemma that made courses of action into objects of mathe-

matical arguments had caused a central component of inference logic to

switch sides, whereas a statistician, according to Fisher, uses mathematical

reasoning within the logic of inference, e.g. building and adjusting a model to

the data at hand and to the questions under discussion. In Neyman–Pearson’s

theory, the reasoning of the statistician himself (e.g. finding an appropriate

acceptance procedure) has become an object of the mathematical argument.

Hence I should like to call it the integration view.

With this, however, they place themselves in strict opposition to Fisher.

For him, modelling creates the objects one can argue about mathematically,

whereas Neyman–Pearson shape the basic situation in which modelling takes

place, requiring reiterated procedures and competing hypotheses. Fisher con-

sidered the applied mathematician’s situation fraught in principle with many

subjective components—working on an applied problem requires a high

degree of ‘judgement.’ According to Fisher, reflecting this application situa-

tion and its non-mathematical components was an integral part of applied
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mathematics or statistics. Modelling thus has the task of mediating between

real-world problems and mathematics. Hence, Neyman–Pearson intended to

get rid of precisely that constructive act of modelling that is the focus of

Fisher’s inference logic!

In Fisher’s view, Neyman–Pearson simply erred in eliminating the funda-

mental step of modelling because they assumed the situation to be objective

already: ‘By ignoring this necessity a ‘‘theory of testing hypotheses’’ has been

produced in which a primary requirement of any competent test has been

overlooked’ ([1955], p. 71). In Neyman–Pearson’s view, in contrast, only

their own theory provides the foundation and justification for a consistent

frequentist and objective interpretation of probability. And this justification

relied on the fundamental lemma, which in turn required stronger assump-

tions, assuming a class of models existing across an extended period while

refraining from considering a new model for new data, as Fisher requires.

Just like any additional proven proposition of mathematics, Neyman–

Pearson’s lemma represents an unequivocal progress—one should think.

But it is precisely this effort at extending and completing statistical logic

that Fisher pokes fun at. For him, it was not a weakness, but a strength of

the logic of inference that new data will create a new situation.

The two views could be summarized as follows: Neyman–Pearson wish to

extend the mathematical argumentation in order to find a mathematical jus-

tification for the likelihood principle used by Fisher. They succeed in mathe-

matizing decision processes. This achievement, however, comes at a cost: the

requirements of the lemma. Fisher’s criticism concerned the argument’s appli-

cability, not its consistency. Thus, the controversy between Fisher and

Neyman–Pearson was about how far statistical methods, in the sense of a

rational proposal for solving a problem of application, can be formulated,

and thus also formalized, in the world of models. This presents a remarkably

ironic point: It was precisely what Neyman–Pearson admired most in Fisher,

his conception of a model, that caused their dispute with him!

Reflexive mathematization, that is, the mathematization of mathematics, in

this case of statistics, is quite a typical feature of modern mathematics–

statistics being no exception here. The dispute about the activity of mathe-

matical modelling, and about how to deal with problems of application, how-

ever, concerns a permanent problem of applied science. I think one cannot

beg the question by simply assenting either to Fisher or to Neyman–Pearson,

taking the views of either mediation or integration, as I have called them.

They form indispensable, complementary aspects of applied mathematics.

The balance of these aspects is decisive as shown by the following interpre-

tation of EDA. It started as a critical assessment of the use of models in

statistics and in the end, it is argued, EDA provides a new systematic role

for models. It does so in the frame of a conception of applied mathematics
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which can be termed moderate and expansive at the same time; moderate

because it is far distant from claims to rationality like those of Neyman–

Pearson, and expansive as it also includes questions concerning the first

steps in the process of modelling.

5 Exploratory data analysis as a model-critical approach

EDA represents an influential current in modern statistics. It was initiated

and propagated by John Wilder Tukey. The approach was already known

among specialists in the 1960s, and Tukey’s book with the programmatic title

of ‘Exploratory Data Analysis’ appeared in 1977. Quite in contrast to its

influence on the practice of statistics, EDA is often neglected in

philosophically-oriented considerations. In the context of models, EDA is

of great interest, because Tukey combined a strong critique of the concept

and use of models with his programmatic design. What is data analysis

about? The ‘International Encyclopedia of Statistics’ summarizes:

Exploratory data analysis is the manipulation, summarization, and dis-

play of data to make them more comprehensible to human minds, thus

uncovering underlying structure in the data and detecting important

departures from that structure (Kruskal and Tanur [1978], p. 3).

Note the fine, but decisive difference from Fisher’s account of the general

goal in which ‘reducing the data to relevant information’ took the key role,

a fact which again required reference to an underlying model. EDA, in con-

trast, concerns a process preceding the construction of a model, as it were,

preparing the terrain for the modelling, and it does without strongly struc-

turing elements like hypothetical populations or even hypotheses. Tukey

conceived of EDA very consciously as a countermodel and as a supplement

to confirmatory data analysis (CDA), as he called the Neyman–Pearson tra-

dition. Fisher is taking something like an intermediate position here, as I am

going to argue.

In data analysis we must look to a very heavy emphasis on judgment. At

least three different sorts of judgement are likely to be involved in almost

every instance:

a1. judgement based upon the experience of the particular field of subject

matter from which the data come,

a2. judgement based upon a broad experience with how particular tech-

niques of data analysis have worked out in a variety of fields of

application,

a3. judgement based upon abstract results about the properties of par-

ticular techniques, whether obtained by mathematical proofs or

empirical sampling (Tukey [1962], p. 9).
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In a certain sense, Tukey considered mathematical models in statistics to be a

dangerous gift, as they suggested the applicability of rigorous mathematical

arguments. Often, Tukey says, the complex difficulties arising from amor-

phous data are passed over too quickly. In other words, Tukey was convinced

that application-oriented statistics must begin methodologically even before

the data are inserted into the context of a model, or rather into the Procrustean

bed of a model. For Tukey, mathematical, model-dependent arguments

should enter at a late stage of the application process which would have to

begin with exploring the data without bias by modelling assumptions. For

instance, the judgement what part of the data are outliers and may therefore

be ignored is often decided too quickly by reference to a model. For him, the

very process of model building has to be guided by EDA—a position quite

contrary to Neyman–Pearson’s integrative effort.

EDA offers a complete toolbox of methods of representation, techniques of

data analysis, that consistently do not involve a model, neither in Neyman–

Pearson’s nor in Fisher’s sense, and have nothing to do with hypotheses

either. The stem-and-leaf diagrams are one from a large number of examples.

Tukey illustrated the relationship between explorative and confirmatory data

analysis with the metaphor of the detective and the judge:

Unless the detective finds the clues, judge or jury has nothing to consider.

Unless exploratory data analysis uncovers indications, usually quantitative

ones, there is likely to be nothing for confirmatory data analysis to consider.

(Tukey [1977], p. 3).

Was that not the initial motivation of modelling as well? Modelling was

indeed also one of the prerequisites for applying mathematical propositions

to reality, by having models bring a practical situation into a sufficiently exact

form. While Tukey does not challenge this, he insists on the systematic impor-

tance of the first preparatory steps in the process of modelling. His main issue

is to clarify how the judgement necessary to construct an adequate

mathematical–statistical model can itself depend on an investigation by

means of mathematical tools. This extended frame of mathematical tools

(far from deductive reasoning) then encompasses decidedly less precise con-

cepts. In this connection, Tukey pleads in favour of vague concepts, a rather

uncommon recommendation, at least in a mathematical context:

Effective data analysis requires us to consider vague concepts, concepts

that can be made definite in many ways. To help understand many definite

concepts, we need to go back to more primitive and less definite concepts

and then work our way forward (Mosteller and Tukey [1977], p. 17).

At the very outset of a problem of application, Tukey says, there are generally

quite a number of possible ways to attain a more abstract, more rigorous, or

more precise formulation of the problem. This view taken by Tukey recalls
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Fisher’s position that there are a multitude of possible infinite populations

which come under consideration during the first steps of modelling.15 Con-

firmatory data analysis assumes a class of models with the intention of

extracting a testimony from the data, while EDA strives to have the data

speak for themselves. To assume a model class (which is different from finally

aiming at a model) is an ‘epistemological restriction’ of the confirmatory

approach, as Biehler ([1982]) appropriately notes in his in-depth study of

EDA. Fisher’s and Tukey’s conceptions do not contradict one another;

rather, what becomes evident if one integrates the two is that the process

of modelling is based on an interplay of data and models in the course of

which both have to be considered variable. When Tukey and Wilks ([1970])

underline that using models to evaluate data is different from data to evaluate

models, they do not intend to play down the use of models, but rather assign

some autonomy to both approaches that then require mediation.16 Models

are an essential and central component, but are neither the alpha nor the

omega of statistical inference.17 Taking this view indeed places Tukey outside

the logic of testing established by Neyman–Pearson, and rightfully opposes

EDA to CDA. At the same time, Tukey takes up Fisher’s approach again

inasmuch as he takes into account the importance of the process of construc-

tion in which modelling consists (this is where Biehler is absolutely right).

This systematic role for models is connected with a conception of applied

mathematics that can be termed moderate and expansive at the same time:

moderate because it is far distant from claims to rationality like those of

Neyman–Pearson; and expansive, because it also includes questions concern-

ing the first steps in the process of modelling.

With EDA, Tukey begins by pursuing a model-critical programme, intro-

ducing a set of new tools like stem-and-leaf diagrams that are intended to

make the explorative analysis of the data possible. EDA has introduced an

entire class of new tools that are fundamentally based on the capacities of

modern computers, in particular visualization. It seems quite plausible to me

to conceive of models as mediating instruments; EDA therefore is based on a

new concept of models in statistics. EDA may well be seen as herald of an

instrument-driven and still ongoing multifaceted change in modern statistics

that is triggered by the computer.

15 The statistician Kimball has coined the term ‘errors the third kind’. They occur by introducing

mathematical models too hastily, suggesting an exact treatment of problems while placing

it in an inadequate frame: ‘A simple and almost ludicrous definition of the error of the

third kind is the error committed by giving the right answer to the wrong problem’ ([1957],

p. 134).
16 EDA starts from an unstructured set of data, different from Fisher’s considerations about the

design of experiments in ([1935]), in which he intends to obtain data in an effective way.
17 Incidentally, this weakens Biehler’s point of view (in [1982]), who saw a shift from the priority

on models to that on methods. In my opinion, the point is mediation, and not priority.
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The analysis of modern statistics has led to several concepts of model. In

my opinion, this should not tempt anybody to conceive of these concepts in

an ever more general way in order to cover all possible modes of use. Such a

comprehensive concept would not be desirable at all: In the case of modern

statistics, the differences between the various concepts of model were the key

to its formative controversies.
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