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Hypothesis testing when a nuisance parameter is present
only under the alternative

By R. B. DAVIES
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SuMMARY

Suppose that the distribution of a random variable representing the outcome of an experi-
ment depends on two parameters £ and @ and that we wish to test the hypothesis £ = 0 against
the alternative £ > 0. Ifthe distribution does not depend on  when £ = 0, standard asymptotic
methods such as likelihood ratio testing or C(«) testing are not directly applicable. However,
these methods may, under appropriate conditions, be used to reduce the problem to one
involving inference from a Gaussian process. This simplified problem is examined and a test
which may be derived as a likelibood ratio test or from the union-intersection principle is
introduced. Approximate expressions for the significance level and power are obtained.

Some key words: C-alpha test; Hypothesis testing; Likelihood ratio test; Maximum of Gaussian process;
Simple hypothesis; Union-intersection principle.

1. INTRODUCTION

. Suppose that the outcome of an experiment is represented by a random variable, X, whose
distribution depends on two unknown parameters £, and ¢,. Suppose further that when £, = 0
this distribution does not depend on 6,; that is, 8, does not enter into the model for X when
& =0.

Now suppose that we wish to test the hypothesis £, = 0 against &, > 0. If X represents a
large sample, one might consider applying one of the standard large sample tests. However,
these cannot be applied directly. For example, while the generalized likelihood ratio, A, could
be calculated, the standard chi-squared approximation of 2 log A would not apply even when
allowance is made for the one-sided nature of the alternative.

On the other hand, under appropriate conditions, large sample theory can be used to reduce
the problem to a tractable one involving inference from a Gaussian process. In this section
we see how this reduction may be done. The remainder of the paper is concerned with the
resulting simplified situation.

Suppose that X represents a random sample (z, ...,,) of observations, each with density
p(x; £y, 6,) and that p(z; 0, 6,) does not depend on 6,. Consider the locally optimal test statistic
for testing £, = 0 against £, > 0 when 0, is known:

2,09 = w7+ 3, [plogten £.00}100) (11

where

{y(6p)}? = vaf { [%.log (e &, 00)]€=0}

calculated under the hypothesis. A test which réjects the hypothesis, £, = 0, for large values
of Z,(6,) is then asymptotically optimal for alternatives with the given value of 6, and
o = O(n~%). Of course 6, is unknown and so Z,(6,) cannot be evaluated.



248 R. B. Daviss

The approach adopted in this paper is to base a test on the entire random function, or
stochastic process, Z,(0), as a function of 6.
Suppose that under the hypothesis

cov {Zn(ol)’ Zn(az)} = ,0(01, 02)

From the definition of Z,(0) we have p(0,0) = 1 for each . The following results may be
derived from arguments similar to those leading to Theorem 2 of Neyman (1959); see also
van Eeden (1963). Let 9(Z,,; &, 6,) denote the distribution of the process Z,(.) when &, and
0, are the parameter values. Then, under suitable regularity conditions, as n— oo,

13

Q(Zn;n—%go, 00) -9(Z; _go, 00)’ (1-2)
where Z(. ) is a Gaussian random process with expectation

Ego,oo{z(el)} = £,7(6o) p(04,6y) (1-3)
and covariance function
cov{Z(0,), Z(0,)} = p(0,,6,), (1-4)

for all £, and 6,. Note particularly the presence of p(.,.) in both (1-3) and (1-4).
Similar asymptotic formulae may be obtained if, instead of defining Z, (6,) asin (1-1), we let

Z,(0y) = "7/%')’(00) gn(eo) (1-5)

Zy(0,) = {2108 A, (0,)}% sgn {£,(00)}; (1-6)

where £,(6,) is the maximum likelihood estimate of £, when 6, is given, A,,(6,) is the generalized
likelihood ratio, again with 6, given, and where it is assumed that the problem remains defined
and regular for negative values of &,. The equivalence of these approaches is essentially
proved by Moran (1970). If other nuisance parameters are present and are regular, in particular
being estimable when £, = 0, then versions (1-5) and (1-6) of Z,,(.) still satisfy (1-2) provided
v(6) is suitably redefined. Similarly the natural generalization of (1-1), the C(x) test (Neyman,
1959; Moran, 1970), also provides a version of Z,(.) satisfying (1-2). In practice, the locally
optimal test statistic or the C(x) test statistic are the most straightforward to calculate.

The formulae given here can also be obtained in asymptotic situations other than the usual
random sample case, the form of (1:3) and (1-4) arising from results such as that given by
Hajék & Sidék (1967,-§ VI.1.4). In some instances a Gaussian stochastic process Z(. ) satisfying
(1-3) and (1-4) may arise directly. ‘

In most of what follows it is assumed that the test is to be based on one of these versions of
Z,(.) and that » is so large that deviations from normality or equations (1-3) and (1-4) can
be ignored.

‘We conclude the introduction with several examples.

Example 1. Consider random variables X and Y, independently normally distributed with
unit variances and expectations £;cos 8, and £,sin 6, and 0 < 6, < 2a. This problem arises
when two asymptotically normal test statistics are being combined and the alternatives are
two-sided. The optimal test when 6, = @ is given rejects the hypothesis for large values of
Z(0) = X cos 0+ Y sin 0. Formulae (1-3) and (1-4) are satisfied if

A(0) =1, p(6y,0) = cos(6,—05).

or

Of course, the usual test would be to reject the hypothesis for large values of X2+ Y2 =
sup {Z(0)}? and not surprisingly the method in this paper yields the same result.
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Example 2. This is as in Example 1, but with 0 < 6, < $#. This problem arises when two
asymptotically normal test statistics are being combined and the alternatives are one-sided.
It has been considered extensively by van Zwet & Oosterhoff (1967); see also Oosterhoff (1969).

Ezxample 3. Here X represents a random sample of observations with density 4

P(@; 80, 0) = (1—Eo) e +§( 0y e,
where 1 < §, < c0. Then Z,,(0) defined by (1-1) becomes
Z,,(0) = [0y exp {(1—Op) 2} — 11(20, — 1)}/(65— 1).

The covariance p(0;, 8,) may readily be calculated.
Example 4. Suppose that X = (X,,...,X,), where X, are independent Poisson random
variables with expectation given by

; s
By (Xy) = 3 o6k Epe k.
j=

This is not obviously a large sample problem. The large sample results are obtained if ¢, ..., e,
tend to infinity together since, as far as the relevant test statistics are concerned, this is
equivalent to the repeated replication of the experiment with fixed «;, ..., a,. The unknown
parameters a; and A; (j = 1, ..., s) can be fitted by maximum likelihood and the problem is to
test for the presence of another decay term. If ¢, is given, a C(x) test can be found and this
provides the statistic Z(6). This particular problem arises from an experiment involving a
mixture of radioactive elements.

Another example involves the testing of the hypothesis that a point process is Poisson
(Davies, 1977, §4).

2. THE TEST

We suppose that the parameter §, is limited to the range [L, U] and consider the Gaussian
process {Z(0): L < 6 < U} satisfying (1-3) and (1-4).

We also suppose that Z(6) has a continuous second derivative. This ensures that p(6,,0,)
has a continuous second derivative with respect to either argument and that p,(6) introduced
in the next section is continuous.

The test which we consider in this paper has critical region of the form

{ sup Z(6) > c}. (2-1)

L<OSU
This test may be derived from Roy’s type I principle (Roy, 1953) or its generalization, the
union-intersection principle (Roy, Gnanadesikan & Srivastava, 1971, pp. 36—46). It may also
be derived as a likelihood ratio test, for if Z is observed at only a finite number of points:
Z(6,),Z (0,), ..., Z(0,), then the ratio of the likelihood at (&, 6,) to the likelihood when &, = 0

may be réadily found to be
exp [£oY(00) Z(0,) — 3£3{y (60)}]- (2-2)

This does not depend on 6,,...,0, and so gives the likelihood ratio when all of the Z(0) is
observed. Maximization over &, > 0, ,€[L, U] leads to a test of the form (2-1).

The test (2-1) does not take account of the function (. ). One possibility is to assign a value
to £, and base a test on the maximum of (2-2). Another is to consider the locally optimal
Bayes test when a prior distribution is assigned to 8,. This has critical region of the form

ffw(e) 2(6) B(d6) > ¢,
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and may be readily calculated together with its significance level and power but may have
rather poor performance; see, for example, the linear test discussed by van Zwet & Oosterhoff
for Example 2.

3. DISTRIBUTION OF THE TEST STATISTIC
There seems little chance of being able to calculate

Z(6 31
prg.,,oo{LiggU (0) > ¢} (3-1)

even when £, = 0. However, a bound may be found by the approach of Cramér & Leadbetter
(1967, p. 285), or Leadbetter (1972). For generality we consider

Proo[ sup {Z(6)—c(0)} > 0], (3-2)
L<6<U

where ¢(6) is continuously differentiable. Following Cramér & Leadbetter or Leadbetter’s
‘formula (3-3), after making a correction, the expected number of ‘upcrossings’ of zero by
Z(6) — ¢(0) under the hypothesis £, = 0is given by

L (* exp [— He(0)}21{ ~ pu(O)}} ¥cs(0)/{— pua(6)}2] 6 (3-3)

2 L
where

& (0) = -a%c(ﬁ), pu(0) = [5%52‘2"(75’ 0)],;:0’

¥(x) = exp (— ho?)— f: oxp (— 4%) d. (3-4)

Expression (3-3) provides an upper bound on the probability that
[ sup {Z(6)—c(0)} >0 and Z(L)-c(L)< 0], (3-5)
LU

since at least one upcrossing must occur if (3-5) is satisfied. Thus
Pro,o[ sup {Z(6)—c(0)} > 0]
LSy 1 (v ¢,(0)
_ il 1 27f 3 1 S .
< O(—olD)+ 5 [ exp L= YOI —puO ¥ | =2 a0, (36)

where @ denotes the normal distribution function. In particular
1 o (Y
Pro,o{nggUZ(e) > ¢} < O(—0) +5,6%P (—3c?) fo;L{ —pu(0)}2do. (37

This provides the bound on the significance level of the test (2-1).

We would like some indication of the sharpness of the bound (3-7). If we regard the event
{Z(L) > c} as an upcrossing then the right-hand side of (3-7) gives the expected number of
upcrossings of ¢ by Z(.). If ¢ is large and p(6,, 0,) is near zero for |0; — 6| large then we might
expect the number of upcrossings to have an approximately Poisson distribution. Indeed
Cramér & Leadbetter (1967, p. 257) and Leadbetter (1972) show that under appropriate
conditions in the stationary situation this is the case. Then the actual probability (3:1) can be
estimated. However, one will, in general, be concerned with probabilities less than 0-1, in
which case (3-7) itself will be very close to the probability estimated using the Poisson
distribution. '
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On the other hand, in Example 1, since sup Z(0) > ¢ will occur if and only if exactly one
upcrossing occurs, the term @(—c) in (3-7) can be omitted and then one obtains the exact
result exp (— 4¢?). In example 2 one also obtains the exact result given by van Zwet & Ooster-
hoff (1967, formulae (5-8) and (5-10)).

4. PROPERTIES UNDER THE ALTERNATIVE

4-1. Sensitivity of the test
A lower bound on the power of the test can be obtained from

P, 5, {8UP Z(0) > ¢} > pry, 6,{%(0,) > ¢} = D, y(6,) —}. (4-1)

An upper bound on the power can be obtained by substituting ¢ —&,y(6,) p(6, 6,) for ¢(0)
in (3+6). The following theorem, worked out jointly with Mr R. Littlejohn of the Mathematics
Department, Victoria University of Wellington, shows that the difference between these
bounds tends to zero as £, and ¢ tend to infinity.

THEOREM 4-1. Suppose that p(6,,0,) < 1 for each 0, * 0, in [L, U], that the conditions given
in § 2 are satisfied, 6, € [L, U] and that y(6,) > 0. Then, as £, o,

' Prs,,0,{8up Z(6) > £,7(6p) — A}~ B(A). (4-2)
Proof. From (4-1) 7 .
Lim i;tolf Pz, 0, {5Up Z(0) > &, 7(6,) — A} > D(A).

£o—

Also

limsup prg, o, {sup Z(0) > &7(00) — A} < lim sup ®[A—&,y(00) {1 — (L Go)]]
U

(4:3)

We suppose L < 0(; < U; the case 6, = L follows by an argument similar to the present one.
Choose ¢ so that §,—e > L and dp(6, 0,)/00 is monotonically decreasing when 6,—¢ < 6 < 6,.
Now /() is bounded when « > 0 and y(z) + (27)3x is bounded when z < 0. Then (4-3) is equal
to

6o :
timsup (2r)4 [* exp (— 41A £ 7(00) {1~ p(0, B0} E07(00) 35000, 00) 40
 limsup (2n)°} [ "exp(~ Ao}z = 0A), (&4

where the upper limit of integration is k = &, y(6,) {1 — p(6y— €, 6,)}. Thus the upper and lower
limits are equal and this completes the proof.

The principal difference between (4-3) and (4-4) with fixed £, arises from the replacement of
¥(x) by 0if x > 0and — (2m)}zifz < 0 and is approximately equal to 0-2 exp (—3A2)/{£,v(6,)}-
Thus with &, y(6,) at about 3 we would expect (4-1) to provide a useful measure of the sensitivity
of the test.

4-2. An optimality property
We have not claimed that the test (2-1) has any optimality properties. Indeed it is clear from
van Zwet & Oosterhoff (1967) that it will not, in general, be most stringent, this being the
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most natural optimality property to aim for. However, we can, following van Zwet & Ooster-
hoff, prove a rather weak optimality property. For Example 2 they show that as the significance
level of the test (2-1) tends to zero its power function approaches that of the optimum test
when 6, is given. A similar result which may be proved in a similar way holds in general.

TEEOREM 4-2. Suppose that the condition given in §2 are satisfied and c(x) is the value of ¢
required to give the right-hand side of (3-7) a value .. Then
lim sup |pre, g {SupZ(6) > c(@)}— Oy (0p) + DHe)}| = O. (45)

a—0  £>0
L<6<U

4-3. Confidence region for 0,

If the test indicates that £, > 0 we might wish to find a confidence interval for 6,. If the
problem in question is an asymptotic one and the test indicates a highly significant effect,
then it is probably best to return to the original problem and use one of the standard asymp-
totic methods for finding a confidence interval. On the other hand, if the significance is only
marginal or the exact likelihood difficult to calculate, one might prefer to find a rough con-
fidence interval based on the asymptotic distribution assumed for Z(.).

Since Z(6,) is sufficient for £, the dependence on £, can be removed if one conditions on
Z(6,). Thus

By, 0,{Z(0)|Z(0,) = 2} = 2p(6, 0,).
Suppose c,(z, §,) is defined by

PT, 0,(5UP Z(0) > z+c,(2,00)|Z(6,) = 2} = . (4-6)
Then a 1 —« confidence region for 6, is given by
[6y: Z(6,) > sup Z(6) — c,4Z(0y), O}
The left-hand side of (4-6) can be written as

Z(o)_zp(a ’0 ) 2+0a(2,0 )_zp(0:0 ) _ .
prgo’eo»{sup[ =50, 001)2};’ - -—p(()ﬁ, N ° ] > 0|Z(8,) = z}, (4-7)

where the first term has been normalized to give it zero conditional expectation and unit
.conditional variance. Expression (4-7) could then be bounded using a formula of the form (3-3)
to find the expected number of upcrossings of zero in [6,, U] plus the expected number of
downcrossings in [L, 6,]. Thus values of c,(z,6,) could be calculated to give a conservative
1—a confidence interval. However, the formula is still too complex for a quick calculation.

Consider (4-7). If z is large, the second term will become large as p(8, 6,) moves away from
unity and hence only values of  near 6, need be considered when evaluating the supremum.
Over this range the first term can be considered approximately independent of 6, but with
a sign change at 6,. Suppose it is approximately equal to Z,sgn (60— 6,), where Z, is a standard
normal random variable. Then (4:7) reduces to

PrZg > {z+c,(z, 60)}* —2%].

Thus we should choose {z +¢,(z, 0y)}*— 2% = x3 , the upper  point of a chi-squared distribution
with one degree of freedom. A similar result can be obtained by following an argument similar
to that used in §4-1.

The approximate confidence region for 6, then becomes

[60: Z(6,)* > {sgp Z0) - x3,.)s (4-8)
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a form which is convenient to calculate and not unexpected if one regards 3Z(6,)? as a log
likelihood. For Example 1 this region reduces to the Fieller solution and is exact if values of
0 which differ by 7 are identified; see, for example, James, Wilkinson & Venables (1974).
However, it is not clear how big Z(6,) must be in general for (4-8) to be useable.

5. PRACTICAL MATTERS
In order to carry out the test one will need to find

S = sup Z(0), (5-1)
L<6<U
U
1= [ =putoyias. (5-2)
One can then calculate the approximation to the significance probability derived from (3-7):
D(—8)+1exp(—38%)/(2m). (5-3)

One can also find the value of ¢ in (3-1) to give a significance level of 0-05, say, and hence for
each value of 6 find the value of £, required to give a power of, for example, . It will not be
- possible, in general, to evaluate (5-1) and (5-2) analytically. One possible approach is to
calculate Z(0), p1,(0) for 6 = (L = 0,,0,,...,U = 0,), where for n = 1,2, ...

Opy1 = min[U, 0, +0-1{py;(6)} 4]

to give an approximate correlation of 0-993 between adjacent values of Z(6,,). This was carried
out for Example 4 and the maximum of the values of Z(6,,) used for § and I evaluated by the
trapezoidal rule. Between 10 and 20 values of 6, were generally required and so the computa-
tional requirements were not excessive. In addition, when a significant result was obtained,
the value of 6, corresponding to the maximum provided a suitable starting point for the
maximum likelihood estimation of £, and 6.

Finally we note that in most situations Z(#) will be only asymptotically normally distributed
and as the probabilities derived in this paper are'likely to be rather sensitive to deviations
from normality Z(6) should be derived from especially large samples, particularly if the
critical point ¢ is large.

6. GENERALIZATIONS

It has been assumed that the set of possible values of # is the closed interval [L, U]. The
theory can be applied for an open or infinite interval, provided that the integral (5-2) con-
verges. However, when the theory is being applied to an asymptotic problem, one should
check that the function Z(0) cannot have spurious peaks. This can happen in quite reasonable
problems in the same way that a likelihood function can have spurious peaks. In Example 3,
for instance, a spurious peak will occur when 6 = 1/min (x;) and so the range of values of ¢
should be bounded above.

If the alternative is two-sided, £ > 0 or £ < 0, the analogue of (2-1) is

VA ,
(32, 01 >3

and the bound on the significance level is twice that given by (3-7). The estimate of the power
given in § 4 still holds.

Suppose there are several parameters 0,,...,0, present only under the alternative. The
analogue Z(0,, ...,0,) of Z(0) can be defined and a test based on its supremum. A natural
generalization of (3-3) is given by Adler & Hasofer (1976) for » = 2 or 3 for a stationary
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Gaussian process and the result may be readily extended to a nonstationary process. Un-
fortunately one obtains an estimate of the significance level rather than a bound, although
one would expect that it would be adequate for most purposes. For > 3 the computation of
the analogue of (5-2) would probably not be feasible.

Suppose that the nuisance parameter, 6,, can take on only a finite number of values. For
example, in Example 4, §, may be known to take on a value from a finite set. Another non-
asymptotic example is the change-point problem considered by Page (1957), Hinkley (1970)
and others. One observes a sequence of independent normal random variables, X, (¢ = 1, ...,7%),
with unit variance, X; having expectation u if ¢ < 6 and px + £ otherwise. With

26) = (n-6y% 3 (Xi=p)

if g is known, otherwise
n 4
20)={ 3 Xin-0)- £ XJo| 00},

it is easily checked that (1-3) and (1-4) are satisfied.
In general suppose that & can take on the values {1, ...,m} and (1-3) and (1-4) are satisfied.
Then an analogue of (3-7) is

Pro. o8P Z(0) > 6} < O(—c)+ 3 pro o{Z(i—1) < ¢ and Z(5) > c}. (6-1)
‘ Py ,

The bivariate probabilities in (6-1) can be evaluated from tables or by standard computer
subroutines. The results of § 4 hold after the obvious changes have been made.
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