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ABSTRACT 

Our aim is to develop a frequentist theory of decision-making.  The resulting unification of the 

seemingly unrelated theories of hypothesis testing and parameter estimation is based on a new 

definition of the optimality of a decision rule within an ensemble of token experiments. It is the 

introduction of ensembles that enables us to avoid the use of subjective Bayesian priors. We also 

consider three familiar problems with classical methods, the arbitrary features of Neyman-

Pearson tests, the difficulties caused by regression to the mean, and the relevance of stopping 

rules, and show how these problems are solved in our extended and unified frequentist 

framework.   
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1 Introduction 

Classical statistics, which was developed in the 1930's by Neyman and Pearson and by R. Fisher, 

is often referred to as 'frequentism'. This term refers to the philosophy underlying its apparently 

unrelated methods. According to this philosophy statistical methods should minimize the error 

that results from a statistical inference in a way that applies, ideally, to every possible state of the 

world.   In a sense, it takes a world-centric viewpoint.  On the opposing side there is the newer 

philosophy of Bayesian statistics, which takes a person-centered point of view � namely, the 

point of view that one should optimize statistical methods in the light of all the information 

available to the person who is making the inference.   

The clashes between these two philosophies are as complicated and diverse as are the 

problems and methods that each camp uses.   In particular, both kinds of methods can be applied 

to the seemingly unrelated problems of hypothesis testing and of estimating the value of a 

parameter from noisy data.  In the first problem there are just two rival hypotheses, each of 

which is concerned with the probability distribution of the observed outcome, and the error to be 

minimized is simply the falsity of the accepted hypothesis.  In contrast, the estimation of a 

parameter corresponds to a continuum of possible hypotheses, and in this case the error to be 

minimized is usually the squared difference between the inferred parameter value and the actual 

parameter value. 

A further distinction can be drawn between the kinds of hypotheses being tested: there are 

tests between two simple hypotheses, each of which specifies some particular distribution of 

probability values over the space of observational outcomes, and there are tests between 

composite hypotheses, each of which is compatible with many different probability distributions.  

It is worth noting that among the traditional frequentist solutions to the problems of the above 

classification, the solution to the problem of the last type �that is, Neyman-Pearson tests 

between composite hypotheses�has had the most enduring success in statistics.  This is partly 

because of the lack of competition until recent years.  It is therefore the area in which the 

frequentist methodology is most solidly entrenched, and we believe that there are sound reasons 

for this fact.  Certainly, the classical theory of estimation is also a major part of statistics.  

However, it has transformed itself into a cornerstone of Bayesian statistics, and it is also the 
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foundation of a Neo-Fisherian school of statisticians, called Likelihoodists, whose theory is 

concerned with the strength of evidence, instead of being a theory of statistical inference (Royall 

[1997]).  In all cases the classical theory of estimation appears to have lost its frequentist 

foundations.   

Below we shall look at Neyman-Pearson testing and parameter estimation from a new 

perspective. We introduce a new notion of optimality, which is different from Neyman and 

Pearson�s notion of a best test, and argue for its advantages.  The new notion of optimality is 

compatible with a Bayesian point of view.  However, we give it a non-Bayesian interpretation, 

which leads to significant philosophical differences.  

It will be seen how our framework succeeds in seeing merit in Neyman-Pearson statistics 

(Mayo [1996]) and in the Bayesian approach (Earman [1992]), although we wish to reject both 

the arbitrary features of classical methods and the extreme subjectivism of the Bayesian 

alternative.  We propose a third philosophy of statistics, which is a new variant of frequentism, 

and which is grounded on an objective notion of optimality.  We begin by recapitulating the basic 

ideas of the frequentist approaches to hypothesis testing and to estimation, and by presenting two 

familiar criticisms of them.  Our extended frequentist framework not only answers these 

criticisms, but it sheds light on other many other problems as well.  The relevance of stopping 

rules (section 11) is a particularly important example. 

2 The Arbitrary Features of Neyman-Pearson Tests  

After the seminal work of Neyman and Pearson in the 1930s, before the rise of Bayesianism, 

it would be accurate to say that hypothesis testing was a universal part of statistical practice.  

Moreover, classical hypothesis testing remains a central part of the way that science is practiced 

today (Mayo [1996])�although it is more solidly entrenched in some sciences than it is in 

others.  The variety of examples to which it has been applied is enormous, yet all applications 

follow the same pattern of inference.  We have chosen an example that does not presuppose any 

prior knowledge of a particular science�the coin tossing example.  Yet this very simple example 

is sufficient to illustrate the pattern of inference and the philosophical issues that arise in every 

example.  The reader should not misjudge the importance of these issues by the scientific 
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unimportance of this particular example.  The philosophical problems are neither artifacts of an 

over-simplified example, nor issues of �merely� historical interest. 

A Bernoulli trial is the result of a chance process in which one of two possible outcomes 

occurs with probability θ or 1−θ, respectively, with the additional requirement that the outcomes 

of repeated trials are probabilistically independent.  We shall consider a situation in which there 

are just two rival hypotheses about the correct value of the Bernoulli parameter, θ.   For example, 

suppose that a coin is taken at random from a box containing two coins, such that the selected 

coin is tossed repeatedly, and the other coin is left in the box.  The problem is to decide which 

coin was taken from the box from the observation of the coin tosses.  More specifically, we shall 

assume that one of the coins is characterized by the value θ  = 1/3, and the other one by the value 

θ  = 3/4.  

If we denote the result �heads up� by H and the result �tails up� by T, the result of each coin 

toss will be either H or T.  If the chosen coin is tossed N times, the corresponding observations 

can be represented with a sequence of the letters H and T of length N. For example, when N = 2, 

the observations are represented by one of the sequences HH, HT, TH, and TT.  The two possible 

values of the Bernoulli parameter, 1/3 and 3/4, correspond to different probability distributions 

on the space of these alternatives. 

In the standard procedure, due to Neyman and Pearson, the considered probability 

distributions are divided into two families, the first of which usually contains only one 

distribution, which is called the null hypothesis.  The null hypothesis, h0, is tested against an 

alternative h1 which states that one of the other considered probability distributions is the actual 

one.  The hypothesis h1 is, of course, composite whenever two or more alternative probability 

distributions are under consideration.  A Neyman-Pearson test is a procedure whose aim is to 

provide good reasons for believing that the null hypothesis h0 is false.  

When the aim of a researcher is to falsify some particular simple hypothesis (like the 

hypothesis that two random variables are independent), that hypothesis is the obvious choice for 

the null hypothesis (Forster [2000]), but in other cases, like in our coin flipping example, the 

choice of a null hypothesis is necessarily quite arbitrary.  One of two hypotheses under 

consideration in our example states that the true distribution corresponds to 1/ 3θ = , and the 
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other one states that it corresponds to 3 / 4θ = . We shall take the former of these hypotheses to 

be the null hypothesis. 

 The size of a test between the null hypothesis h0 and its alternative h1 is, by definition, the 

probability of erroneously rejecting the null hypothesis when it is true, i.e. of choosing h1 when h0 

is true. If the other hypothesis h1 is simple, the power of the test can be defined to be the 

probability of  (correctly) rejecting h0 when h1 is the actual probability distribution. In this case a 

best test is a test which has the largest power among all the tests of its size (see e.g., Hogg and 

Craig [1978], p. 261).  In classical hypothesis testing one normally fixes the size of the test by 

convention, finds the best  test of the given size, and makes use of that test.   

We shall illustrate the contents of these definitions in the case in which a coin is chosen with 

the procedure mentioned above and in which just one coin flip is observed, so that N = 1.  Now 

there are just two possible observed outcomes, H and T, and it is clearly the case that 

( ) 1
3Pr H 1/ 3θ = = , ( ) 2

3Pr T 1/ 3θ = = , ( ) 3
4Pr H 3/ 4θ = = , and ( ) 1

4Pr T 3/ 4θ = = .  A test is 

an �acceptance� procedure in which one observes an outcome � which has to be either H or T � 

and, given the outcome, then chooses either the null hypothesis 1/ 3θ =  or its alternative 

3 / 4θ = . 

There appear to be just four �acceptance� procedures of this kind.  Firstly, there are the two a 

priori procedures in which one chooses either θ = 1/3 or θ = 3/4 independently of the evidence 

and, secondly, there are two procedures in which one chooses θ  = 1/3 for one of the two possible 

outcomes H and T, and θ  = 3/4 for the other one.  Below, the procedure in which θ = 1/3  is 

chosen in both cases will be called T1, and the procedure in which θ = 3/4 is chosen in both cases 

will be called  T2.  One of the two remaining procedures consists in choosing θ = 1/3 when H is 

observed and θ = 3/4 when T is observed..  We shall call this procedure T3.  Intuitively, T3 

appears to be an unreasonable way to proceed, because in this procedure one accepts the 

hypothesis that �goes against� the evidence. Finally, there is procedure in which θ = 3/4 is chosen 

when H is observed and θ = 1/3 when T is observed.  In this procedure, which we shall call T4, 

one responds to the evidence in a way which intuitively seems to be the correct one. 
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By definition, the test T1 has both size 0 and power 0, because it never leads to the rejection 

of the null hypothesis, and the test T2 has both size 1 and power 1, because it always leads to the 

rejection of the null hypothesis.  Among the two more interesting tests T3 and T4, the intuitively 

unreasonable test T3 has the size 2/3, since when this test is used the probability of rejecting the 

null hypothesis θ = 1/3 when it is true is 2/3, and the power 1/4, since the probability of  

choosing the alternative hypothesis θ = 3/4 when it is true is only 1/4 when this test is used.  

Similarly, the size of T4 is 1/3 and the power of T4  is 3/4.  The poverty of the test T3  is reflected 

in the fact that it has a large size but a small power.  

If the four tests T1,  T2, T3 and T4 were all the tests that there are, one would have to view each 

of them as a best test.  Since all these tests have a different size, each of them is in a trivial sense 

the most powerful test of its size among them. If these tests were all that there are, one would 

have to conclude that the test T3, which �goes against the evidence,� should also count as a best 

test.  The standard method of avoiding this implausible result is to observe that there are other 

tests besides T1,  T2, T3, and T4.  For example, one might consider a randomized decision 

procedure Q which always chooses θ = 3/4 when H occurs, but utilizes some random procedure 

for choosing θ = 3/4 with the probability 50% and θ = 1/3 with the probability 50% whenever T 

occurs.  It is easy to verify that the size of this test (i.e. the probability with which it yields the 

result θ = 3/4 when, as a matter of fact, the correct result would have been θ = 1/3) is 2/3, which 

is identical with the size of the test T3.  However, the power of this randomized test  is larger than 

the power of T3 (7/8 > 1/4).   

To sum up, we have seen that the standard Neyman-Pearson test procedure contains at least 

three kinds of arbitrary features: it is not always clear which hypothesis should be taken to be the 

null hypothesis, the size of the test must often be fixed by convention, and the best test of a given 

size might well be a randomized test, in which case the chosen distribution depends not only on 

the evidence but also on the result of some random process. On the other hand, when the size of 

the test has been fixed, and when the alternative of the null hypothesis is simple, the necessity of  

making a choice between the different tests of the given size does not usually involve any further 

arbitrary choices.  As already stated, one normally chooses the test that has the largest power 

among  the tests of the given size. 
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A well known theorem, due to Neyman and Pearson ([1933], pp. 298-302), states that 

likelihood ratio tests are always best tests of their size (we present this theorem as a special case 

of more general theorems in section 10 below).  However, when the alternative of the null 

hypothesis is a composite hypothesis the power of the test is usually not well-defined,1 and it is 

well known that the Neyman-Pearson theorem does not generalize in any straightforward way to 

this situation. In particular, Rubin and Stein (see Lehmann [1950])2 have independently 

discovered examples which show that likelihood ratio tests can perform very badly when a 

composite alternative hypothesis has been chosen suitably.  In such cases there is sometimes no 

obvious answer to the question which of the tests of the given size should be chosen. Hence, also 

the choice between the tests of a given size can sometimes be rather arbitrary. 

3 Estimation and Regression to the Mean 

Next we shall have a look at the classical frequentist theory of estimation.  We shall consider 

the problem of estimating an unknown quantity θ * that is responsible for an experimental 

outcome x in accordance with the equation 

 *x uθ= + , 

where u is a 'white noise' term which has a normal (bell-shaped) distribution with the mean 0.  

More specifically, we shall assume that x denotes the average of n results of measurements of the 

same quantity.  If each of these measurement results has a normal distribution whose mean is the 

correct value θ * and whose variance is σ2, and if the distributions of the measurement results are 

independent of each other, it will be the case that u ∼ N(0,σ2/n). 

   For example, in a case like this x might be the average of n measurements of the weight of 

an object, in which case θ* is its true weight, or x might be the average of e.g. several cholesterol 

readings, in which case θ* is the true cholesterol value.  In each case x is what is observed and θ* 

                                                 

1  In this case one has to rest content with defining for the test a power function which specifies, for each of the 

simple hypotheses hS which are compatible with h1, the probability of correctly rejecting h0 when hS is true.  (See 

e.g., Hogg and Craig, 1965, pp. 255-256.) 

2  We thank Branden Fitelson for pointing out the existence of these examples. 
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is unknown, as is u. Estimators of θ are quantities which are calculated on the basis of the 

observations without knowing the value of θ*.  Below, we shall denote an estimator of θ  by θ! .  

Mathematically estimators can be represented by functions of the evidence which do not depend 

on θ* (see e.g. Cramér ([1946], p.477).  But which function of the evidence should θ!  be? 

The squared error ( )2
*θ θ−!  is often used as a measure of success of an estimator θ! .  

However, even if this number actually happens to be small, it might still be the case that the 

estimator θ!  is a bad one. The success of an estimator might, of course, also simply be dumb 

luck.  Accordingly, in frequentist statistics estimators are standardly evaluated in terms of their  

average performance.  By definition, an unbiased estimator is such that its expectation value 

( )E θ!  is the actual value of the estimated parameter, θ*, and a best estimator is an unbiased 

estimator for which the expectation value of its squared error, ( )2
* *E θ θ θ −  

! ,  receives its 

smallest value within the family of all unbiased estimators (see e.g. Hogg and Craig [1965], p. 

205).  According to the world-centric, or frequentist, point of view, one should prefer best 

estimators to other unbiased estimators, since they produce good estimates on average, where the 

average is taken over different possible states of the world, i.e. different possible observed data. 

There are well-known theorems that show that, when some regularity conditions are satisfied, 

the maximum likelihood estimators are asymptotically (for large n) the best estimators even in 

cases in which the error distribution is not normal. (See e.g. Cramér ([1946], pp. 498-99).  A 

maximum likelihood estimator maps x to the value θ!  that maximizes the probability density 

value corresponding to x.  In the simple case at hand, if the distribution of x is N(θ*,σ2/n), then 

the maximum likelihood estimator of θ*  is simply the average of the measurement results, i.e. x. 

In this case the estimator xθ =! has exactly the same standard error for every value of θ*, since the 

number ( )2
* *E θ θ θ −  

!  is the variance of the distribution of x given θ*, and this is equal to 

σ2/n.  Hence, in the context of this example the world-centric approach really appears to work.  
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No matter what the true value of θ* is, so long as it is related to x by the equations *x uθ= +  

and u ∼ N(0,σ2/n), the maximum likelihood estimator is the efficient estimator.3 

However, what is often called regression to the mean causes problems for this frequentist 

account of estimation.  A well known example of this phenomenon is the tendency for a father of 

a very tall son to be shorter than the son, and for the father of a very short son to be taller than the 

son.  The surprising feature of this phenomenon is that it is largely a population-level effect.  For 

instance, suppose that in every token case the distribution of the heights of children is 

symmetrically spread above and below the (average) height of the parents.  That is, suppose that 

x represents the height of a child, and θ* is the (average) height of the parents, and that for every 

possible value of θ*, *x uθ= + , where u is a symmetrical distribution with mean zero.  The 

mere fact that the different values of θ* within the population are concentrated about a mean 

value m, according to a normal (bell) distribution is sufficient to imply that if x is well above m in 

a token case then one should suspect that the value x is too large an estimate of θ*.  However, a 

maximum likelihood estimator takes the data at face value. To use another example, when a 

student scores very well on an aptitude test, the classical theory of estimation advises us to 

suppose that the student has the aptitude that corresponds to that score.  Of course, the classical 

theory recognizes that the high score may be due to good luck�questions that the student 

happened to know�but it does not take into account the fact that this case is more likely than the 

case in which the score is too low. 

This seems rather unsatisfactory.  It is clear that when all the information that we have is the 

score, it is rational to go by the score.  However, if we have additional relevant information, we 

should be able to use it.  In the context of our example such additional information can easily be 

represented with a prior distribution on the possible values of θ*. For example, we may suppose 

                                                 

3 This is true for this simple example despite the surprising fact that there exist biased estimators (Stein [1956], 

James and Stein [1961]) with even smaller standard errors for every possible value of the parameters in the case in 

which there are 3 or more parameters in the problem.  Efron [1978] argues that the existence of Stein estimators 

speaks in favor of the frequentist approach, but his arguments are controversial in light of the more recent discovery 

that Stein estimators can be obtained by assuming a particular prior distribution (e.g. Lehmann [1983], p. 299).  We 

are grateful to Branden Fitelson for pointing us to these references. 
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that in the situation which is under consideration the person whose θ* value is being measured 

has been selected randomly from a population in which θ* values are distributed approximately 

in accordance with a Gaussian (normal) distribution N(m, s2) with the mean m and the variance 

s2.   If in this case our test score is x, and if x is much larger than m, it seems reasonable to 

suggest that the best guess for θ * is somewhere between m and x.  

There is one way in which a frequentist can make use of the prior information contained in 

the distribution N(m, s2). Instead of searching for an estimator that is best for a particular value of 

θ*, one can ask which estimator is best on the average for all values of θ*, when the average is 

taken relative to the prior distribution p(θ*).  In other words, since the success of an estimator 

( )xθ! is for each fixed value of θ* measured by  

( )2
* *E θ θ θ −  

! , 

its average success can be measured by 

(1) ( )2

1 * * ( *) *E E p dθ θ θ θ θ = −  ∫ !  

By definition, this quantity equals 

(2) ( )( ) ( )2

1 * * ( *) *E x p x dx p dθ θ θ θ θ = −  ∫ ∫ !  

Formula (2) shows that the procedure in which the estimator θ!  is chosen by maximizing 1E can 

be characterized also as follows. One first calculates, given an arbitrary value of  θ*, the average 

squared error of each considered estimator θ! .  The result will be a function of θ*, but not of x.  

One then calculates the expected value of this result relative to the prior distribution p(θ*). The 

result of this calculation will depend on neither x nor θ*.  The task is then to find the function 

( )xθ! which minimizes the latter quantity.   

Often one considers the estimators of the form  

(3) ( ) ( )1x x mθ η η= − +! ,  
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where η is a fixed number between 1 and 0, and m is arbitrary fixed number. Also the maximum 

likelihood estimator is of this form, since the formula (3) yields the maximum likelihood 

estimator when one puts 0η = .  However, the maximum likelihood estimator will not normally 

be the optimal one in the sense of having the smallest value of E1.  

The Bayesian solution of the problem that we are considering is seemingly simpler.  As we 

have seen, in this problem the available relevant information consists of the observed value of x, 

the prior distribution of θ*, and a conditional probability distribution ( )*p x θ  which is called the 

likelihood function.  These and the Bayes theorem can be used for calculating a posterior 

distribution ( )*p xθ  for θ*.  With the help of this distribution one can then subsequently 

calculate the average loss (in terms of squared distance) of accepting the estimator θ! , which is  

(4) ( )( )2

2 * ( * ) *E x p x dθ θ θ θ= −∫ ! . 

It is well known that in order to minimize E2 one should choose the mean of the posterior 

distribution as the estimator.  This is called the Bayes estimator.4  In our simple example, the 

Bayes estimator is for every value of x given by the formula (3) with 

 ( ) ( )( )2 2 2n n sη σ σ= + . 

Note that the expected squared error of this estimator is smaller than that of the maximum 

likelihood estimator. 

One can see how the two approaches have entirely different philosophical flavors.  The 

Bayesian approach optimizes the estimator for the particular observed value of x and is 

unconcerned with the frequentist question about how the estimator would perform on the average 

for different values of x.  However, it is fairly easy to see that the two approaches yield the same 

                                                 

4 In nice symmetrical cases, the mean value of a distribution coincides with the point at which the posterior 

probability density is maximum.  But it is important not to define the Bayes estimator in those terms because the 

point at which posterior probability density is maximum can be changed by a nonlinear transformation of the 

coordinates (see Forster [1995] for a detailed discussion of this point).  On the other hand, the mean of a distribution 

is invariant under such transformations. 
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results: a given function ( )xθ!  minimizes the quantity E1, which should be minimized according 

to the frequentist approach, if for each x it minimizes the quantity E2, which should be minimized 

according to the Bayesian approach.5  One might wonder what the point of averaging over all 

possible values of the mean x of the data is; however, fortunately for the frequentists, such 

averaging is harmless in the sense that the same estimators will be optimal in both cases. 

 The idea of providing a frequentist explanation of the regression-to-the-mean by maximizing 

a population-level measure of success is not a standard part of the frequentist literature.  In fact, 

we believe that the quick response to our proposal will be to say that it is just a minor re-

description of the standard Bayesian solution.  The reason given will be, we predict, that it makes 

essential use of the prior distribution p(θ*), and this is the defining characteristic of Bayesianism.  

In our view, we are providing a generalized frequentist approach in which p(θ*) is interpreted as 

representing the frequencies within a real or hypothetical ensemble of token cases, and this 

provides a subtly different foundation.6  To argue our case, we need to spell out the idea with 

some care.  In doing so, we shall also show how to remove the ad hoc features of hypothesis 

testing within a frequentist paradigm. 

                                                 

5  This result is valid because  

( )( ) ( )
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Hence,  the value of the integral E1 receives its smallest value if and only if the estimator ( )xθ! has been chosen so 

that E2 receives its smallest value for each x (or to be quite precise, for almost all values of x).   

6 Apparently, Wald originally conceived of his classic work in decision theory (Wald [1950]) as a frequentist 

decision theory, but was later persuaded that it should be given a Bayesian interpretation.  This conclusion was, of 

course, correct given that Wald did not introduce the notion of an ensemble of token experiments which we introduce 

below.  
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4 Experiment types 

 The version of our framework, as we present it here, represents the observed data as being 

�generated� by a probability distribution belonging to a finite set of possible probability 

distributions.  What we call an experiment type is, essentially, an ordered collection of such 

possible distributions.  The following definition is a slightly modified version of a definition in 

Blackwell ([1953], p. 265). 

Definition 1:  An experiment type is an ordered pair ( ),ε = Λ Ω  where 

( )1 2, ,..., nλ λ λΛ =  is for some n∈" an n-tuple of probability measures on the same 

collection of subsets of the set Ω.   

The space Ω is a set of possible outcomes of the experiment, where each outcome may describe a 

sequence of events.  For example, the outcome in a coin flipping experiment might be a sequence 

of heads and tails.  Each iλ  in Λ specifies a different probability distribution for these outcomes. 

Any particular (token) experiment is of type ε  if and only if the class of possible outcomes is Ω 

and the physical process that produces the outcome is such that one of the probability measures 

in Λ is the true probability distribution, which generates the outcomes.  A token experiment is 

simultaneously of many types.  The reason why Λ has other components besides the actual one is 

that we intend to classify different token experiments together as tokens of the same type even 

when the generating distributions are different. 

Just as in Blackwell's original definition, iλ  is a probability measure.  This means that each 

iλ  assigns a probability value to each member of a collection of subsets of Ω.  In the context of 

the two examples that we have already discussed, it is more customary to specify a probability 

distribution by a probability density directly over the elements of Ω, rather than with a 

probability measure over a collection of subsets.  However, we conform to the practice of using 

measures to specify the probability distributions for reasons of generality: when the set of the 

outcomes of the experiment is taken to be an arbitrary set, the use of measures is more 

fundamental.  Our assumption that Ω is finite in the coin-flipping example and the assumption 

that it is the set of the real numbers in our estimation example are special cases.  We shall 
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explain below (in section 6) how one arrives at the more usual representation of probability 

distributions in terms of probability densities and likelihood functions from the measure-theoretic 

description. 

As an example, the coin-flipping example of section 2 is an experiment of type ( )1 1 1,ε = Λ Ω , 

where ( )1 1/3 3/ 4,m mθ θ= =Λ =  are probability measures over the event space { }1 H,TΩ =  (the 

subscript �1� refers to the fact that the outcome of only a single coin toss is under consideration).  

The probability measures 1/3mθ =  and 3/ 4mθ = satisfy the conditions { }( ) 1
31/3 Hmθ = = , 

{ }( ) 2
31/3 Tmθ = = , { }( )1/3 H,T 1mθ = = , { }( ) 3

43/ 4 Hmθ = = , { }( ) 1
43/ 4 Tmθ = =  , and { }( )3/ 4 H,Tmθ =  = 

1.  The probability of the set { }H,T is 1 because the set { }H,T  represents the event of the coin 

landing either �heads up� or �tails up�. 

In section 2 we considered a case in which a statistician observed an element of 1Ω � that is, 

either the result H or the result T � and knew that this result was generated by one of the 

probability distributions in ( )1 1/3 3/ 4,m mθ θ= =Λ = , but did not know which one.  The tests 

considered in section 2 were, essentially, procedures by which a statistician could choose an 

element of 1Λ � i.e. either 1/3mθ =  or 3/ 4mθ = �  on the basis of an observed element of 1Ω .  

The problem of estimating θ*, as we described it in section 3, does not correspond to an 

experiment type in the sense of Definition 1 because the set of probability distributions is infinite.  

However, if we modify the problem by assuming that the actual value of θ* has to be one of the 

finite set of numbers 1 2, ,..., kθ θ θ , then the modified version of the example corresponds to an 

experiment type ( ),θ θΛ Ω , in which  

( ) ( ) ( )( )2 2 2
1 2, / , , / ,..., , /kN n N n N nθ θ σ θ σ θ σΛ =  

and θΩ = # .  Recall that in this example a statistician observed an element of # , the average x, 

which is the value of a random variable whose probability distribution is of the form ( )2, /N nθ σ  

for some value of θ .  The problem is to choose one of these probability distributions of the basis 

of an observation.  
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5 Payoffs and Decision Problems 

We intend our frequentist framework to be more general than the standard framework in 

several respects.  One of these has to do with the hypotheses that a statistician might consider or 

choose.  It is often (as in e. g., Blackwell [1953]) assumed that a statistician who is presented 

with an experiment of type ( ),Λ Ω  must select a probability distribution from Λ.  E.g., in the 

context of the problem of estimating θ* this means that the set { }1 2, ,..., kθ θ θ  at the same time 

defines both the experiment type and the space of the hypotheses that the statistician might 

choose to consider.  However, we wish to allow for the case in which the restriction in the 

possible values of θ*  is not known by the statistician.  An obvious reason for considering such 

cases is that scientists often choose idealized hypotheses which they know to be strictly speaking 

false.  Accordingly, we shall introduce in our framework a set M of hypothetical probability 

distributions on the set Ω  which contains the probability measures that the statistician is willing 

to consider.  These do not have to include the distributions in Λ . 

We also want to take account of the fact that some false probability distributions can be better 

than others according to the cognitive aims of scientific theorizing.  For this reason we shall 

introduce the notion of the payoff of accepting a probability distribution m when the correct 

probability distribution is λ .  As the following definition states, payoffs are specified by a payoff 

function in our framework. 

Definition 2:  (Payoffs)  Suppose that  ( )( )1 2, ,..., ,nε λ λ λ= Ω  is an experiment type and 

that M is a set of probability measures which have the same domain as the measures 

1 2, ,..., nλ λ λ .  If  pay is a real-valued function on { }1 2, ,..., nM λ λ λ× , it is called a payoff 

function, and its value at the point ( ), im λ  (where m M∈  and { }1,...i n∈ ) is denoted by 

( )ipay m λ  and called the payoff of m given iλ .  In this case the vector  

( ) ( ) ( ) ( )( )1 2, , , npay m pay m pay m pay mλ λ λ= …  

is called the payoff vector of the distribution m. 
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We emphasize that our notion �payoff� is not meant to be restricted in any way.  In many of 

the applications of decision theory to science, the payoff of a hypothesis refers to its epistemic or 

cognitive value.  In such cases, we view the process of accepting a hypothesis on the basis of an 

observation as a kind of ampliative inference.  A decision theory is, in part, a theory about the 

relative merits of such inferences even when they are considered in abstraction, without any 

reference to the aims of actual scientists or the practical consequences of accepting hypotheses. 

Our next definition is a modified version of a definition in Blackwell ([1953], p. 265).  It 

specifies how we represent the case in which the payoff of accepting a hypothesis depends only 

on its truth value.  Within our framework this situation is represented with a payoff function 

which gives the value 1 to choosing the true distribution, and the value 0 to choosing any other 

distribution.  We shall call such payoffs simple payoffs.7  

Definition 3.  (Simple payoffs)  Suppose that ( )( )1 2, ,..., ,nε λ λ λ= Ω  is an experiment 

type, and that M is a set of probability measures which have the same domain as the 

measures 1 2, ,..., nλ λ λ .  If a payoff function pay on { }1 2, ,..., nM λ λ λ×  is such that, 

whenever m M∈  and { }1,...i n∈ , ( ) 1ipay m λ =  when im λ=  and ( ) 0ipay m λ =  

when im λ≠ , we say that pay is a simple payoff function and that it defines simple 

payoffs. 

Simple payoffs may appear to be so simple that they are of little interest.  However, we shall see 

below that the Neyman-Pearson theorem, which says that best tests are likelihood ratio tests, is 

deduced from the assumption that the payoffs are simple.  On the other hand, as we saw above, 

the standard frequentist theory of estimation does not utilize simple payoffs; rather, in it the 

payoff is defined in terms of the expectation value of the square of the difference between the 

estimated value and the true value of the parameter θ. 

In addition to allowing for the case in which the distributions in M and the distributions in 

Λ are not identical, our framework is more general than its more traditional frequentist 

alternatives also in that we do not assume that the experimentally observed outcome was always 

                                                 

7 The term is borrowed from Wald ([1950]). 
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simply an element of Ω .  Rather, we wish to allow also for cases in which the probabilities are 

not only for the observed outcomes but also for some potential observations that have not yet 

occurred.  For example, we want to be able to consider the result of a single coin toss, and make 

a choice between hypotheses that assign  probabilities to future outcomes.  For example, such 

hypotheses might be concerned with the probability distribution of a sequence of three coin 

tosses, of which only the first one has already taken place. In this case the considered probability 

distributions will be measures on the set  

{ }3 HHH, HHT,HTH, HTT,THH,THT,TTH,TTTΩ = . 

However, the available information cannot be represented by an element of 3Ω  in this case.  

Rather, if the result of the first coin toss has been H, the statistician knows only that the element 

of  3Ω  will be one of the sequences in { }HHH, HHT,HTH, HTT .  Similarly, if the result had 

been T, she will have to make a choice knowing only that one of the sequences in 

{ }THH,THT,TTH,TTT  will be the actual one.  In a case like this, the appropriate mathematical 

representation of  the knowledge of the statistician is not an element of  the set Ω , but a non-

empty subset of that set.  Clearly, the subsets that can represent such information will form a 

partitioning of Ω , since the intersection of any two such sets must be empty, and their union is 

Ω . 

Accordingly, we shall represent the information that a statistician uses to choose a probability 

distribution as an element of a partitioning X of Ω .  The case in which the statistician knows 

which element of Ω  is the actual one is then represented by the situation in which the 

partitioning X is trivial in the sense that 

{ }{ }X ω ω= ∈Ω . 

When this condition is valid, the sets X andΩ  are essentially identical.  We nevertheless 

introduce the distinction into the following definitions, because the distinction between what is 

observed and what is predicted is philosophically important (Forster and Sober [1994]), and 

because a major goal of this paper is to present a frequentist theory of decision-making in a 

general framework. 
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Definition 4.  (Decision problem)  The four-tuple ( ), , ,M X payε=D  is called a decision 

problem if the following conditions (i)-(iv) are valid: 

(i) ( )( )1 2, ,..., ,nε λ λ λ= Ω  is an experiment type. 

(ii) M is a set of probability measures which have the same domain as the 

measures 1 2, ,..., nλ λ λ . 

(iii) X is a partitioning of the set of Ω. 

(iv) pay is a real-valued function on { }1 2, ,..., nM λ λ λ× . 

If ( ), , ,M X payε=D  is a decision problem, the elements of M are called its hypothetical 

probability distributions. 

In this definition the set M does not have to be identical with the set { }1 2, ,..., nλ λ λ of the 

probability distributions of the experiment type ε .  We shall refer to the special case in which 

the statistician knows that one of the probability distributions 1 2, ,..., nλ λ λ   has generated the data, 

and restricts her attention to these distributions, as an ideal decision problem.  

Definition 5.  (Ideal decision problem)  Suppose that ( )( )1 2, ,..., ,nε λ λ λ= Ω is an experiment 

type, and that ( ), , ,M X payε=D  is a decision problem.  We say that D is an ideal decision 

problem if { }1 2, ,..., nM λ λ λ= . 

For example, the coin tossing example of section 2 corresponds to an ideal decision problem in 

the sense of this definition.   More specifically, the experiment type ( )1 1 1,ε = Λ Ω  in which  

( )1 1/3 3/ 4,m mθ θ= =Λ =  and { }1 H,TΩ =  can be embedded in the ideal decision problem 

( )1 1 1, , ,coin simpleM X payε=D  in which { }1 1/3 3/ 4,M m mθ θ= == ,  { } { }{ }1 ,X H T= , and the payoff 

function simplepay  is the simple payoff function for which 

 ( ) ( )1/3 1/3 3/ 4 3/ 4 1simple simplepay m m pay m mθ θ θ θ= = = == =  and 

( ) ( )3/ 4 1/3 1/3 3/ 4 0simple simplepay m m pay m mθ θ θ θ= = = == = . 
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Since what the statistician observes is, in this case, simply an element of 1Ω , the elements of the 

set 1Ω , H and T, and the elements of 1X , { }H and { }T , correspond to each other in a one-to-one 

fashion.  

Similarly, our second example corresponds to the experiment type ( ),θ θΛ Ω  in which 

( ) ( ) ( )( )2 2 2
1 2, / , , / ,..., , /kN n N n N nθ θ σ θ σ θ σΛ =  and θΩ = # , and it can be embedded in a 

decision problem ( ), , ,M X payθ θ θ θ θε=D  in which ( ){ }2, /M N nθ θ σ θ= ∈#  is the set of all 

normal distributions8 with variance 2 / nσ   and in which { }{ }X x xθ = ∈# , is essentially identical 

with # .  If we stick to the idea that the success of an estimate of θ  should be evaluated with its 

squared distance from the correct value *θ , it is natural to define the payoff function of the 

decision problem θD by the formula 

( ) ( )( ) ( )22 2, / , /j jpay N n N nθ θ σ θ σ θ θ= − −  

where { }1 2, ,...,j kθ θ θ θ∈ and θ ∈#  are arbitrary. 

As we stated above, Definition 4 is meant to apply to a case in which a statistician chooses an 

element of M on the basis of an observation represented by an element of X.  Decision functions 

represent the rules by which such choices are made.   However, before turning to a discussion of 

decision functions we shall still connect our measure theoretical representation of probability 

distributions with likelihood functions. 

6 Likelihoods 

It is easy to see how the likelihood function should be defined in the contexts of the two 

decision problems, ( )1 1 1, , ,coin simpleM X payε=D  and ( ), , ,M X payθ θ θ θ θε=D , which we used as 

                                                 

8  To be quite precise, the notation ( )2, /N nθ σ  refers to the representation of a normal distribution as a 

measure on # , rather than as a density function on # . 
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our examples.  In the first example, and more generally in all cases in which the set X  which 

represents the different possible observations is finite, the likelihood of a probability distribution 

λ relative to an element x of X is simply ( )xλ , i.e. the probability that what is observed is x 

according to λ.   In the second example the set of the different logically possible observations is 

isomorphic to the set of the real numbers and, hence, uncountably infinite.   In this case the 

probability of each element of the set X is zero relative to the measures of the considered 

experiment type, and the above definition is useless.  However, in such cases likelihoods can be 

represented in terms of probability densities.  When X is isomorphic with # , a probability 

density on X is a real-valued function p on X which specifies a probability density for the 

observed outcome.  This probability density is such that the probability of the observed outcome 

belonging to the set C is  

( )
C

p x dx∫ , 

whenever C is an arbitrary measurable subset of X.  In this case the value ( )p x  is called the 

likelihood of the probability distribution p relative to x.  

If our framework was supposed to be applicable to these two special cases only, we could rest 

content with these two standard definitions of �likelihood�.  However, because our framework is 

meant to be more general (e.g., in section 11 we consider a case in which Ω is countably infinite), 

and since we allow the set Ω  whose elements represent potential and actual observations to be 

an arbitrary set, which in general need not be finite or isomorphic with # , we need to provide a 

more general definition of the notion of likelihood.  This definition is presented as Definition 6: 

Definition 6. Suppose that ( )( )1 2, ,..., ,nε λ λ λ= Ω is an experiment type, that 

( ), , ,M X payε=D  is a decision problem, and that : is a measure on ( )Xεσ , where 

( )Xεσ  is a collection of subsets of X called the σ-algebra of X.   If { }1,...,i nλ λ λ∈  and 

if the non-negative function iL on X  is such that, for all sets C that belong to ( )Xεσ   

( ) ( ) ( )X
i iC

C L x d xλ µ= ∫ , 
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we say that iL  is the likelihood of iλ relative to the measure :.  Further, if the measures 

1 2, ,..., nλ λ λ  have the likelihood functions 1 2, ,..., nL L L  relative to the same measure :, we call  

the (n+1)-tuple ( )1 2, , ,..., nL L Lµ  a likelihood vector of the decision problem D.  

This definition contains two symbols which we have not defined, ( )" "Xεσ  and " "X
iλ .  Their 

definitions involve technical complications which are irrelevant for our current purposes and 

accordingly, we present their definition as Definitions A1 and A2 of a separate mathematical 

appendix.  The appendix also contains the proofs of the theorems in this paper. 

 For our current purposes the essential feature of Definition 6 is that when the measure :  

which specifies measures for the subsets of X is chosen suitably, the value ( )iL x  turns out to be 

what one normally means by the likelihood of  the hypothesis iλ  relative to the observed outcome 

x. In our coin-tossing examples, as well as in all other cases in which X is finite, this will be the 

case if : is chosen to be the counting measure on X.  With this choice of :  the likelihood vector 

of e.g. our coin-tossing decision problem ( )1 1 1, , ,coin simpleM X payε=D , in which ( )1 1 1,ε = Λ Ω  

and ( )1 1/3 3/ 4,m mθ θ= =Λ = , turns out to be ( )1/3 3/ 4, ,L Lθ θµ = = , where the function 1/3Lθ =  gives the 

likelihoods of 1/ 3θ =  when the outcomes are H and T, and the function 3/ 4Lθ =  gives the 

likelihoods of 3 / 4θ =  when the outcomes are H and T.  In other words, the functions 1/3Lθ =  and 

3/ 4Lθ =   are such that { }( ) 1
31/3 HLθ = =  and { }( ) 2

31/3L Tθ = = , and that { }( ) 3
43/ 4 HLθ = =  and 

{ }( ) 1
43/ 4L Tθ = =  .  Below we shall always take the measure : to be the counting measure when X 

is finite. 

 Similarly, when X is isomorphic with the set of the real numbers, we shall always implicitly 

assume that the measure : has been chosen to be the counterpart of the Lebesgue measure on X.  

In this case the likelihood functions will turn out to specify what one normally means by 

likelihood in these cases.  For example, the likelihood functions of the distributions ( )2, /iN nθ σ  

which θΛ contains will turn out to functions whose graph is the familiar bell-shaped curve. 
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It should be observed that we have not yet shown that all decision problems actually have a 

likelihood vector in the sense we use the term, and we also need to define the sense in which 

likelihood vectors are unique. These results are stated in theorems 1 and 2 below.  

Theorem 1. All decision problems have likelihood vectors. 

 It is well known that when the evidence consists of the value of a continuous quantity, the 

numerical values of the likelihoods of the considered hypotheses can depend on the way the 

hypotheses are represented.  For example, when the available data consists of the result of the 

measurement of the length of an object, and one considers a simple statistical hypothesis that 

specifies a probability distribution for its length, the numerical value of the likelihood of the 

hypothesis when lengths are measured in inches will be different from the likelihood that the 

hypothesis has when lengths are measured in centimeters.  However, it is also well-known that 

the likelihood ratio of two simple statistical hypotheses will be independent of the choice of 

units, and of other similar choices of representation.  Our Theorem 2 is the counterpart of this 

well-known result within our framework. 

Theorem 2. Suppose that ( )( )1 2, ,..., ,nε λ λ λ= Ω is an experiment type, and that 

( ), , ,M X payε=D  is a decision problem.  If the measures iλ  and jλ  (where { }, 1,...,i j n∈ ) 

have the likelihood functions iL  and jL  relative to the measure µ , and the likelihood 

functions  iL′  and jL ′  relative to the measureµ′ , it must be the case that  

( ) ( ) ( ) ( )/ /i j i jL x L x L x L x′ ′=  

with the possible exception of a subset of X  which has zero measure with respect to both X
iλ  

and X
jλ .  (Here the value of a ratio a b  counts as +∞   if 0a ≠  and 0b = , and as undefined if 

0a b= = .) 

7 Decision Functions  

Clearly, each rule for choosing a hypothetical probability distribution on the basis of the 

available observations can be represented by a mapping of elements of the set X of the possible 
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observed outcomes into the set M.  We shall call such mappings decision functions. We could 

define a decision function to be an arbitrary function from X to M if we were concerned only 

with cases in which either the set M or the set X is finite.  However, when neither of the sets is 

finite, it is convenient to restrict the set of acceptable decision functions by introducing two 

rather weak regularity conditions, which we shall call the DF-conditions.  The precise statement 

of these conditions is a part of Definition A3 in the mathematical appendix. Those decision 

functions that conform to the following definition are called ordinary, in order to distinguish 

them from randomized decision functions, which we shall discuss at the end of this section.  

Definition 7. (Ordinary decision function)  Suppose that ( )( )1 2, ,..., ,nε λ λ λ= Ω is an 

experiment type, and that  ( ), , ,M X payε=D  is a decision problem.  A function f is called a 

decision function, or an ordinary decision function, associated with D if f is a function which 

maps X into M, and if f satisfies the DF-conditions.  The set of all decision functions 

associated with D will be denoted by ( ), ; ,F X M payε  or, when it is clear from the context 

what the considered experiment and payoff function are, simply by ( ),F X M . 

For example, the decision functions which are associated with ( )1 1 1, , , simpleM X payε=D  are 

functions from the set { } { }{ }1 H , TX =  into the set { }1 1/3 3/ 4,M m mθ θ= == .  There are four ordinary 

decision functions in this case , and the DF-conditions are trivially valid for all of them. These 

functions correspond in an obvious way to the four tests T1,  T2, T3 and T4 that we considered in 

section 2 and accordingly,  we shall denote them by f1,  f2, f3 and f4, respectively.  Hence, in this 

case ( ) { }1 1 1 1 2 3 4, ; , , , ,simpleF X M pay f f f fε = .   The function f1 maps both elements of 1X  to the 

distribution determined by 1/ 3θ = , and the function f2 maps them both to the distribution 

corresponding to 3/ 4θ = .  The function f3 is the counterpart of the �unreasonable� test T3: it 

satisfies the conditions { }( )3 1/3Hf mθ ==  and { }( )3 3/ 4Tf mθ == .   The remaining function f4 is the 

counterpart of the �reasonable� test T4, and it satisfies the conditions { }( )4 3/ 4Hf mθ ==  and 

{ }( )4 1/3Tf mθ == . 
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The following definition defines the average success of a decision function f relative to a 

probability distribution λ � or, more rigorously, the expected payoff of a function f, given a 

distribution λ � for all legitimate decision functions. 

Definition 8.  (Expected payoff)  Suppose that ( )( )1 2, ,..., ,nε λ λ λ= Ω is an experiment type, 

that ( ), , ,M X payε=D  is a decision problem, and that ( )1 2, , ,..., nL L Lµ  is a likelihood 

vector of D.  Whenever { }1 2, ,...,i nλ λ λ λ∈  and  f is a decision function which belongs 

to ( ), ; ,F X M payε , the quantity ( )pay f λ  is defined with the formula  

( ) ( )( ) ( ) ( )i iiX
pay f pay f x L x d xλ λ µ= ∫  

and called which we shall call the expected payoff of f given λ.  Further, in this case the 

vector ( ) ( ) ( )( )1 2, ,..., npay f pay f pay fλ λ λ  is called the payoff vector of f.  

It is straightforward to show that the integral in this definition exists whenever f satisfies the DF-

conditions, and that its value is independent of the choice of the likelihood vector 

( )1 2, , ,..., nL L Lµ .  

Note that the likelihood values in the definition of the expected payoff of a decision rule refer 

to the generating distributions in Λ, as specified by the experiment type under consideration.  

This means that the payoff of a decision rule is an objective quantity from a world-centric point 

of view.  In the person-centric view, the expected payoff would be defined in terms of the 

likelihoods of the hypothetical distributions.  This is why our framework is frequentist rather than 

Bayesian. 

When the set X is isomorphic with #  and the measure µ  is chosen to be the counterpart of 

the Lebesgue measure, the expression of ( )ipay f λ  turns into 

( ) ( )( ) ( )i iiX
pay f pay f x L x dxλ λ= ∫  

Similarly, when the set X is finite and the measure µ  is chosen to be the counting measure, 

Definition 8 implies that  
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 (5) ( ) ( )( ) ( )i i i
x X

pay f pay f x xλ λ λ
∈

= ∑  

for each { }1 2, ,...,i nλ λ λ λ∈ .  It is easy to see the intuitive significance of each of these formulas: 

in each case ( )ipay f λ  is the average payoff of the function f when the actual probability 

distribution in Ω  is given by iλ .  

 In our coin-tossing example the 

function f3 was a mathematical 

representation of the procedure of 

choosing 1/3mθ =  when H is observed 

and 3/ 4mθ = when T is observed.  If we 

follow this procedure, and if the 

actual distribution happens to be 

1/3mθ = , we shall have a chance of 1/3 

of picking up a distribution with the 

payoff 1, and a chance of 2/3 of 

picking up a distribution with the 

payoff 0.  Hence, in this case the 

expectation value of the payoff of this 

procedure, ( )3 1/3simplepay f mθ = , is 

1 2 1
3 3 31 0× + × = .   

Similarly, it is easy to see that 

expectation value of the payoff of using f3  when the correct distribution is 3/ 4mθ =  

is 3 1 1
4 4 40 1× + × =  and that, accordingly, ( ) 1

43 3/ 4simplepay f mθ = = .  Hence, the payoff vector of 

the function f3 is (1/3, 1/4).   

It is also easy to see that the payoff vector of the function f4 is (2/3, 3/4), and that the two �a 

priori functions� f1 and f2 have the payoff vectors (1,0) and (0,1), respectively.  These payoff 

vectors are shown in Figure 1.  The poverty of the function f3 is reflected in the position of its 

Payoff when 
h2 is true

Payoff when 
h1 is true

( )2 3,3 4

( )0,1

( )1, 0

( )1 3,1 4

u

v

 

Figure 1:  The payoff vectors of the decision problem 
( )1 1 1, , , simpleQ X payε=D .  Here h1 is the hypothesis that 

the actual distribution is 1/3qθ = , and h2 is the hypothesis 
that it is 3/ 4qθ = .  The four points (1,0), (0,1), (1/3,1/4), 
and (2/3,3/4) represent the payoff vectors of the four 
decision functions f1, f2, f3 and f4, respectively.   
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payoff vector (1/3, 1/4) in this figure; as the figure shows, it performs worse than the function f4 

both when 1/ 3θ =  and when 3 / 4θ = .   

We have not introduced any rigorous mathematical representation of randomized decision 

procedures.  In the context of our current example, a randomized decision procedure can be 

characterized by specifying the values of two quantities: the probability Hρ  with which 1/ 3θ =  

gets chosen when the result of the coin toss is H, and the probability Tρ  with which this 

distribution gets chosen when the result of the coin toss is T.  The probabilities with 

which 3 / 4θ =  gets chosen in the two cases are then H1 ρ−  and T1 ρ− , respectively. 

What are the payoff vectors of such randomized decision procedures?  When the value of θ  

is actually 1/3, the probability of choosing the actual distribution, which equals the expected 

payoff when payoffs are simple, is  

( )( )
( )( )

( ) ( )H T

probability of H probability of choosing when H has been observed

probability of T probability of choosing when T has been observed

1 3 2 3

θ

θ

ρ ρ

=1/3 +

=1/3 =

+

 

On the other hand, when the truth is that 3 / 4θ = , the probability of choosing the correct 

hypothesis is ( )( ) ( )( )H T3 4 1 1 4 1ρ ρ− + − .  Hence, the randomized decision procedure which 

we are considering corresponds to the payoff vector  

( ) ( ) ( )( ) ( )( )( ) ( )H T H T H T1 3 2 3 , 3 4 1 1 4 1 0,1ρ ρ ρ ρ ρ ρ+ − + − = + +u v  

where the vector ( )1 3, 3 4= −u  and the vector ( )2 3, 1 4= −v .  These vectors have also been 

shown in Figure 1. Since all payoff vectors are of the form ( ) H T0,1 ρ ρ+ +u v , and since the 

possible values of Hρ  and Tρ  range from 0 to 1, the range of the payoff vectors of randomized 

decision procedures is represented by the shaded area in this figure.  

8 Ensembles of Token Experiments and Optimality  

  The Neyman-Pearson paradigm, which states that one should make use of a best test, 

determines a unique best test only after the size of the test is fixed by convention.  In Bayesian 
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statistics one can avoid such conventional choices, but they can be avoided only by introducing 

subjective prior probabilities for the considered hypotheses.  Our aim is to develop a new version 

of the frequentist paradigm, in which the role of such conventional and subjective features is 

smaller than it is in its two traditional alternatives. A novel feature of our approach is to consider 

each experiment as an element of an ensemble of token experiments. 

Each ensemble of token experiments contains experiments that are of the same type in the 

sense of Definition 1: in these experiments the outcome space Ω and the set of probability 

distributions { }1 2, ,..., nλ λ λ that generate an outcome are the same.  Hence, each of these 

experiments is represented by the same mathematical entity, ( )( )1 2, ,..., ,nλ λ λ Ω , and the 

experiments are similar also in so far that in each of them a statistician observes either an 

element of Ω  or a part of it, and then chooses a probability distribution on the space Ω  on the 

basis of this observation (although the chosen distribution on Ω need not be one of the iλ ). 

A single token experiment may, of course, be a member of many different ensembles.  The 

optimality of a decision function within a particular ensemble of token experiments is a useful 

theoretical device which helps us to understand and discuss the relative merits of decision 

functions.  Such optimality turns out to have an obvious definition if it is assumed that each of 

the considered distributions iλ  occurs within each ensemble of token experiments with some 

well defined frequency ip .  Accordingly, our mathematical representation of ensembles of token 

experiments specifies in addition to the relevant experiment type also the values of such 

frequencies. 

Definition 9.  (Ensemble)  The pair ( ),S ε= p  is called an ensemble of token 

experiments if (i) ( )( )1 2, , , ,nε λ λ λ= Ω…  is an experiment type and (ii) 

( )1 2, , , np p p=p …  is an n-tuple of non-negative real numbers which satisfies the 

condition 1 2 1np p p+ + + =… .  

It is our intention that, depending on the application, ensembles may be real or imaginary sets of 

token experiments.  Although the epistemological import of each case is different, we shall not 

attend to this important difference at the present time.  Our aim is only to define optimality in an 
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objective way.  So, in either case, if ( ),S ε= p  is an ensemble containing N token experiments, 

then iλ  is the true generating probability distribution for ip N× experiments in the ensemble. 

 Decision functions map each element of a partitioning X of Ω  to an element of the set M  of 

hypothetical distributions on Ω .  The payoff of a decision function f relative to a distribution λ  

on Ω , ( )pay f λ , was above defined to be the expected payoff that an application of the 

function yields when the distributionλ is the actual one.  When an experiment is viewed as an 

element of an ensemble of token experiments, an obvious measure for the success of a decision 

function within the ensemble is the average value of ( )pay f λ  within it.  This is given by 

( ) ( ) ( )1 1 2 2 n np pay f p pay f p pay fλ λ λ+ + +%  

Accordingly, we shall define a decision function to be optimal if it maximizes the value of this 

quantity. 

Definition 10. (Optimality)  Suppose that ( )( )1 2, ,..., ,nε λ λ λ= Ω is an experiment type, 

that ( ), , ,M X payε=D  is a decision problem, and that ( )( )1 2, , , , nS p p pε= …  is an 

ensemble of token experiments.  If f belongs to ( ), ; ,F X M payε , the quantity ( )Spay f  

is defined by the formula 

( ) ( )
1

n

S i i
i

pay f p pay f λ
=

=∑ , 

and it is called the expected payoff of f within S.  If f* belongs to ( ), ; ,F X M payε , and if the 

quantity ( )Spay f  receives its maximum value within ( ), ; ,F X M payε  when *f f= , we 

say that the decision function f* is optimal for S . 

This concept of optimality defines an objective sense in which one decision function is better 

than another relative to a given ensemble of token experiments.   In section 3 we saw how one 

could solve the problem of regression to the mean within the frequentist framework by 

introducing a prior distribution ( )*p θ  for the value of *θ , and by requiring that the estimator 

θ!  that one uses minimizes the integral 1E , which depends on the distribution ( )*p θ  (see 
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formula (2)). Clearly, in the context of this example the recommendation that one should use an 

optimal decision function is simply a discrete version of the idea the integral 1E  should be 

minimized: if one replaces in formula (2) the continuous probability distribution ( )*p θ with a 

discrete probability distribution that gives probabilities 1 2, , , np p p…  to the parameter values 

1 2, , , nθ θ θ… , respectively, then the integral 1E  turns into the sum 

( )( ) ( ) ( )( ) ( )2 2

1
1 1

n n

i i i i i i
i i

S p x p x dx p x p x dxθ θ θ θ θ θ
= =

   = − = − − −      ∑ ∑∫ ∫! !  

However, earlier we defined the payoff function of the decision problem ( ), , ,M X payθ θ θ θ θε=D  

to be  

( ) ( )( ) ( )22 2, / , /j jpay N n N nθ θ σ θ σ θ θ= − − , 

and when payoffs are defined in this way, the expression in square brackets in the formula of 1S  

equals the expected payoff, given the parameter value iθ , of the decision function that chooses 

the hypothesis ( )xθ!  for an observed  x value.  Hence, 1S  is the negative of the quantity 

maximized by optimal decision functions, and the practice of choosing the estimator that 

minimizes the sum 1S  is essentially identical to choosing an optimal decision function. 

On the other hand, our earlier example of the decision problem ( )1 1 1, , ,coin simpleM X payε=D  

corresponded to a situation in which a coin was chosen at random from two coins described by 

the Bernoulli parameter values 1/ 3θ =  and 3 / 4θ = .  It is natural to embed an experiment of 

type 1ε  into an ensemble of token experiments ( )1,ε p  in which ( ) ( )1 2, 0.5,0.5p p= =p .  This is 

because each of the distributions 1/3mθ =  and 3/ 4mθ = would turn out to be the correct one in an 

approximately half of the cases when the experiment is repeated.  

As we explained in section 7, the points of the shaded area in Figure 1 correspond to the 

payoff vectors that decision functions and randomized decision procedures can have.  On the 

other hand, for each fixed value of a number C, the set of payoff vectors of the set f such that 

( )Spay f C=  is represented by a straight line.  The slopes of such straight lines will depend on 

the numerical values that are given to 1p  and 2p , but it will always be the case that, the higher 
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the value of ( )Spay f  on such a straight line, the higher and more to the right that straight line 

will be located.  In particular, the decision procedure which is optimal for the given values of 1p  

and 2p  is located at the point at which the highest straight line of the corresponding slope which 

touches the shaded area touches it.  The dotted line drawn in Figure 1 corresponds to the values 

1 2 0.5p p= = , and it touches the shaded area at the point  (2/3, 3/4).  Hence, the unique optimal 

decision function relative to an ensemble for which 1 2 0.5p p= =  is f4, because it is the only rule 

corresponding to the payoff vector (2/3, 3/4).  In fact, it will be the optimal rule for a variety of 

ensembles with different values of 1p  and 2p .  It is only when 1p  is substantially greater than 

2p , or vice versa, that one of the �a priori� rules will be optimal.  The rule f3 is never optimal. 

In a similar manner, one can also see that a randomized decision procedure cannot be the 

only optimal one in the situation of Figure 1: since the top-most straight line of a given slope 

which meets the shaded area must meet it at one of the points (0, 1), (2/3, 3/4), and  (1, 0), one of  

the ordinary decision functions 1f , 2f , and 4f  has to be an optimal one.  This geometric 

argument applies only to the case in which the set M contains only two probability distributions.  

However, in the next section we shall see that the result is valid also more generally: when a 

decision problem D has been fixed, and when its experiment has been embedded in an ensemble 

of token experiments S, there will always be ordinary (and not just randomized) decision 

functions which are optimal for D and S.  In this respect our notion of optimality differs from the 

notion of being a best test since, as we saw above, it might turn out that all best tests of the given 

size are randomized tests (or even that all tests of the given size are randomized tests). 

9 Sufficient and Necessary Conditions for Optimality 

A combination of the definition of the expected payoff ( )Spay f  of a decision function f 

within an ensemble S and the definition of the expected payoff of f relative to a distribution iλ  

yields an explicit formula for ( )Spay f .  We shall present this formula as our next theorem.   
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Theorem 3. If ( )( )1 2, ,..., ,nε λ λ λ= Ω is an experiment type, ( ), , ,M X payε=D  is a decision 

problem, and ( )1 2, , ,..., nL L Lµ  is a likelihood vector of D, the quantity ( )Spay f  is given by 

the formula 

( ) ( ),S f S
X

pay f pay x dx= ∫ , 

where 

( ) ( )( ) ( ),
1

n

f S i i i
i

pay x p pay f x L xλ
=

=∑  

By definition, an optimal decision function is a decision function for which ( )Spay f  

receives its largest possible value. Since according to Theorem 3 the value of ( )Spay f   is the 

integral of the function ( ),f Spay x   over the space X, the theorem implies that the value of 

( )Spay f   will be maximized by the decision function f for which ( ),f Spay x  receives its largest 

possible value for each x.  This observation constitutes our main theorem. 

Theorem 4 (Main Theorem). Suppose that ( )( )1 2, ,..., ,nε λ λ λ= Ω is an experiment type, that 

( ), , ,M X payε=D  is a decision problem, and that ( )1 2, , ,..., nL L Lµ  a likelihood vector of the 

decision problem D.  If the decision function ( ), ; ,f F X M payε∈  is such that it chooses for 

each x a measure ( )f x M∈ for which the quantity 

( )( ) ( )
1

n

i i i
i

Q p pay f x L xλ
=

=∑  

is largest among the measures of M, the decision function f is optimal for S. 

In other words, the problem of choosing an appropriate distribution in response to the 

empirical information x can be solved separately for each x, so that the �global� problem of 

maximizing ( )Spay f  can be achieved by the separate �local� maximizations of 

( ),f Spay x .  

 We have not introduced a rigorous definition for randomized decision procedures into our 

framework. A straightforward generalization of our Main Theorem justifies this omission by 
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showing that if we did introduce such a rigorous definition, and if we defined the function Spay   

also for randomized decision functions, it could not happen that ( )Spay f  received its largest 

value only for randomized decision functions.  In other words, it is impossible that some 

randomized decision functions are optimal while there are no ordinary decision functions that are 

optimal.  In order to see why this cannot be the case, consider an arbitrary randomized decision 

function g which for each x chooses one of the distributions in ( ) ( ) ( )1 2, ,..., kf x f x f x  at random. 

Since the probabilities by which the measures ( ) ( ) ( )1 2, ,..., kf x f x f x get chosen in a randomized 

decision procedure may depend on the observed x, these probabilities must be represented as 

functions of x.  We shall denote these functions by ( ) ( ) ( )1 2, ,..., kx x xρ ρ ρ , respectively.  These 

functions must, of course, satisfy the condition ( ) ( ) ( )1 2 ... 1kx x xρ ρ ρ+ + + =  for each x. 

    It is clear that the expected payoff of the randomized decision function g when the actual 

distribution is iλ  can be defined with the formula 

( ) ( ) ( )( ) ( )
1

k

i j j iiX
j

pay g x pay f x L x dxλ ρ λ
=

=∑∫  

and its expected payoff within an ensemble S can be defined just like we have defined the 

expected payoff of an ordinary decision function, with the formula 

( ) ( )
1

n

S i i
i

pay g p pay g λ
=

=∑  

     Now a straightforward generalization of Theorem 3 yields the result that ( )Spay g can be put 

into the form  

( ) ( ) ( ),S g S
X

pay g pay x d xµ= ∫ , 

where  ( ) ( ) ( )( ) ( ),
1 1

n k

g S j i j i i
i j

pay x x p pay f x L xρ λ
= =

=∑∑ , 
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and a straightforward generalization of Theorem 4 states that a randomized decision function g is 

optimal if it is such that the quantity ( ),g Spay x  receives for each x its largest possible value 

within the class of all randomized and ordinary decision functions.   

     However, this quantity equals 

 ( ) ( )( ) ( )
1 1

k n

j i j i i
j i

x p pay f x L xρ λ
= =
∑ ∑  

and this means that it can be maximized by choosing for each x the value j* of j for which  

( )( ) ( )
1

n

i j i i
i

p pay f x L xλ
=
∑  

receives its largest value, and by setting ( )* 1j xρ =  and ( ) 0j xρ =  for all *j j≠ .  However, this 

choice of the functions ( ) ( ) ( )1 2, ,..., kx x xρ ρ ρ  represents the ordinary decision function which 

corresponds to choosing ( )*jf x  for each x. Hence, the value of the quantity that optimal decision 

functions maximize gets maximized by an ordinary decision function, and it cannot be the case 

that the set of all optimal decision functions contains only randomized decision functions. 

    As the following corollary shows, the methodological recommendation of our main theorem is 

simple when the considered decision problem is an ideal decision problem with simple payoffs. 

Corollary. Suppose that ( )( )1 2, ,..., ,nε λ λ λ= Ω is an experiment type, that 

( ), , , simpleM X payε=D  is an ideal decision problem with simple payoffs, and that 

( )1 2, , ,..., nL L Lµ  a likelihood vector of D.  If a decision function ( ), ; , simplef F X M payε∈  is 

such that, for each x in X, ( )f x  is a measure { }1 2, ,...,i nλ λ λ λ∈  for which ( )i ip L x  receives 

its largest value, then f is optimal for S. 

Our main theorem and its corollary will look familiar when they are given a Bayesian 

interpretation. Under this interpretation each pi, i = 1,�n, is the prior probability ( )Pr ih , where 

ih  is denotes the hypothesis that the actual distribution of the considered random variable is 

given by iλ , and ( )Pr ⋅ denotes the prior probability of a hypothesis.  Since the quantity ( )iL x  is 
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the likelihood of hi relative to x, according to Bayes�s theorem the product ( )i ip L x  is 

proportional to the posterior probability of hi given x, ( )Pr ih x .  Under this Bayesian 

interpretation the quantity ( ),f Spay x  of Theorem 3 is proportional to  

(6) ( ) ( )( )
1

Pr
n

i i
i

h x pay f x λ
=
∑ . 

This is the expected utility of accepting the hypothesis recommended by the decision procedure f, 

where the expectation is calculated according to the posterior distribution of the hypotheses 

1 2, ,..., nh h h , given the observed outcome x.  In particular, in the special case in which the payoffs 

are simple the optimal decision function is the one which chooses the hypothesis with the highest 

posterior probability. 

This Bayesian interpretation is, of course, not the one we are giving to the quantities that 

occur in the Main Theorem and its corollary.  Rather, as we have seen, Theorem 4 is concerned 

with the optimality of decision functions within an ensemble of  token experiments, and the 

values ip  are the relative frequencies with which the members of Λ occur as the generating 

distributions within it.  A particular token experiment may be viewed as belonging to many 

different ensembles of token experiments and, unlike in Bayesian statistics, the values of  pi (i = 

1,�, n) are functions of the considered ensemble.  

Moreover, the �Bayesian� interpretation, as we describe it, is a world-centric formula in 

which the hypotheses hi refer to the distributions of the set of generating distributions Λ, rather 

than the hypothetical distributions in M.  In contrast, the usual Bayesian formula for maximizing 

expected utility is a person-centric formula (which appeals to a subjective notion of optimality).  

When the decision problem is ideal (see Definition 5), the two points of view are equivalent.  But 

when a decision problem is not ideal, the Main Theorem is incorrectly interpreted by the person-

centric Bayesian formula.  
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10 Optimality, Best Tests, and Likelihood Ratio Tests 

We have already pointed out that one can use our definition of an optimal decision function 

in an ensemble for solving the problem of the regression to the mean within the frequentist 

framework.  In this section we take a closer look at the relationship between our framework and 

Neyman-Pearson hypothesis testing, which we introduced in section 2.   

In section 2 we �ocused most of our attention on the case in which a choice was made 

between just two probability distributions, and most of this section will be concerned with the 

same example. We begin by reformulating the relevant notions of the Neyman-Pearson theory of 

tests within our framework. 

Definition 11. Suppose that ( )( )1 2, ,ε λ λ= Ω  is an experiment type with two probability 

distributions, that ( ), , ,M X payε=D  is an ideal decision problem, and that ( )1 2, ,L Lµ  

is a likelihood vector of D.  In this case the elements of ( ), ; ,F X M payε are called tests 

of 1λ  against 2λ , and if f belongs to ( ), ; ,F X M payε , the set ( ){ }2C x X f x λ= ∈ =  is 

called the critical region of the test f.  Further, in this case the quantity ( ) ( )1C
L x d xµ∫  

is called the size of the test f, and the quantity ( ) ( )2C
L x d xµ∫  is called the power of the 

test f. If the  power of f is maximal among all those tests of 1λ  against 2λ  that have the 

same size, then f is called a best test of 1λ  against 2λ  of that size, or simply a best test of 

1λ  against 2λ . 

The function f mentioned in this definition has, of course, been meant to correspond in our 

framework to a test whose null hypothesis states that the correct distribution is 1λ .  It is easy to 

see that the size and the power which get defined in this definition are, indeed, what one 

normally means by the size and the power of such a test. 

 The practice of calling the test which has the maximal power among all the tests of its size a 

�best test� is motivated by the ideas that 1) one of the considered probability distributions is, as a 

matter of fact, generating the data, and that 2) the aim of the statistician who performs the test is 
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to find out which distribution is the actual one. The first of these assumptions corresponds within 

our framework to the assumption that the considered decision problem is ideal, and Definition 11 

is applicable only to cases in which this assumption is valid.   However, this definition does not 

mention any counterpart of assumption 2). We shall next produce such a counterpart. 

We have already seen that decision problems with simple payoffs can be used for representing 

situations in which the statistician has the aim of finding the actual distribution, and no other 

aims beside it.  However, a simple payoff function represents a situation in which a statistician 

views all false probability distributions as equally �bad�.  Since statisticians actually often find 

some false probability distributions preferable to others, the claim that payoffs are simple is not 

an appropriate rigorous counterpart of the assumption 2).  Rather, such a counterpart should state 

that, whatever the actual probability distribution should happen to be, choosing it is preferable to 

choosing any other probability distribution. The situations of this kind are within our framework 

represented by decision problems which have strictly epistemic payoffs in the sense of the 

following definition. 

Definition 12. (Epistemic payoffs)  Suppose ( )( )1 2, ,..., ,nε λ λ λ= Ω  is an experiment 

type, that M is a set of probability distributions on Ω, and that { }1 2, ,..., n Mλ λ λ ⊆ . The 

payoff function pay on { }1 2, ,..., nM λ λ λ× is called epistemic if for all m M∈  and 

all { }1 2, ,..., nλ λ λ λ∈  ( ) ( )pay pay mλ λ λ≥ , and strictly epistemic if 

( ) ( )pay pay mλ λ λ>  whenever m λ≠ . 

The decision problems that are ideal in the sense of Definition 5, and have strictly epistemic 

payoffs in the sense of Definition 12, constitute an appropriate rigorous counterpart for the class 

of cases to which Neyman-Pearson theory of tests was originally supposed to cover.  It is easy to 

see that in the context of such decision problems all optimal decision functions are best tests 

(although the converse does not hold). 

Theorem 5. Suppose that ( )( )1 2, ,ε λ λ= Ω  is an experiment type with two probability 

distributions, that ( ), , ,M X payε=D  is an ideal decision problem, and that pay is a strictly 

epistemic payoff function.  If ( ),S ε= p  is an ensemble of token experiments in which 
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( )1,0≠p , and if the decision function ( )* , ; ,f F X M payε∈ is optimal within S, then f* is a 

best test of 1λ  against 2λ . 

According to the Neyman-Pearson theorem likelihood ratio tests between two simple 

hypotheses are always best tests.  A likelihood ratio test is a test in which one sets a critical value 

K for the ratio of the likelihoods of the null hypothesis and its alternative, and chooses the null 

hypothesis whenever the ratio is larger than K, and its alternative whenever the ratio is smaller 

than K.  On the other hand, in section 2 above we saw that if one is not willing to consider tests 

that involve randomized decision making, the best available tests of a given size might fail to be 

likelihood ratio tests.  There we considered an example in which a choice was made between the 

hypotheses 1/ 3θ =  or 3 / 4θ = , and there were only four non-randomized tests.   One of these, 

3T , was quite unintuitive in the sense that in this test one chose the hypothesis that �went against 

the evidence�: if the observed outcome of the coin toss was H, one chose 1/ 3θ = , and if the 

result was T, one chose 3 / 4θ = .  In the case of this procedure the likelihood ratio, i.e.  

the likelihood of 1/ 3
the likelihood of 3 / 4

θ
θ
=
=

, 

was smaller when the null hypothesis 1/ 3θ =  was chosen than when its alternative 3 / 4θ =  was 

chosen.  (In the former case it is 4/9, and in the latter case it is 8/3.)   Hence, the test 3T  is not a 

likelihood ratio test.  Yet the test 3T  is the only test of its size, and therefore the best test of its 

size, if randomized tests are not taken into consideration. 

 This makes it natural to ask how our notion of optimality is related to the notion of a 

likelihood ratio test.  This question will be answered by Theorem 6 below.  The theorem makes 

use of a rigorous definition of a likelihood ratio test, which we present as our Definition 13. 

Definition 13. Suppose that ( )( )1 2, ,ε λ λ= Ω  is an experiment type with two probability 

distributions, that ( ), , ,M X payε=D  is an ideal decision problem, and that ( )1 2, ,L Lµ  is a 

likelihood vector of D.  In this case the test f of 1λ  against 2λ  is called a likelihood ratio test, 

and the number K is called the critical ratio of the test f, if the following condition is valid 

for all values of x X∈ : 
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If ( ) ( )1 2L x L x K> , then ( ) 1f x λ= , and if ( ) ( )1 2L x L x K< , then ( ) 2f x λ=  . 

(In this condition the value of ( ) ( )1 2L x L x  is taken to be +∞   if ( )2 0L x =  and ( )1 0L x ≠ , 

and it is taken to be undefined if ( ) ( )1 2 0L x L x= = .) 

Theorem 6 will show that in our framework one can avoid the unsavory result that, if one does 

not consider randomized tests, a best test can make a choice that �goes against the evidence.�  

According to this theorem all optimal tests must be a likelihood ratio tests when the payoffs are 

strictly epistemic, i.e. when the statistician prefers choosing the actual probability distribution to 

choosing one of the other distributions. 

Theorem 6. Suppose that ( )( )1 2, ,ε λ λ= Ω  is an experiment type with two probability 

distributions, that ( ), , ,M X payε=D  is an ideal decision problem, and that pay is a strictly 

epistemic payoff function.  Suppose further that ( ),S ε= p  is an ensemble of token 

experiments in which ( ),1p p= −p , 1p ≠ , and define the number K by  

2

1

1  pK
p
− ∆=

∆
, 

where ( ) ( )2 2 2 1 2pay payλ λ λ λ∆ = − , and ( ) ( )1 1 1 2 1pay payλ λ λ λ∆ = − .  Now a 

decision function ( )* , ; ,f F X M payε∈  is optimal within S if it is a likelihood ratio test 

with the critical ratio K.  

In the special case of simple payoffs, 1 2 1∆ = ∆ = .  If we were to further assume that p = ½, then 

we would end up with a simple likelihood test in which one chose the hypothesis with the greater 

likelihood whenever the likelihoods of the two hypotheses are different. 

When Theorem 5 is combined with Theorem 6 it yields an easy proof for a version of the 

Neyman-Pearson theorem which has been adapted to our framework. 

The Neyman-Pearson Theorem. Suppose that ( )( )1 2, ,ε λ λ= Ω  is an experiment type with 

two probability distributions, that ( ), , ,M X payε=D  is an ideal decision problem, and that 
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pay is a strictly epistemic payoff function..  If ( ), ; ,f F X M payε∈  is a likelihood ratio test, 

it is a best test of 1λ against 2λ . 

This theorem provides a partial answer to the question of optimality by showing that 

likelihood ratio tests should be preferred to others.  However, in section 2 we described three 

well-known limitations of this partial answer.  These were the facts that the Neyman-Pearson 

theorem does not answer the questions which hypothesis should count as the null hypothesis and 

what the size of the chosen test should be, and that the best test of a given size might be a 

randomized test.  A less obvious limitation of the Neyman-Pearson theorem that our framework 

has made apparent is that the theorem applies only to ideal decision problems.   If neither of the 

distributions in M has actually generated the data, so that the decision problem is not ideal, and if 

the payoffs are simple, then the optimal payoff for choosing either of the members of M is the 

same; it is zero!  Although the Neyman-Pearson theorem is valid also in this case, in this case it 

does not by itself provide a reason for preferring likelihood ratio tests to other tests. 

 Our Theorem 6 provides us with something further to say about the problems of 

arbitrariness. When the size of a likelihood ratio test is chosen to be e.g. 5%, this choice 

determines one way of setting the value of critical ratio K of the likelihood ratio test.  Theorem 6 

describes an alternative way of setting the value of K: its value can be calculated on the basis of 

the value of  p and the properties of the relevant payoffs.  When p is interpreted to be a measure 

of a person�s subjective prior belief about the token experiment at hand, the choice between the 

two ways of choosing the value of K is a choice between conventionalism and subjectivism.  As 

a third alternative, we have proposed a different way of choosing K: the probability p represents 

the frequency with which a probability distribution occurs in an ensemble of token experiments. 

There will still be many K values because there are many ensembles, but for each ensemble, the 

choice of K is fixed.    

11 Why Stopping Rules are Irrelevant 

There is a long-standing debate between N-P theorists and those who accept the Likelihood 

Principle concerning optional stopping rules.  The issue which is at stake in this debate can be 
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illustrated with the following simple coin flipping example (Pratt et al. [1995], p. 542).9  Let Z be 

the number of heads up, and R be the number of tails up in a sequence of flips of a coin, and 

suppose that in one particular sequence Z=9 and R=3.  Now there are at least two experimental 

designs that may have led to this result.  One is the standard one in which the coin is tossed 12 

times.  The other involves a stopping rule that says �stop the experiment when R = 3.�    If one 

works out the probability that Z ≥ 9 given the null hypothesis θ = 0.5, one finds that the 

probabilities depend on the experimental design, as follows: 

( ) ( ) ( )1 1 1Pr 9 0.5 Pr 9, 3 0.5 Pr 12, 0 0.5Z Z R Z Rθ θ θ≥ = = = = = + + = = =% , 

( ) ( ) ( )2 2 2Pr 9 0.5 Pr 9, 3 0.5 Pr 10, 3 0.5Z Z R Z Rθ θ θ≥ = = = = = + = = = +% , 

Here Pr1 denotes the probability given the standard version of the experiment, and Pr2 denotes 

the probability under the rule  �stop the experiment when r = 3.�    

It is uncontroversial to say that these probabilities are different.  It is even uncontroversial to 

say that the probability of the actual occurrence, Z = 9 and R = 3, is different in both case, since 

in the second case we know that the last toss is �tails up� so that ( )2Pr 9, 3 0.5Z R θ= = =  

depends on the number of ways in which 9 heads can be distributed amongst the first 11 tosses. 

On the other hand, ( )1Pr 9, 3 0.5Z R θ= = =  is calculated in terms of how many ways there are 

for 9 heads to be distributed amongst 12 tosses. 

These probabilities are different because the second stopping rules are different.  The first set 

of token experiments are stopped when z + r = 12, whereas the second ensemble is a set of token 

experiments that are stopped when r = 3.  While the set of observable outcomes is different, 

some outcomes are possible under both rules.  An experiment in which Z = 9 and R = 3 is such a 

case.  The question is whether the difference in experimental design makes a difference to �what 

the evidence says� according to an optimal rule.10 

                                                 

9 The example was pointed out to us in a draft of an article by Deborah Mayo and Mike Kruse. 

10 While the differences are clear, the similarities between the two experiments are not.  For example, can the 

token experiments in S1 be described as the same experiment type as those in S2?  Although our argument for the 

irrelevance of stopping rules does not depend on it, it is worth pointing out that there is an experiment type that 
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According to a classical Neyman-Pearson theorist, it does.  For in general we have 

( ) ( )1Pr , 1 rzz r
Z z R r

z
θ θ θ

+ 
= = = − 

 
, 

and  ( ) ( )2

1
Pr , 1 rzz r

Z z R r
z

θ θ θ
+ − 

= = = − 
 

, 

where ( )!
! !

z r z r
z z r
+ + 

= 
 

. 

If we are comparing these probabilities for the same values of z and r , they clearly differ only by 

the factor ( )z r r+ . Further, it is easy to see that ( )1Pr 9 0.5 0.073Z θ≥ = ≅  and that 

( )2Pr 9 0.5 0.0327Z θ≥ = ≅ .  For a one-sided test of size 5%, the null hypothesis is not rejected 

in the first case, but it is rejected in the second case.  Therefore, the experimental design makes a 

difference to the evidential important of the outcome x, even though the outcome is the same in 

both cases.  This conclusion contradicts the idea that only the likelihood of the actual evidence�

rather than the features of some other, logically possible evidence which is not actually there�

should determine which hypothesis gets chosen. 

When our framework is applied to this example, Theorem 6 yields the result that, contrary to 

what N-P theorists say, it is, indeed, only the available evidence that counts.  For, when one 

considers a case in which the value of θ  is 0.5 with some fixed frequency p, and in which it has 

some other fixed value with the frequency 1 p− , the value of p will, of course, be identical in the 

two ensembles.  Therefore, if also the payoffs are the same in the two cases, the value of K which 

                                                                                                                                                             

applies to both cases.  We need to set Ω to be the countably infinite set of all possible infinite sequences of heads and 

tails because it is possible for the observed sequences of tosses to be arbitrarily long in S2 (if per chance we got a 

very long string of heads).  Then the two rival hypotheses are distributions defined over the same Ω in each case, so 

the experiment types are the same according our definition.  Clearly, the frequency of the generating distributions in 

the experiment are also the same in both cases, so the ensembles are the same!  The only difference is the stopping 

rules define different partitions X on Ω, and this means that the decision problems are different.  However,  the 

considered outcome, Z = 9 and R = 3, is a member of both partitions, so the optimal inference is the same in both 

cases.  
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is associated with the optimal decision function is the same in both cases.  This means that the 

fact that the likelihood ratios are the same in both cases tells us that the optimal hypothesis is the 

same in both cases. 

The difference between our framework and the Neyman-Pearson paradigm arises from the 

fact that different features of the ensemble count as relevant in the two approaches.  The features 

of the ensemble which affect optimality as we have defined it include only the likelihoods, and 

the relative frequencies of the different distributions within the ensemble. Hence, if the existence 

of a stopping rule makes no difference to either of these things, it does not make any difference 

to the optimal choice of a hypothesis either.  Moreover, our Main Theorem shows that the 

standard N-P practice of setting the size of a test at 5% is not only arbitrary, but it is sometimes 

inconsistent with optimality as we define it!   

A common diagnosis of what is wrong with standard N-P practice is that is violates the 

actualist idea that the bearing of evidence should depend only on the actual evidence (Sober 

[1993]). The Neyman-Pearson Theorem appears to provide a response to this charge by showing 

that there is always a best test of each fixed size, and that this test is characterized as a likelihood 

ratio test with a fixed ratio K.  The results of this test seem to depend on only the likelihood of 

the actually observed value of x, rather than on the likelihoods of some non-actual values of x.  

More specifically, if the value of K is the same for two similar experimental designs, and the 

likelihood ratios of the considered hypotheses are the same in the two cases, it is impossible that 

the null hypothesis is rejected in one case but not the other.   

 The reason why this nevertheless happens in the above example is that fixing the size of test 

does not fix the value of K, and its value is different in the two cases that we considered above.  

Hence, the stopping rules become relevant in the Neyman-Pearson paradigm because the value of 

K is different in the two cases.  On the other hand, when our notion of optimality is applied, 

Theorem 6 shows that there is a unique optimal value of K.  In this case there is no conventional 

choice of K to be made.  

Previous arguments for the irrelevance of stopping rules have appealed to what is known as 

the Likelihood Principle.  Here is one formulation of the principle: 
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The Likelihood Principle. In making inferences or decisions about θ after x is observed, 

all relevant experimental information is contained in the likelihood function for the 

observed x. Furthermore, two likelihood functions contain the same information about θ 

if they are proportional to each other (as functions of θ ). (Berger [1985], p. 28.) 

Unfortunately, this principle does not follow from our main theorem in its general form.11  In 

particular, when a decision problem is not ideal, the likelihood vector mentioned in our main 

theorem is associated with the set of generating distributions in Λ, whereas the likelihoods in the 

Likelihood Principle are the likelihoods of the hypothetical distributions in M.  As we have 

already explained, these are often conflated by frequentists and Bayesians alike, but this 

conflation is clearly a mistake whenever the hypothetical distributions are idealized and 

simplified to the point where they are plainly false.  It is one of the strengths of our approach is 

that it proves the irrelevance of stopping rules from weaker assumptions. 

12 Concluding Remarks 

In section 2, we recounted three well known problems with the classical methods of 

hypothesis testing�the arbitrary choice of a null hypothesis, the conventional setting of the size 

of a test, and the unintuitive fact that sometimes the only tests that are best in the sense of 

Neyman and Pearson turn out to be randomized tests.  In section 3, we turned to the classical 

frequentist method of parameter estimation, the practice of using maximum likelihood estimates.  

There we considered the problem of �regression to the mean�, which is also known as �the base 

rate phenomenon�.  Each of these problems has contributed to the rise of Bayesian statistics and 

a widening acceptance of a subjectivist philosophy of statistics and science. 

While Bayesianism has gained much ground, there still exists a strong core of classical 

statisticians who stand their ground despite of the seeming strength of the arguments against 

them (Mayo [1996]).  Moreover, there are the neo-Fisherian likelihoodists (e.g., Edwards [1987], 

Royall [1997]) who have maintained some kind of middle ground between the two factions.  

                                                 

11 See Forster and Sober [forthcoming] for independent reasons for limiting the validity of the Likelihood 

Principle. 
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More recently, there have been followers of the �predictive paradigm� invented by Akaike 

([1973]), such as Sakamoto et al ([1986]), Forster and Sober ([1994]) and Burnham and 

Anderson ([1998]).  It appears to us that these splinter groups have philosophical tendencies that 

lie more towards a frequentist view of statistics.   

Philosophically, the most important issue at stake is the choice between objectivism and 

subjectivism.  However, it should be noted that even within the Bayesian camp there has always 

been a strong objectivist contingent (e.g., Jaynes [1979]), which wants to restrict the choice of 

prior distributions (or at least the choice of the �first� prior) to priors that can be justified as 

representing pure objective states of ignorance.12   When faced with persistent opposition and 

successes of opposing camps, subjective Bayesians are quick to claim that subjective 

Bayesianism provides the best theory that we have of decision-making.  The present paper is an 

attempt to develop an alternative to the Bayesian theory that is clearly, and distinctly, grounded 

within the frequentist paradigm, without being vulnerable to the (strong) objections that have 

been made against classical frequentist methods. 

In our view, a decision theory is not restricted to a theory of actions and practical decision 

making.  In the case in which the payoffs represent the truth-related cognitive, or epistemic 

values of competing theories, then the objectivity of optimality leads to a theory of evidential 

support.  In this theory a decision function is viewed as a pattern of  inference that takes us from 

the observed outcome of an experiment to the �best� hypothesis describing the underlying 

mechanism.  If �best� is described in purely subjective terms, then we have a description in need 

of a theory.  All this changes when �best� is defined in objective truth-related terms, for then 

optimality is the yardstick of statistical inference in the same way that �truth preservation� is the 

cornerstone of deductive logic. 

The key ingredient that allows frequentism to compete with the power of Bayesian decision 

theory is the notion of an ensemble, and the relativization of utilities, or payoffs, to ensembles.  

Inference is founded on ignorance (for if we were all-knowing, there would be no need for 

inference), but within our framework there is no such thing as pure ignorance. Rather, we define 

what it means to reduce our ignorance of a token case by considering the token case as a member 
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of an ensemble of cases.  A token experiment is simultaneously a member of many ensembles 

and hence, there are simultaneous many ways in which one can reduce one�s ignorance of it.  

Because the optimal form of inference may turn out to be different for different ensembles, the 

logical incompatibility of the inferred hypotheses need not impugn the rationality of either 

inference.  At the same time, when all the relevant features of the contexts are fixed, the 

optimality of statistical inference is unambiguously defined in objective terms.  In that way, the 

introduction of ensembles puts the world back into frequentism, and in doing so it provides a 

conceptually clear alternative to all Bayesian theories of inductive inference. 
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