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Abstract

When testing a point null hypothesis versus an alternative that is vaguely specified, a

Bayesian test usually proceeds by putting a non-parametric prior on the alternative and

then computing a Bayes factor based on the observations. This paper addresses the question

of consistency, that is, whether the Bayes factor is correctly indicative of the null or the

alternative as the sample size increases. We establish several consistency results in the affir-

mative under fairly general conditions. Consistency of Bayes factors for testing a point null

versus a parametric alternative has long been known. The results here can also be viewed

as the non-parametric extension of the parametric counterpart.
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1 Introduction

Non-parametric Bayesian methods have been popular and successful in many estimation

problems but their relevance in hypotheses testing situations have become of interest only

recently. In particular, the testing of a parametric null versus a non-parametric alterna-

tive has received considerable attention from Bayesians, e.g., Berger and Guglielmi (1998),

Verdinelli and Wasserman (1998), Carota and Parmigiani (1996), and Florens, Richard and

Rolin (1996). Berger and Guglielmi (1998) consider the problem of goodness of fit in the

framework of testing a parametric null versus a non-parametric alternative and derive mea-

sures of goodness of fit closely related to the Bayes factor. By looking at goodness of fit

as a Bayesian test of hypotheses, one can take advantage of many of its attractive features.

Bayesian hypothesis testing is not based on asymptotic results, and thus, can be used equally

effectively on small or moderate sample sizes. Bayesian hypotheses testing uses Bayes fac-

tors to decide between accepting or rejecting the null hypothesis. Thus, as the sample size

increases, one can ask if the Bayes factor is correctly indicative of H0 or H1 given that the

sampling density belongs to one of the two hypotheses. This is the question of consistency.

Even though Bayesian answers in hypothesis testing problems are not operationally based

on asymptotics, consistency of the resulting Bayes factor is an important issue that needs

to be addressed. In the case of estimation using non-parametric priors, Diaconis and Freed-

man (1986) show that some posteriors based on n samples need not be consistent, that is,

the posterior may not put mass tending to one for sufficiently small neighborhoods of the

true parameter value. Thus, inference based on such inconsistent posteriors can be highly

misleading.

Analogously, in hypotheses testing, it is important to know if the Bayes procedure based

on the Bayes factor actually leads to sensible answers as the sample size increases. Consis-

tency holds for Bayes factors when parametric families are involved in the testing scenario.

Even when the sampling distribution does not belong to either H0 or H1 in the paramet-
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ric case, the Bayes factor eventually chooses the hypothesis that is closest to the sampling

density in a Kullback Liebler sense. Exact rates of convergence are also well known.

In the case of infinite dimensional parameter spaces, relatively little is known about

consistency and rates of convergence of Bayes factors in the case of general non-parametric

priors. We establish consistency for the Bayes factor when the null hypothesis is true for

any arbitrary non-parametric prior. In the case when the alternative hypothesis is true,

we show that the set of all sampling densities under which consistency holds has measure

one with respect to the non-parametric prior, regardless of the prior chosen. Our goal is to

establish consistency in terms of conditions satisfied by a sampling density in the support of

an arbitrary non-parametric prior, and not only on a case by case basis. We only consider

non-parametric priors on the space of all probability density functions for reasons explained

in Section 3.

The remainder of this paper is organized as follows. Section 2 gives the motivation and

definition of consistency pertaining to Bayes factors. Section 3 discusses some well known

examples of non-parametric priors on the space of all densities. Sections 4 gives the proofs of

theorems in Section 2. We end this paper with a discussion of testing a composite parametric

null versus a non-parametric alternative in Section 5.

2 Consistency of Bayes Factors

The following notations will be used throughout the paper. Let X be a complete separable

metric space (or Polish space), µ be a σ-finite measure on X and F be the space of all

probability densities with respect to µ with support X . Also, denote by X1, X2, · · ·, random

variables taking values in X , which are independent and identically distributed (iid) with a

density f ∈ F . Consider the following hypothesis testing scenario

H0 : f = f0 versus H1 : f 6= f0. (1)



4

Equation (1) is the most general form of testing a point null versus a non-parametric alter-

native. A Bayesian testing procedure would proceed by first specifying prior probabilities, π0

and π1, of the null hypothesis and the alternative, respectively, and a non-parametric prior

π on the space of the alternative, H1. We postpone the discussion of what an appropriate

prior should be until Section 3 but for now, assume that a non-parametric prior is given.

The Bayes factor for the testing of (1), based on a sample, xn, of size n, is the ratio of the

marginal under H0 to the marginal under H1, and is given by the expression

B(xn) =

∏n
i=1 f0(xi)

∫

H1

∏n
i=1 f(xi)π(df)

. (2)

The Bayes factor in (2) can also be interpreted as the ratio of posterior odds to the prior

odds of H0 to H1. To see this, define an overall prior on H0 ∪ H1 as

π∗(f) = π0 · If0(f) + π1 · IH1
(f) · π(f), (3)

where IA(·) stands for the indicator function of the set A, i.e., IA(f) = 0 if f 6∈ A and

IA(f) = 1 if f ∈ A. We use the following notation for generic priors and posteriors, namely,

if ν(·) is a prior on H0 ∪ H1, then we will denote the posterior derived from ν based on a

sample, xn, of size n, by ν( · |xn). Thus, for the prior π∗, the posterior and prior odds ratio

is related to the Bayes factor by

π∗(H0|xn)

π∗(H1|xn)
=
π0

π1

·B(xn). (4)

For all subsequent discussions, we take the default choice for π0 and π1, namely, π0 = π1 =

1/2. In this case, the posterior odds ratio is exactly equal to the Bayes factor. Thus, given

the observations x1, x2, . . . , xn, large values of B would indicate that there is strong evidence

for H0 based on the data whereas small values of B would indicate otherwise. As the sample

size increases indefinitely, we would expect to get perfect information about the sampling

density, say f , and the Bayes factor should also correctly and overwhelmingly be able to

decide between H0 and H1. This motivates the following definition for the consistency of the

Bayes factor.
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Let X n and X∞ be the products of n and infinite copies of X . Also, let P n
f and P∞

f be

the n and infinite products of the probability measure Pf , which has density f , on X n and

X∞, respectively.

Definition 1 The Bayes factor, B(xn), for the testing of (1) is said to be consistent if

lim
n→∞

B(xn) =∞, a.s. P∞
f0
,

and for any f 6= f0,

lim
n→∞

B(xn) = 0, a.s. P∞
f .

Before we give the theorems establishing consistency of Bayes factors, we need a few

more definitions. The Kullback-Leibler divergence, K(f, g), provided it exists, between two

densities f and g in F is defined as

K(f, g) =

∫

f(x) log
f(x)

g(x)
µ(dx). (5)

Also let

Kε(f) = {g ∈ F : K(f, g) < ε}, for ε > 0. (6)

We say f is in the Kullback-Leibler support of π, if

π(Kε(f)) > 0, for all ε > 0.

With the above definitions, we can now state three theorems establishing consistency of the

Bayes factor.

Theorem 1 Under f0 ∈ H0,

lim
n→∞

B(xn) =∞, a.s. P∞
f0

Note that one cannot use Schwartz’s criteria for consistency for the prior π∗ to obtain Theo-

rem 1. This is because Schwartz’s criteria (Schwartz (1965)) gives consistency only for weak



6

neighborhoods of f0 whereas we want consistency at f = f0. Our goal here is to establish

strong consistency (almost sure convergence) of the Bayes factor for a general prior π on H1.

Our proof of Theorem 1 follows from a rather simple observation that π∗ puts positive mass

on H0 and the fact that the posterior odds ratio is proportional to the Bayes factor (see (4)).

Thus, the argument of Doob (1949) is applied without much change. For the completeness,

the proof is given in Section 4. An involved proof of a weaker result appeared in Verdinelli

and Wasserman (1998) in the special case when π is taken to belong to the class of infinite

dimensional exponential family priors. However, it should be mentioned that their proof can

be modified to give rates and power for local alternatives whereas the proofs presented here

cannot.

Theorem 2 Let Θ = { f ∈ H1 : B(xn) −→ 0 a.s. P∞
f }. Then, π(Θ) = 1.

Theorem 2 states that the Bayes factor is, indeed, consistent for a large set of densities in

H1, namely, a set which has π-probability 1. However, Theorem 2 does not say much about

any one particular sampling density, f in H1. To obtain consistency for a particular sampling

density, f , we have to further assume that f belongs to the Kullback-Leibler support of the

prior, π. This is the result of

Theorem 3 Suppose f ∈ H1 is such that f is in the Kullback-Leibler support of the prior

π. Then, under f ,

lim
n→∞

B(xn) = 0 a.s. P∞
f .

We give proofs of the above theorems in Section 4. Verdinelli and Wasserman (1998)

gave the same result with the infinite dimensional exponential family model. Also, their

proof can be modified to give a more general result and our proof of Theorem 3 is in the

same spirit. In the following section, we give examples of non-parametric priors, where the

support condition of Theorem 3 has been established for estimation problems. Note that

this condition is also sufficient to establish consistency of Bayes factors in hypotheses testing

situations by the result of Theorem 3.
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3 Examples

3.1 Posterior Consistency of Dirichlet Normal Mixtures

Let X be the space of observables and α be a finite measure on X . Define u1, u2, · · · to be

iid random variables from Beta(1, α(X )) and Y1, Y2, · · · to be independent random variables,

independent of u1, u2, · · ·, each distributed according to the probability measure α0(·) =

α(·)/α(X ). Define p1 = u1, and pi = ui
∏i−1

j=1(1 − uj) (so that pi ≥ 0 for all i ≥ 1 and
∑∞

i=1 pi = 1, see Sethuraman (1994)).

Denote 1
σ
φ( ·−µ

σ
) to be the normal density function with mean µ and standard deviation

σ. Consider the random density function, g(x), given by

g(x) =
∞

∑

i=1

pi
1

σ
φ(
x− Yi
σ

), (7)

and σ ∼ ν, where ν is a probability measure on positive real line. The Dirichlet normal

mixture distribution is the distribution on probability measures P arising from the random

densities g(x) in (7). There can be various other choices of mixtures based on different

choices of the kernel function φ and ν. The modelling and computational aspects of Dirichlet

mixtures were studied, for instance, by MacEachern and Mülller (1998).

Ghosal, Ghosh and Ramamoorthi (1999b) studied the issue of posterior consistency in the

context of density estimation using Dirichlet mixtures. They gave conditions under which

the sampling density, f , belongs to the Kullback-Leibler support of the Dirichlet mixture

prior. For example, if

f(x) =

∫

1

h
φ(
x− y

h
)dP (y),

where h > 0 is in the support of ν and P has compact support, then f belongs to the

Kullback-Leibler support of the Dirichlet mixture prior (see their Theorems 3). Ghosal,

Ghosh and Ramamoorthi (1999b) also give a more general theorem for posterior consistency

based on the properties of the underlying measure of Dirichlet process priors. We refer the

reader to their Theorem 5 for a complete statement and proof.
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The conditions for posterior consistency stated in the theorems in Ghosal, Ghosh and Ra-

mamoorthi (1999b) are also sufficient for the consistency of Bayes factors for the hypotheses

testing situation by Theorem 3.

3.2 Posterior Consistency of Polyá Tree Priors

We quote a theorem from Ghosal, Ghosh and Ramamoorthi (1999a) that establishes the

Kullback-Liebler support of the sampling density. Here, {Bε1,ε2,···,εk} represents a usual

hierarchical partition of the real line associated with the construction of a Polyá Tree

Prior, and the conditional probabilities P (Bε1,ε2,···,εk |Bε1,ε2,···,εk−1
) are distributed according

to Beta(αε1,ε2,···,εk , 1− αε1,ε2,···,εk) for some constants 0 < αε1,ε2,···,εk < 1.

The following theorem gives conditions for a density to be in the Kullback-Leibler support

of a Polyá tree prior.

Theorem 4 (Ghosal, Ghosh and Ramamoorthi (1999a)) Suppose that λ is a continuous

probability measure with λ(Bε1,ε2,···,εk) = 2−k for all k and further αε1,ε2,···,εk = ak. If
∑

k a
−1/2
k < ∞, then any density f with respect to λ with

∫

f log fdλ < ∞ belongs to the

Kullback-Leibler support of the Polyá tree.

Thus, when a Polyá tree prior is chosen as the prior for the non-parametric alternative in

(1), Theorem 4 provides conditions ensuring consistency of the resulting Bayes factor.

3.3 Infinite Dimensional Exponential Family Priors

Verdinelli and Wasserman (1998) discuss the use of the infinite dimensional exponential

family priors for testing goodness of fit. They cast the testing problem (1) into the testing

problem of

H0 : F0(X1), F0(X2), · · · , F0(Xn)
iid
∼ Uniform(0, 1)
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versus

H1 : F0(X1), F0(X2), · · · , F0(Xn)
iid
6∼ Uniform(0, 1),

where F0 is the cumulative distribution function (cdf) of the density f0 in (1). The infinite

dimensional exponential family is constructed for distributions with support on the unit

interval [0, 1]. They use a sequence of Legendre polynomials, {ξj(·), j = 1, 2, . . . }, defined

by

ξj(x) =
1

2jj!

dj

dxj
(x2 − 1)j,

and use the Legendre polynomials together with other coefficients, φ = (φ1, φ2, . . .), to define

infinite exponential densities of the form

g(u|φ) = exp(
∞

∑

j=1

φjξj(u)− c(φ)),

where c(φ) = log
∫ 1

0
exp(

∑

j φjξj(u))du is the normalizing constant. In order to get random

densities, Verdinelli and Wasserman (1998) put priors on the coefficients, φ, given by

φj ∼ independent N(0, τ 2/c2j), (8)

where τ and cj’s are constants. Using a theorem from Barron (1988), they show that

Theorem 5 If K(f0, f) <∞ and π is the infinite dimensional exponential family prior with

cj = jk in (8) where k > 8 and τ > 0, then f is in the Kullback-Leibler support of π.

Thus, consistency of the Bayes factor at f ∈ H1 follows easily from Theorem 5 (as was

also shown in Verdinelli and Wasserman (1998)).

4 Proof of Theorems

In this section, we give the proofs of Theorems 1, 2 and 3. The reader is referred to Section

2 for the notation used here. We use the weak topology on F and the usual topology on

X∞. The product topology on the space F × X∞ is generated in the usual way.
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Let π be a probability measure on F . Given an f sampled from π, the observations

X1, X2, . . . are independent and identically distributed according to Pf , the probability mea-

sure corresponding to f . The probability measure Pf is uniquely determined by f and vice

versa upto an equivalence class resulting from the equivalence relation, ∼ , defined by

f ∼ g if and only if f = g a.e. µ (9)

The notation f will now stand for the equivalence class that it generates. For the prior

probability π on F , write Qπ for the probability measure on F × X∞ defined by

Qπ(A×B) =

∫

A

P∞
f (B)π(df), (10)

where A is Borel in F and B is Borel in X∞.

We will need the following result for our proofs.

Lemma 1 Let π∗ be a prior on H0∪H1. The posterior, π∗(·|xn) −→ δf (·) weakly as n→∞

Qπ∗ − a.s., where δf (·) is the degenerate probability at f .

In other words, if we define

Θ0 = {(f, x1, x2, . . .) : π
∗(·|xn) −→ δf (·) weakly },

then Lemma 1 states that Qπ∗(Θ0) = 1. Lemma 1 is an easy consequence of Doob’s theorem.

We refer the reader to Diaconis and Freedman (1986) (Corollary A.2 on page 16), and Ghosh

and Ramamoorthi (2002) for further details and proofs. Ghosh and Ramamoorthi (2002)

also discuss general measurability conditions needed for the application of Doob’s theorem

in the non-parametric set-up.

Proof of Theorem 1 The proof follows easily by noting that

π∗( {f0} |xn ) =
B

B + 1

and the fact that π∗({f0}) = 1/2 > 0 (since the posterior is always consistent at points with

positive mass, from Lemma 1). ¤

To prove Theorem 2, we need the following lemma.
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Lemma 2 Define

Θ∗ = {(x1, x2, . . .) : B(xn) −→ 0}

and

Θf = {(x1, x2, . . .) : π∗(·|xn) −→ δf (·) weakly.}.

If the posterior is consistent at f ∈ H1, then Θ∗ ⊇ Θf .

Proof. Choose a (x1, x2, . . .) in Θf , and a sufficiently small weak neighborhood of f , N , not

intersecting H0. Since

B(xn) =
π∗(H0|xn)

π∗(H1|xn)

and N ⊆ H1, we have π∗(H1|xn) −→ 1 and π∗(H0|xn) −→ 0. It follows that B(xn) −→ 0.

¤

Proof of Theorem 2. By Result 1, we have Qπ∗(Θ0) = 1. Since

Qπ∗(Θ0) =
1

2
· P∞

f0
(Θf0) +

1

2
·

∫

H1

P∞
f (Θf )π(df),

we have that P∞
f0
(Θf0) = 1 and P∞

f (Θf ) = 1, π − a.s.. By Lemma 2, P∞
f (Θ∗) = 1, π − a.s..

¤

To prove Theorem 3, we need the following lemma which is obtained while proving Lemma

8.2 in Verdinelli and Wasserman (1998) (see also Ghosh and Ramamoorthi (2002)).

Lemma 3 Let f ∈ H1. Suppose X1, X2, · · · are iid from f and f is in the Kullback-Leibler

support of π. Then, for all ε > 0,

lim inf
n→∞

enε
∫

∏n
i=1 g(Xi)

∏n
i=1 f(Xi)

π(dg) =∞. a.s. P∞
f .

Proof of Theorem 3. The Bayes factor for testing (1) can be written as

B =

∏n
i=1 f0(Xi)/f(Xi)

∫
∏n

i=1 g(Xi)/f(Xi)π(dg)

=
exp(−n 1

n

∑n
i=1 log f(Xi)/f0(Xi))

∫
∏n

i=1 g(Xi)/f(Xi)π(dg)
. (11)



12

Let ε = K(f, f0)/2 > 0. We will show the numerator in (11) multiplied by enε goes to 0 and

the denominator multiplied by enε goes to∞. First, since limn→∞(ε− 1
n

∑n
i=1 log f(Xi)/f0(Xi)) ≤

−ε/2 a.s. P∞
f ,

lim sup
n→∞

exp{n(ε−
1

n

n
∑

i=1

log
f(Xi)

f0(Xi)
)} = 0 a.s. P∞

f .

Second, by Lemma 3,

lim inf
n→∞

enε
∫ n

∏

i=1

g(Xi)/f(Xi)π(dg) =∞ a.s. P∞
f .

Combining these two, we get the conclusion

B → 0 a.s P∞
f . ¤

5 Discussion

In this paper, we only considered the problem of testing a point null versus non-parametric

alternative and showed that under very weak conditions, the resulting Bayes factor was

consistent. Of course, what is more interesting is to see if the consistency results hold for

the more general composite testing of

H0 : f belongs to the N(µ, σ2) family

versus

H1 : f does not belong to the N(µ, σ2) family,

for example. The consistency of the Bayes factors for composite hypotheses testing situations

such as the above is still an open question.
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