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ABSTRACT—The statistic prep estimates the probability of

replicating an effect. It captures traditional publication

criteria for signal-to-noise ratio, while avoiding para-

metric inference and the resulting Bayesian dilemma. In

concert with effect size and replication intervals, prep
provides all of the information now used in evaluating

research, while avoiding many of the pitfalls of traditional

statistical inference.

Psychologists, who rightly pride themselves on their methodo-

logical expertise, have become increasingly embarrassed by

‘‘the survival of a flawed method’’ (Krueger, 2001) at the heart of

their inferential procedures. Null-hypothesis significance tests

(NHSTs) provide criteria for separating signal from noise in the

majority of published research. They are based on inferred

sampling distributions, given a hypothetical value for a param-

eter such as a population mean (m) or difference of means be-

tween an experimental group (mE) and a control group (mC; e.g.,

H0: mE � mC 5 0). Analysis starts with a statistic on the obtained

data, such as the difference in the sample means, D. D is a point

on the line with probability mass of zero. It is necessary to relate

that point to some interval in order to engage probability theory.

Neyman and Pearson (1933) introduced critical intervals over

which the probability of observing a statistic is less than a

stipulated significance level, a (e.g., z scores between [�1, �2]

and between [12, 11] over which a < .05). If a statistic falls

within those intervals, it is deemed significantly different from

that expected under the null hypothesis. Fisher (1959) pre-

ferred to calculate the probability of obtaining a statistic larger

than |D| over the interval [|D|, 1]. This probability, p(x�D|H0),

is called the p value of the statistic. Researchers typically hope

to obtain a p value sufficiently small (viz. less than a) so that

they can reject the null hypothesis.

This is where problems arise. Fisher (1959), who introduced

NHST, knew that ‘‘such a test of significance does not authorize

us to make any statement about the hypothesis in question in

terms of mathematical probability’’ (p. 35). This is because such

statements concern p(H0|x�D), which does not generally equal

p(x � D|H0). The confusion of one conditional for the other is

analogous to the conversion fallacy in propositional logic.

Bayes showed that p(H|x� D) 5 p(x� D|H)p(H)/p(x� D). The

unconditional probabilities are the priors, and are largely

unknowable. Fisher (1959) allowed that p(x � D|H0) may

‘‘influence [the null’s] acceptability’’ (p. 43). Unfortunately,

absent priors, ‘‘P values can be highly misleading measures of

the evidence provided by the data against the null hypothesis’’

(Berger & Selke, 1987, p. 112; also see Nickerson, 2000, p.

248). This constitutes a dilemma: On the one hand, ‘‘a test of

significance contains no criterion for ‘accepting’ a hypothesis’’

(Fisher, 1959, p. 42), and on the other, we cannot safely reject a

hypothesis without knowing the priors. Significance tests

without priors are the ‘‘flaw in our method.’’

There have been numerous thoughtful reviews of this foun-

dational issue (e.g., Nickerson, 2000), attempts to make the best

of the situation (e.g., Trafimow, 2003), proposals for alternative

statistics (e.g., Loftus, 1996), and defenses of significance tests

and calls for their abolition alike (e.g., Harlow, Mulaik, &

Steiger, 1997). When so many experts disagree on the solution,

perhaps the problem itself is to blame. It was Fisher (1925) who

focused the research community on parameter estimation ‘‘so

convincingly that for the next 50 years or so almost all theo-

retical statisticians were completely parameter bound, paying

little or no heed to inference about observables’’ (Geisser, 1992,

p. 1). But it is rare for psychologists to need estimates of pa-

rameters; we are more typically interested in whether a causal

relation exists between independent and dependent variables

(but see Krantz, 1999; Steiger & Fouladi, 1997). Are women

attracted more to men with symmetric faces than to men with

asymmetric faces? Does variation in irrelevant dimensions of

stimuli affect judgments on relevant dimensions? Does re-

view of traumatic events facilitate recovery? Our unfortunate
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historical commitment to significance tests forces us to rephrase

these good questions in the negative, attempt to reject those

nullities, and be left with nothing we can logically say about the

questions—whether p5 .100 or p5 .001. This article provides

an alternative, one that shifts the argument by offering ‘‘a so-

lution to the question of replicability’’ (Krueger, 2001, p. 16).

PREDICTING REPLICABILITY

Consider an experiment in which the null hypothesis—no dif-

ference between experimental and control groups—can be re-

jected with a p value of .049. What is the probability that we can

replicate this significance level? That depends on the state of

nature. In this issue, as in most others, NHST requires us to take

a stand on things that we cannot know. If the null is true, ceteris

paribus we shall succeed—get a significant effect—5% of the

time. If the null is false, replicability depends on the population

effect size, d. Power analysis varies the hypothetical discrep-

ancy between the means of control and experimental popula-

tions, giving the probability of appropriately rejecting the null

under those various assumptive states of nature. This awkward

machinery is seldom invoked outside of grant proposals, whose

review panels demand an n large enough to provide significant

returns on funding.

Greenwald, Gonzalez, Guthrie, and Harris (1996) reviewed

the NHST controversy and took the first clear steps toward a

useful measure of replicability. They showed that p values

predict the probability of getting significance in a replication

attempt when the measured effect size, d0, equals the population

effect size, d. This postulate, d5 d0, complements NHST’s d5
0, while making better use of the available data (i.e., the ob-

served d0 > 0). But replicating ‘‘significance’’ replicates the

dilemma of significance tests: Data can speak to the probability

of H0 and the alternative, HA, only after we have made a com-

mitment to values of the priors. Abandoning the vain and un-

necessary quest for definitive statements about parameters frees

us to consider statistics that predict replicability in its broadest

sense, while avoiding the Bayesian dilemma.

The Framework

Consider an experimental group and an independent control

group whose sample means, ME and MC, differ by a score of D.

The corresponding dimensionless measure of effect size d0

(called d by Cohen, 1969; g by Hedges & Olkin, 1985; and d0 in

signal detectability theory) is

d 0 ¼ ME �MC

sp
; ð1Þ

where sp is the pooled within-group standard deviation. If the

experimental and control populations are normal and the total

sample size is greater than 20 (nE 1 nC 5 n> 20), the sampling

distribution of d0 is approximately normal (Hedges & Olkin,

1985; see the top panel of Fig. 1 and the appendix):

d0 � Nðd; sdÞ: ð2Þ

sd is the standard error of the estimate of effect size, the square

root of

s 2
d � n2

nEnC n� 4ð Þ ; ð3Þ

for n > 4. When nE 5 nC, Equation 3 reduces to s 2
d �

4=ðn� 4Þ.
Define replication as an effect of the same sign as that found in

the original experiment. The probability of a replication attempt

having an effect d02 greater than zero, given a population effect

size of d, is the area to the right of 0 in the sampling distribution

centered at d (middle panel of Fig. 1). Unfortunately, we do not

know the value of the parameter d and must therefore eliminate it.

Fig. 1. Sampling distributions of effect size (d). The top panel shows a
distribution for a population effect size of d5 0.1; the experiment yielded
an effect size of 0.3, and thus had a sampling error D5 d 0

1� d5 0.2. The
middle panel shows the probability of a replication as the area under the
sampling distribution to the right of 0, given knowledge that d5 0.1. The
bottom panel shows the posterior predictive density of effect size in rep-
lication. Absent knowledge of d, the probability of replication is predicted
as the area to the right of 0.
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Eliminating d
Define the sampling error, D, as D5 d0 � d (Fig. 1, top panel).

For the original experiment, this equation may be rewritten as

d 5 d 0
1 � D1. Replication requires that if d 0

1 is greater than 0,

then d 0
2 is also greater than 0, that is, that d 0

2 5 d 1 D2 > 0.

Substitute d 0
1 � D1 in place of d in this equation. Replication

thus requires that d 0
2 5 d 0

1 � D1 1 D2 > 0. The expectation of

each sampling error is 0 with variance sd
2. For independent

replications, the variances add, so that d 0
2 � Nðd 0

1;sdR
Þ, with

sdR
¼

ffiffiffi
2

p
sdR

. The probability of replication, prep, is the area of

the distribution for which d0 is greater than 0, shaded in the

bottom panel of Figure 1:

prep ¼
Z 1

0

n d 0
1; sdR

ð Þ: ð4Þ

Slide the distribution to the left by the distance d 0
1 to see that

Equation 4 describes the same area as

prep ¼
Z 1

�d 0
1

n 0; sdR
ð Þ ¼

Z d 0
1

�1
n 0; sdR
ð Þ: ð5Þ

It is easiest to calculate prep from the right integral in

Equations 5, by consulting a normal probability table for the

cumulative probability up to

z ¼ d 0
1

sdR

: ð6Þ

Example

Suppose an experiment with nE 5 nC 5 12 yields a difference

between experimental and control groups of 5.0 with sp 5 10.0.

This gives an effect of d 0
1 5 0.5 (Equation 1) with a variance

of sd1

2 � 4/(24 � 4) 5 0.20 (Equation 3), and a replication

variance of sdR

2 ¼ 2 � sd1

2 � 0:40. From this, it follows that

z 5 0.5/
ffiffiffiffiffiffiffiffiffi
0:40

p
5 0.79 (Equation 6). A table of the normal

distribution assigns a prep of .785.1

As the hypothetical number of observations in the replicate

approaches infinity, the sampling variance of the replication

goes to zero, and prep is the positive area of N(d 0
1, sd1

). This is

the sampling distribution of a standard power analysis at the

maximum likelihood value for d, and establishes an upper

bound for replicability. It is unlikely, however, that the next

investigator will have sufficient resources or interest to ap-

proach that upper bound. By default, then, prep is defined for

equipotent replications, ones that employ the same number of

subjects as the original experiment and experience similar

levels of sampling error. The probability of replication may be

calculated under other scenarios (as shown later), but for pur-

poses of qualifying the data in hand, equipotency, which dou-

bles the sampling variance, is assumed.

The left panel of Figure 2 shows the probability of replicating

the results of an experiment whose measured effect size is d 0
1 5

0.1 (bottom curve), 0.2, . . . , 1.0, as a function of the number of

observations in the original study. These results permit a com-

parison with traditional measures of significance. The dashed

line connects the effect sizes necessary to reject the null under a

two-tailed t test, with probability of a Type I error, a, less than

.05. Satisfying this criterion is tantamount to establishing a prep

of approximately .917.

Parametric Variance

The calculations presented thus far assume that the variance

contributed by contextual variables in the replicate is negligible

Fig. 2. Probability of replication (prep) as a function of the number of observations and measured effect size, d 0
1.

The functions in each panel show prep for values of d 0
1 increasing in steps of 0.1, from 0.10 (lowest curve) to 1.0

(highest curve). The dashed lines show the combination of effect size and n necessary to reject a null hypothesis
of no difference between the means of the experimental and control groups (i.e., mE � mC 5 0) using a two-tailed t test
with a5 .05. When realization variance, sd

2, is 0 (left panel), replicability functions asymptote at 1.0. For a one-tailed
test, the dashed line drops to .88. When realization variance is 0.08 (right panel), the median for social psycho-
logical research, replicability functions asymptote below 1.0. As n approaches infinity, the t-test criterion falls to an
asymptote of .5.

1Excels spreadsheets with relevant calculations are available from http://www.
asu.edu/clas/psych/research/sqab and from http://www.latrobe.edu.au/psy/esci/.
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compared with the sampling error of d. This is the classic fixed-

effects model of science. But every experiment is a sample from

a population of possible experiments on the topic, and each of

those, with its own differences in detail, has its own subspecies

of effect size, di. This is true a fortiori for correlational studies

involving different instruments or moderators (Mosteller &

Colditz, 1996). The population of effect sizes adds a realization

variance, sd
2, to the sampling distributions of the original and

the replicate (Raudenbush, 1994; Rubin, 1981; van den Noort-

gate & Onghena, 2003), so that the standard error of effect size

in replication becomes

sdR
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sd1

2 þ sdi
2ð Þ

p
: ð7Þ

In a recent meta-meta-analysis of more than 25,000 social

science studies, Richard, Bond, and Stokes-Zoota (2003)

reported a mean within-literature variance of sd
2 5 0.092

(median 5 0.08), corrected for sampling variance (Hedges &

Vevea, 1998). The statistic sd
2 places an upper limit on

the probability of replication, one felt most severely by studies

with small effect sizes. This is shown graphically in the right

panel of Figure 2. The probability of replication no longer

asymptotes at 1.0, but rather at prepðmaxÞ ¼
R d01
�1 nð0;

ffiffiffi
2

p
sdÞ. At

n 5 100, the functions shown in the right panel of Figure 2 are

no more than 5 points below their asymptotes. Given a repre-

sentative sd
2 of 0.08, for no value of n will a measured effect

size of d0 less than 0.52 attain a prep greater than .90; but

this standard comes within reach of a sample size of 40 for a

d0 of 0.8.

Reliance on standard hypothesis-testing techniques that ig-

nore realization variance may be one of the causes for the dis-

mayingly common failures of replication. The standard t test

will judge an effect of any size significant at a sufficiently large

n, even though the odds for replication may be very close to

chance. Figure 2 provides understanding, if no consolation, to

investigators who have failed to replicate published findings of

high significance but low effect size. The odds were never very

much in their favor. Setting a replicability criterion for publi-

cation that includes an estimate of realization variance would

filter the correlational background noise noted by Meehl (1997)

and others.

Claiming replicability for an effect that would merely be of

the same sign may seem too liberal, when the prior probability

of that is 1/2, but traditional null-hypothesis tests are them-

selves at best merely directional. The proper metric of effect

size is d or r, not p or prep. In the present analysis, replicability

qualifies effect, not effect size: A d 0
2 of 2.0 constitutes a failure

to replicate an effect size (d 0
1) of 0.3, but is a strong replication

of the effect. Requiring a result to have a prep of .9 exacts a

standard comparable to (Fig. 2, left panel) or exceeding (right

panel) the standard of traditional significance tests.

Does prep really predict the probability of replication? In a

meta-analysis of 37 studies of the psychophysiology of aggres-

sion, including unpublished nonsignificant data sets, Lorber

(2004) found that 70% showed a negative relation between

heart rate and aggressive behavior patterns. The median value

of prep over those studies was .71 (.69 assuming sd
2 5 0.08). In

a meta-analysis of 37 studies of the effectiveness of massage

therapy, Moyer, Rounds, and Hannum (2004) found that 83%

reported positive effects on various dependent variables; in-

cluding an estimate of publication bias against negative results

reduced this value to 74%. The median value of prep over those

studies was .75 (.73 assuming sd
2 5 0.08). In a meta-analysis

of 45 studies of transformational leadership, Eagly, Johannesen-

Schmidt, and van Engen (2003) found that 82% showed an

advantage for women, and argued against attenuation by pub-

lication bias. The median value of prep over these studies was .79

(dropping to .68 for sd
2 5 0.08 because of the generally small

effect sizes). Averaging values of prep and counting the propor-

tion of positive results are both inefficient ways of aggregating

and evaluating data (Cooper & Hedges, 1994), but such anal-

yses provide face validity for prep, which is intended primarily as

a measure of the robustness of studies taken singly.

Generalizations

Whenever an effect size can be calculated (see Rosenthal,

1994, for conversions among indices; Cortina & Nouri, 2000, for

analysis of variance designs; Grissom & Kim, 2001, for cave-

ats), so also can prep. Randomization tests, described in the

appendix, facilitate computation of prep for complex designs or

situations in which assumptions of normality are untenable.

Calculation of the n required for a desired prep is straightfor-

ward. For a presumptive effect size of d and realization variance

of sd
2, calculate the z score corresponding to prep, and employ

an n 5 nE 1 nC no fewer than

n ¼ 8z2

d2 � 2sd
2z2

þ 4: ð8Þ

Negative results indicate that the desired prep is unobtainable

for that sd
2. For example, for d 5 0.8, sd

2 5 0.08, and a de-

sired prep 5 .9, z(.9)2 5 1.64, and the minimum n is 40.

Stronger claims than replication of a positive effect are some-

times warranted. An investigator may wish to claim that a new

drug is more effective than a standard. The replicability of the data

supporting that claim may be calculated by integrating Equation 4

not from 0, but from ds, the effect size of the standard bearer.

Editors may prefer to call a result replicable only if it accounts for,

say, at least 1% of the variance in the data, for which d0 must be

greater than 0.04. They may also require that it pass the Aikaike

criterion for adding a parameter (distinct means for experimental

and control groups; Burnham & Anderson, 2002), for which

r2 must be greater than 1 � e�2/n. Together, these constraints

define a lower limit for ‘‘replicable’’ at prep � 55. However these

minima are set, a fair assessment of sd is necessary for prep to give

investigators a fair assessment of replicability.
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The replicability of differences among experimental condi-

tions is calculated the same way as that between experimental

and control conditions. Multiple comparisons are made by the

conjunction or disjunction of prep: If treatments A and B are

independent, each with prep of .80, the probability of replicating

both effects is .64, and the probability of replicating at least one

is .87. The probability of n independent attempts to replicate an

experiment all succeeding is prep
n.

As is the case for all statistics, there is sampling variability

associated with d0, so that any particular value of prep may be

more or less representative of the values found by other studies

executed under similar conditions. It is an estimate. Replication

intervals (RIs) aid interpretation by reflecting prep onto the

measurement axis. Their calculation is the same as for confi-

dence intervals (CIs), but with variance doubled. RIs can be

used as equivalence tests for evaluating point predictions. The

standard error of estimate conveniently captures 52% of future

replications (Cumming, Williams, & Fidler, 2004). This familiar

error bar can therefore be interpreted as an approximate 50% RI.

In the example given earlier, for sd 5 0, the 50% RI for D is

approximately 5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 102=24ð Þ

p
� 2:1; 7:9½ �.

WHY SWITCH?

Sampling distributions for replicates involve two sources of

variance, leading to a root-2 increase in the standard error over

that used to calculate significance. Why incur that cost? Both p

and prep are functions of effect size and n, and so convey similar

information: The top panel in Figure 3 shows p as the area in the

right tail of the sampling distribution of d 0
1, given the null, and

prep as the area in the right tail of the prospective sampling

distribution of d 0
2, given d 0

1. As d 0
1 or n varies, prep and

p change in complement.

Recapturing a familiar index of merit is reassuring, as are the

familiar calculations involved; but these analyses are not

equivalent. Consider the following contrasts:

Intuitive Sense

What is the difference between p values of .05 and .01, or be-

tween p values of .01 and .001? If you follow Neyman-Pearson

and have set a to be .05, you must answer, ‘‘Nothing’’ (Meehl,

1978). If you follow Fisher, you can say, ‘‘The probability of

finding a statistic more extreme than this under the null is p.’’

Now compare those p values, and the oblique responses they

support, with their corresponding values of prep shown in the

bottom panel of Figure 3. These steps in p values take us from

prep of .88 to .95 to .99—increments that are clear, interpret-

able, and manifestly important to a practicing scientist.

Logical Authority

Under NHST, one can never accept a hypothesis, and is often

left in the triple-negative no-man’s land of failure to reject the

null. The prep statistic provides a graded measure of replica-

bility that authorizes positive statements about results: ‘‘This

effect will replicate 100( prep)% of the time’’ conveys useful

information, whatever the value of prep.

Real Power

Traditionally, replication has been viewed as a second suc-

cessful attainment of a significant effect. The probability of

getting a significant effect in a replicate is found by integrating

Equation 4 from a lower limit given by the critical value

d� ¼ sdR
ta;n2�2. This calculation does not require that the

original study achieved significance. Such analyses may help

bridge to the new perspective; but once prep is determined,

calculation of traditional significance is a step backward. The

curves in Figure 2 predict the replicability of an effect given

known results, not the probability of a statistic given the value of

a parameter whose value is not given.

Elimination of Errors

Significance level is defined as the probability of rejecting the

null when it is true (a Type I error of probability a); power is

defined as the probability of rejecting the null when it is false,

Fig. 3. Complementarity of prep and p. The top panel shows sampling
distributions for d 0

1 given the null (left) and for d 0
2 given d1 (right). The

small black area gives the probability of finding a statistic more extreme
than d1 if the null were true. The large shaded area gives the probability of
finding supportive evidence in an equipotent replication. In the bottom
panel, prep is plotted against the p values calculated for the normal dis-
tribution under the null hypothesis with d 5 0.1, 0.2, . . . , 1.0, and n
ranging from 10 to 80; prep is calculated from Equations 3, 5, and 6. The
function is described in the appendix.
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and not doing so is a Type II error. False premises lead to

conclusions that may be logically consistent but empirically

invalid, a Type III error. Calculations of p are contingent on the

null being true. Because the null is almost always false (Cohen,

1994), investigators who imply that manipulations were effec-

tive on the basis of a p less than a are prone to Type III errors.

Because prep is not conditional on the truth value of the null, it

avoids all three types of error.

One might, of course, be misled by a value of prep that itself

cannot be replicated. This can be caused by

	 sampling error: d1 may deviate substantially from d (RIs help

interpret this risk.)

	 failure to include an estimate of sd
2 in the replication vari-

ance

	 publication bias against small or negative effects

	 the presence of confounds, biased data selection, and other

missteps that plague all mapping of particular results to

general claims

Because of these uncertainties, prep is only an estimate of the

proportion of replication attempts that will be successful. It

measures the robustness of a demonstration; its accuracy in

predicting the proportion of positive replications depends on

the factors just listed.

Greater Confidence

The American Psychological Association (Wilkinson & the

Task Force on Statistical Inference, 1999) has called for the

increased use of CIs. Unfortunately, few researchers know how

to interpret them, and fewer still know where to put them

(Cumming & Finch, 2001; Cumming et al., 2004; Estes, 1997;

Smithson, 2003; Thompson, 2002). CIs are often drawn cen-

tered over the sample statistic, as though it were the parameter;

when a CI does not subsume 0, it is often concluded that the null

may be rejected. The first practice is misleading, and the second

wrong. CIs are derived from sampling distributions of M around

a hypostatized m: |m � M| will be less than the CI 100p% of the

time. But as difference scores, CIs have lost their location.

Situating them requires an implicit commitment to parame-

ters—either to m 5 0 for NHST or to m 5 M for the typical

position of CIs flanking the statistic. Such a commitment, absent

priors, runs afoul of the Bayesian dilemma. In contrast, RIs can

be validly centered on the statistic to which they refer, and the

replication level may be correctly interpreted as the probability

that the statistics of future equipotent replications will fall

within the interval.

Decision Readiness

Significance tests are said to provide decision criteria essential

to science. But it is a poor decision theory that takes no account

of prior information and no account of expected values, and in

the end lets us decide only whether or not to reject a statistic as

improbable under the null. As a graduated measure, prep pro-

vides a basis for a richer approach to decision making than the

Neyman-Pearson strategy, currently the mode in psychology.

Decision makers may compute expected value, E(v), by multi-

plying prep or its complement by the values they assign out-

comes. Let v1(d0) be the value of positive action for an effect size

d0, including potential costs for small or contrary effects. Then

EðvþÞ ¼
Rþ1

�1
vþ xð Þn x; d01;sR

� �
. Comparison with an analogous

calculation for E(v�) will inform the decision.

Congeniality With Bayes

Probability theory provides a unique basis for the logic of sci-

ence (Cox, 1961), and Bayes’ theorem provides the machinery to

make science cumulative (Jaynes & Bretthorst, 2003; see the

appendix). Falsification of the null cannot contribute to the

cumulation of knowledge (Stove, 1982); the use of Bayes to

reduce s
dR

2 can. NHST stipulates an arbitrary mean for the test

statistic a priori (0) and a variance a posteriori sp
2=n

� �
. The

statistic prep uses both moments of the observed data in a co-

herent fashion to predict the most likely posterior distribution of

the replicate statistic. Information from replicates may be

pooled to reduce sd
2 (Louis & Zelterman, 1994; Miller &

Pollack, 1994). Systematic explorations of phenomena identify

predictors or moderators that reduce sd
2. The information

contributed by an experiment, and thus its contribution to

knowledge, is a direct function of this reduction in s
dR

2.

Improved Communication

The classic definition of replicability can cause harmful con-

fusion when weak but supportive results must be categorized as

a ‘‘failure to replicate [at p < .05]’’ (Rossi, 1997). Consider an

experiment involving memory for deep versus superficial en-

coding of target words. This experiment, conducted in an un-

dergraduate methods class, yielded a highly significant effect

for the pooled data of 124 students, t(122) 5 5.46 (Parkinson,

2004). We can ‘‘power down’’ the effect estimated from the

pooled data to predict the probability that each of the seven

sections in which these data were collected would replicate this

classic effect. All of the test materials and instructions were

identical, so sd
2 was approximately 0. The effect size from the

pooled data, d0, was 0.49. Individual class sections, averaging

ns of 18, contributed the majority of variability to the replicate

sampling distribution, whose variance is the sum of sampling

variances for n 5 124 (‘‘original’’) and again for n 5 18 (rep-

licates). Replacing sdR
in Equation 4 with the root of this sum

predicts a replicability of .81: Approximately six of the seven

sections should get a positive effect. It happens that all seven

did, although for one the effect size was a mere 0.06. Unfortu-

nately, the instructor had to tell four of the seven sections that

they had, by contemporary standards, failed to replicate a very
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reliable result, as their ps were greater than .05. It was a good

opportunity to discuss sampling error. It was not a good op-

portunity to discuss careers in psychology.

‘‘How odd it is that anyone should not see that all observation

must be for or against some view if it is to be of any service!’’

(Darwin, 1994, p. 269). Significance tests can never be for:

‘‘Never use the unfortunate expression ‘accept the null hy-

pothesis’’’ (Wilkinson & the Task Force on Statistical Inference,

1999, p. 599). And without priors, there are no secure grounds

for being against—rejecting— the null. It follows that if our

observations are to be of any service, it will not be because we

have used significance tests. All this may be hard news for

small-effects research, in which significance attends any hy-

pothesis given enough n, whether or not the results are repli-

cable. But editors may lower the hurdle for potentially important

research that comes with so precise a warning label as prep.

When replicability becomes the criterion, researchers can

gauge the risks they face in pursuing a line of study: An as-

sistant professor may choose paradigms in which prep is typi-

cally greater than .8, whereas a tenured risk taker may hope to

reduce sd
2 in a line of research having preps around .6. When

replicability becomes the criterion, significance, shorn of its

statistical duty, can once again become a synonym for the im-

portance of a result, not for its improbability.
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APPENDIX

This back room contains equations, details, and generalizations.

Effect Size

The denominator of effect size given by Equation 1 is the pooled

variance, calculated as

sp
2 ¼ sC

2ðnC � 1Þ þ sE
2ðnE � 1Þ

n� 2
:

Hedges (1981) showed that an unbiased estimate of d is

d � d0½1 � 3=ð4n� 9Þ�:
The adjustment is small, however, and with suitable adjust-

ments in sd, d
0 suffices.

Negative effects generate preps less than .5, indicating the

unlikelihood of positive effects in replication. For consistency,

if d0 is less than 0, use |d0| and report the result as the repli-

cability of a negative effect. Useful conversions are d0 5 2r(1 �
r2)�1/2 (Rosenthal, 1994) and d0 5 t[1/nE 1 1/nC]1/2 for the

simple two-independent-group case and d0 5 tr[(1 � r)/nE 1 (1

� r)/nC]1/2 for a repeated measures t, where r is the correlation

between the measures (Cortina & Nouri, 2000).

The asymptotic variance of effect size (Hedges, 1981) is

sd
2 ¼ n

nEnC

þ d2

2n
:

Equation 3 in the text is optimized for the use of d0, however,

and delivers accurate values of prep for �1 
 d0 
 1.

Variance of Replicates

The desired variance of replicates, sdR

2, equals the expectation

E d2 � d1ð Þ2
h i

. This may be expanded (Estes, 1997) as

E d2 � d1ð Þ2
h i

¼ E d2 � dð Þ � d1 � dð Þð Þ2
h i

¼ E d2 � dð Þ2þ d1 � dð Þ2
h i
� 2E d2 � dð Þ d1 � dð Þ½ �

The quantities E d2 � dð Þ2
h i

and E d1 � dð Þ2
h i

are the vari-

ances of d2 and d1, each equal to sd
2. For independent repli-

cations, the expectation of the cross product E d2 � dð Þ½
d1 � dð Þ� is 0.

Therefore, sdR

2 ¼ E d2 � d1ð Þ2
h i

¼ sd
2 þ sd

2. It follows

that the standard error of effect size of equipotent replications is

sdR
¼

ffiffiffi
2

p
sd.
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When nE 5 nC > 2,

sdR

2 � 8

n� 4
þ 2sd

2

When the sizes of the original and replicate samples vary,

replication variance should be based on

sdR

2 ¼ sd01;n1

2 þ sd01;n2

2 þ 2sd
2:

prep as a Function of p

We may approximate the normal distribution by the logistic and

solve for prep as a function of p. This suggests the following

equation:

prep � 1 þ p

1 � p

� �2=3
" #�1

:

The parenthetical converts a p value into a probability ratio

appropriate for the logistic inverse. For two-tailed comparisons,

halve p. Users of Excel can simply evaluate prep 5 NORMS-

DIST(NORMSINV(1 � P)/SQRT(2)) (G. Cumming, personal commu-

nication, October 24, 2004). This estimate is complementary to

Rosenthal and Rubin’s (2003) estimate of effect size directly

from p and n.

Randomization Method

Randomization methods avoid assumptions of normality, are

useful for small-n experiments, and are robust against het-

eroscedasticity. To employ them:

	 Bootstrap populations for the experimental and control

samples independently, generating subsamples of half the

size of the original samples, using software such as Resam-

pling Statsr (Bruce, 2003). This half-sizing provides the
ffiffiffi
2

p

increase in the standard deviation intrinsic to calculation of

prep.

	 Generate an empirical sampling distribution of the difference

of the means of the subsamples, or of the mean of the dif-

ferences for a matched-sample design.

	 The proportion of the means that are positive gives prep.

This robust approach does not take into account sd
2, and so is

accurate only for exact replications.

A Cumulative Science

Falsification of the null, even when possible, provides no ma-

chinery for the cumulation of knowledge. Reduction of sdR

does. Information is the reduction of entropy, which can be

measured as the Fisher information content of the distribution of

effect sizes. The difference of the entropies before and after an

experiment, I ¼ log2 sbefore=safterð Þ, measures its incremental

contribution of information. The discovery of better theoretical

structures, predictors, or moderators that convert within-group

variance to between-group variance permits large reductions in

sd
2, and thus sdR

; smaller reductions are effected by cumula-

tive increases in n.
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