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1 Introduction

The superficial similarities between Bayesian and frequentist methods of parameter

estimation, and the actual substantial overlap among their methods of generating

models and summarizing results, can make it hard to get a firm grip on what the

real differences are. As I’ve studied these methods this year (first MLE and then

Bayesian data analysis), I’ve struggled to define the distinction between the two

styles of analysis. In the process, I drew what I now realize are a number of incorrect

comparisons between the likelihood and Bayesian methods of inference. Here I try

to straighten myself out, with the hope that it will help a few other people solidify

their understanding.

2 Likelihood and probability

Misconception 1: The likelihood function is basically the same as a pos-

terior distribution.
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I think I was led astray here by two separate lines of thinking, neither one entirely

wrong.

• Misconception 1a: If you choose a “flat” prior,1 the posterior distri-

bution is exactly the likelihood function (or sampling density), up to

a constant of proportionality.

• Misconception 1b: Frequentists sample from the likelihood function

just like Bayesians sample from the posterior.

The first point is technically right but fails to recognize how subjective and particular

the “flat” prior really is; the second point conflates the concepts of probability and

likelihood. In this section it should become clear why both points are mistaken. In

the last section I’ll talk in more detail about the second point, dealing with sampling

and the likelihood function.

2.1 Inverse probability

Bayes’ rule tells us:

p(θ|y) ∝ p(y|θ)p(θ) (1)

In words, the probability that parameters take on a particular value, given the data,

is proportional to the probability of observing the actual data given that parameter

value multiplied by the a priori probability that the parameter takes on that value.

Therefore if you choose a noninformative prior such that p(θ) = k, the sampling

density (p(y|θ)) is exactly proportional to the full posterior. You can then normalize

1A particular flat prior . . . read on.
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the sampling density and treat it as a probability density of the parameters θ given

the data and model.

The question is how generally this neat trick can be used, ie when it’s appropriate

to use the flat prior p(θ) = k. It is a question that appears to have caused quite

a ruckus in the history of statistics. The idea that this flat (constant) prior can be

generally applied, rendering the posterior proportional to the sampling density, is

called “inverse probability”; in our notation, it can be expressed as

p(θ|y) ∝ p(y|θ). (2)

Certain early statisticians apparently believed that in the general case, when the

researcher did not wish to impose prior constraints on model parameters, it was pos-

sible to use this flat prior and rely on inverse probability for inference: normalize the

sampling density (i.e. p(y|θ)) and treat it as a density expressing the distribution

of parameter values, given the model and data. This was essentially my misconcep-

tion, as well. While it’s true that there exists a prior belief that makes the posterior

distribution proportional to the sampling density (or likelihood function), it is im-

portant to realize that there is only one such prior belief, and it does not convey

total ignorance about the parameter’s prior distribution.

This was exactly the point made in one of Ronald Fisher’s influential early papers

(Fisher, 1922), which helped put the idea of inverse probability to rest.2 If one of

the parameters being estimated is σ2, for instance, the “flat” prior would be to

2He also seems to be making the point (offhandedly) that complete prior ignorance about the
value of a parameter is unreasonable, given that the researcher is claiming enough knowledge to be
able to determine the sampling density. But I’m not sure about this point.
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say that p(σ2) = k, which asserts that the true value of the variance is as likely

to be in one range dσ2 as any other. But this prior does not express ignorance

about the standard deviation: σ is as likely to be between 0 and 1 as it is to be

between 1 and
√

2. In Fisher (1922)’s example, if the value p in a binomial model

is transformed to be a function of a parameter θ (with a flat prior on θ), the new

posterior does not match the old (although the maximum likelihood estimate is

unchanged).3 Essentially restating Fisher’s points, King (1998) discusses inverse

probability as a “failed model of inference” (pp. 16-21).

To these points about the singularity of a “flat” prior could be added another: a

“flat” prior, although referred to as “noninformative,” is not really noninformative at

all, in the usual sense of the word. If you assert that p(θ) = k, you are not claiming

total ignorance about the values θ could take on. Rather, you are asserting that you

believe it to be equally likely that θ is between 0 and 1 and between 1 × 1023 and

1 × 1023 + 1. It is hard to imagine any applied situation in which you would really

have a “flat” prior of this kind.

2.2 Likelihood

Having dismissed the idea of a generally valid inverse probability, Fisher basically

renamed the left side of the equation and forged ahead. The sampling density p(y|θ)

is not proportional to p(θ|y), but it is, he declared, proportional to L(θ|y), which

he called the “likelihood.” He made clear that he used the term likelihood not “as

a loose synonym of probability,” but rather quite the opposite: he used the term

3Actually, I think the posterior before and after transformation would actually be quite close if
not identical in his example. I must be doing something wrong.
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to distinguish p(y|θ), which is not a probability statement about θ, from p(y|θ),

which is. (The fact that the terms likelihood and probability are commonly used

as loose synonyms added to my confusion here.) He defined likelihood as the rela-

tive frequency with which you would observe a particular outcome given one set of

parameters compared to another set. In other words, L(θ|y) ∝ p(y|θ). By Bayes’

Law, we could convert this into a probability statement if we knew the probability of

observing any particular θ (i.e., if we had a prior distribution). In Fisher’s view we

usually wouldn’t. But we can find the θ with the highest likelihood (θ̂, the maximum

likelihood estimate), which is the parameter value that maximizes the probability of

observing the data we gathered. It turns out that this estimator has some good

properties, one of which I’ll discuss below. Most importantly, it is a consistent and

unbiased estimator of the true parameter value.

3 So how do you analyze a maximum likelihood

estimate?

Since the likelihood function is not a density, you can’t draw conclusions about the

probability that θ will take on any particular value, nor can you sample values of θ

from it. There are two common ways to analyze it, though, both of which help clarify

the differences between analyzing a Bayesian posterior and likelihood function, and

both of which I misunderstood until recently.
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3.1 Likelihood ratio

Here there’s another misconception I had. Misconception 2: I thought a likeli-

hood ratio was the ratio of the probabilities of two outcomes, but it isn’t.

What is it? As the name indicates, it is the ratio of two likelihoods :

L(θ1|y) ∝ k(y)p(y|θ1) (3)

L(θ2|y) ∝ k(y)p(y|θ2) (4)

L(θ1|y)

L(θ2|y)
=

k(y)

k(y)

p(y|θ1)

p(y|θ2)
(5)

=
p(y|θ1)

P (y|θ2)
(6)

The last line is the ratio of two probabilities, but in terms of θ1 and θ2 these expres-

sions are likelihoods. A natural use of the likelihood ratio would be to set θ2 equal

to θ̂ and choose a θ1 that is constrained in some way (e.g., one of the sub-parameters

is set to zero). The question you would like to pose is whether you were much more

likely to observe the data you saw with the full model (θ̂) than with the restricted

model. If not, then the restrictions didn’t make much difference.

The test statistic is R, defined as follows:

R = −2ln
LR

∗

L∗ ∼ fχ2(r|m) (7)

where r is the observed value of R and m is the number of restricted parameters.

Essentially the test is whether the difference between the true log-likelihoods of

the restricted and unrestricted models could be zero. If that possibility cannot be
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rejected, then the restricted model cannot be rejected.

Another way of thinking about what’s going on: The χ2 distribution with m

degrees of freedom is the distribution of observed likelihood ratios under the null

hypothesis that the likelihood is the same at the two points. We are asking how likely

it would be to get the observed value of r (or more extreme values) if the likelihoods

were in fact the same. Thus while it is not possible to say how much more likely (in

an absolute sense) one spot on the likelihood function is than another, we settle for

saying how much confidence we can have in rejecting the null hypothesis that their

likelihood is the same.

If the likelihood ratio did establish a ratio of probabilities, as I at first thought,

it would be possible to convert a likelihood function into a density: once all points

have been converted into a fractional probability of the mode, we can normalize the

probability of the mode such that all the probabilities add to one. Meanwhile Ronald

Fisher would turn in his musty grave.

3.2 The distribution of θ̂

Misconception 3: I thought the multivariate normal density around θ̂

from which we sample parameter values was an approximation of the

likelihood function. As should be clear from what we’ve seen above, approximating

the likelihood function and sampling from it would not make any sense, since it is

not a probability density.

When we sample around the likelihood function, we’re sampling from the asymp-

totic distribution of θ̂ itself. In other words, we are observing the potential observed
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values of θ̂, given that the actual observed value θ̂ was the true value. Contrast this

with sampling from a Bayesian posterior: in that case, the posterior tells us where

the actual value is likely to be, given the data. In the MLE setting we are looking at

what values for θ̂ we would expect to observe, conditional on the value we actually

observed being the true value.

It turns out that the (negative) inverse of the Hessian of the log-likelihood evalu-

ated at θ̂ describes the asymptotic distribution of the θ̂ about the actual parameter

value (θ). In particular, this matrix is the variance covariance matrix of the multi-

variate normal that describes the sampling distribution of θ̂, which we center on the

observed value (since θ̂ is an unbiased estimator of θ.

Why does the Hessian of the log-likelihood function have this desirable property?

From quickly reading a few sources, I only understand the outline of the reasoning.

Kennedy (427-428) contains a very cursory treatment of the subject; Johnson 4 goes

into more depth. The contention seems to be that

• there is a lower bound, called the Cramer-Rao Lower Bound, for the variance-

covariance matrix of any asymptotically unbiased estimator;

• one asymptotically unbiased estimator, the maximum likelihood estimator, will

have the smallest variance-covariance matrix; therefore

• the variance-covariance matrix of θ̂ asymptotically approaches the Cramer-Rao

Lower Bound.

The next point is that the Cramer-Rao Lower Bound can be estimated by the method

4http://cnx.rice.edu/content/m11266/latest/
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mentioned above (calculating the negative inverse of the Hessian matrix) but I don’t

yet understand why this is possible.

Gary King’s explanation of this in his Gov 2001 class5 takes a different approach,

which I think was what led me to think we were approximating the likelihood function

in the first place. The end result is still that the sampling distribution of θ̂ is normal

and has the variance covariance matrix obtained by inverting the Hessian. Along the

way he develops the point that the multivariate normal obtained by inverting the

Hessian approximates the log-likelihood function at its maximum. What is not yet

clear to me is why we would want to sample from a distribution that approximates

the log-likelihood function, given that the latter is not a density. Of course the

answer is that this distribution is also the sampling distribution of θ̂, but this is

precisely the link that I don’t understand from his notes.

4 Conclusion: the prior, again

The differences between Bayesian and frequentist analysis that I have brought up

here ultimately trace back to the question of the prior. If we are willing to assert a

prior distribution, it seems to me, there is no advantage to sticking with maximum

likelihood methods: the Bayesian posterior has a more direct interpretation, does

not rely on large sample properties of any distribution, and describes more of the

parameter space. The crucial question is therefore, “In what cases are we willing to

make an assertion about the prior distribution of parameters?”

One answer is that, since choosing a prior is so arbitrary, the bar should be very

5http://gking.harvard.edu/g2001syl/inference.pdf
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high. Frequentist approaches guarantee an unbiased parameter estimate; adopting a

prior may make posterior analysis more straightforward, but it invites criticism and

the suspicion that prior information drives the results. Many researchers include

a sensitivity analysis to show that their findings do not depend on the choice of a

specific prior, which is a good step toward dispelling this criticism that one’s priors

are arbitrary. But it also begs the question of why the researcher chose to forego

a more straightforward frequentist approach in the first place. Often the reason

is that Bayesian priors add structure to a complex model that would otherwise be

unidentified. The utility of Bayesian methods is clear here.

On the other hand, perhaps we should not be scared off by the apparent arbi-

trariness of choosing a prior. This is only one of many arbitrary elements to any

statistical enterprise. Most important, choosing a sampling distribution is neces-

sarily arbitrary. The “curse of dimensionality” means we must rule out almost all

possible ways in which a set of data might have been produced, instead focusing on

an extremely narrow and simplistic subset. We can make reasonable assumptions

and decisions in doing this, of course, but the same is true of choosing a Bayesian

prior.
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