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SOME DIFFICULTIES OF INTERPRETATION EN-
COUNTERED IN THE APPLICATION
OF THE CHI-SQUARE TEST*

By Josera Berkson, M.D.
Division of Biometry and Medical Statistics,
The Mayo Clinic, Rochester, Minnesota

HE remarks that I have to make are not derived from any consid-
Terations of the mathematics of the chi-square test.! I have a con-
siderable interest in mathematical statisties, but very little competency
in it. You will not hear anything about cards or black and white balls
from me. I shall speak as a practitioner who has frequently applied
the test to real observations, made seriously for the solution of con-
crete scientific problems. I have used the chi-square test to help make
decisions as to the character of experimental data in situations in
which I had every reason to think it was appropriate. I have used it
in the same spirit in which we doctors use, say, the Wassermann test,
~ to help make decisions in situations where we think a patient may
have syphilis. In the course of these experiences I have encountered
numerous situations in which the test did not adequately perform the
function for which I thought I could use it, and I shall present a
few examples seriatim:

I. I believe that an observant statistician who has had any con-
siderable experience with applying the chi-square test repeatedly will
agree with my statement that, as a matter of observation, when the
numbers in the data are quite large, the P’s tend to come out small.
Having observed this, and on reflection, I make the following dog-
matic statement, referring for illustration to the normal curve: “If
the normal curve is fitted to a body of data representing any real
observations whatever of quantities in the physical world, then if the
number of observations is extremely large—for instance, on the order
of 200,000—the chi-square P will be small beyond any usual limit of
significance.” :

This dogmatic statement is made on the basis of an extrapolation of
the observation referred to and can also be defended as a prediction
from @ prior: considerations. For we may assume that it is practically
certain that any series of real observations does not actually follow a
normal curve with absolute exactitude in all respects, and no matter how

* A paper presented at the Ninety-ninth Annual Meeting of the American Statistical Association,
Atlantic City, New Jersey, December 27, 1937.

1 In this discussion I mean, by the chi-square test, the comparison of two sets of frequencies in
which chi-square is the sum of the terms (o —t)2/t calculated from the observed and theoretical fre-

quencies, not other tests using the chi-square distribution, such as the testing of the significance of the
difference of an observed and theoretical variance.
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small the discrepancy between the normal curve and the true curve
of observations, the chi-square P will be small if the sample has a
sufficiently large number of observations in it.

If this be so, then we have something here that is apt to trouble the
conscience of a reflective statistician using the chi-square test. For I
suppose it would be agreed by statisticians that a large sample is
always better than a small sample. If, then, we know in advance the
P that will result from an application of a chi-square test to a large
sample, there would seem to be no use in doing it on a smaller one.
But since the result of the former test is known, it is no test at all!?

II. In Table 1 and Chart I are shown four series of observations
of basal metabolism for humans, each representing a different situation.
To each series a normal curve has been fitted and a chi-square test for
goodness of fit made. Judging the results in the routine way, and using
P=0.05 as the limit of significance, we would say that the first fit
(P=0.62) is good, i.e., not rejected; the second and third (P=0.02)
would be rejected ; about the fourth (P =0.996), there is a question as
to what should be done. Fisher says: (Statistical Methods, 4th ed.,
p. 83) “Values over 0.999 have sometimes been reported which, if the
hypothesis were true, would only occur once in a thousand trials. . . .
In these cases the hypothesis considered is as definitely disproved as
if P had been 0.001.” I can only interpret this to mean, applied here,
that the hypothesis that the distribution comes from a normal universe
is to be rejected just as definitely as it would have been if the P had
been 0.004.

Now, in these four instances, when I considered them from my own
personal viewpoint, I actually made the following decisions: The first
I considered a good fit, 7.e., I accepted the conclusion that on the evi-
dence at hand these observations follow the normal curve. (I will not
stop for the hair-splitting question as to whether I accept or merely
do not reject. This question is operationally meaningless, for I had
to tell my readers whether I thought the distribution was sensibly
normal or not, on the evidence at hand. Of course I knew I might be
wrong, just as I would if I made a positive diagnosis of syphilis by the
Wassermann test.) In the second case I rejected the hypothesis that
these observations follow the normal curve. In these first two cases,

2 Lest this be interpreted as a comment upon all tests of significance, I should like to note, without
attempting here to adequately amplify the point, that there is an important distinction between the
physical connotation of a test for, say, the significance of a difference between means or variances and a
chi-square difference. We conceive a true difference of means, or a true difference of variances, which
corresponds to the true distributions. These can be operationally defined. The tests are, so to speak,
comments upon our estimates of these true differences. But there is nothing that corresponds to a true

chi-square difference between the true distributions. The chi-square corresponds to no definable specific
character of the true distribution. It is not a descriptive parameter like the standard deviation.
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then, I agreed with the routine conclusion. In the third case I did not
reject the hypothesis that the observations follow the normal curve,
and in the fourth, I accepted the hypothesis of normality with confi-
dence. In the last two cases, therefore, there is a difference between the
decision made on the routine test and what I actually did in practice.

TABLE 1
BASAL METABOLISM OBSERVATIONS
Deviation from Series 1 Series 2 Series 3 Series 4
mean in class units*
(mid-value) Obs, | Th. [ O—T | Obs. | Th. | O—T | Obs. [ Th. | O—T | Obs. Th.| 0—-T
below —4 1 1 10 9.0 | +1.0
—-3.5 3¢ | 25.3 | +1.7 2 a1| —8.1 1p | 14.8| —1.8| 12 | 10.7 | +1.3
—-2.5 23 11 : : 11 17 | 18.4| —1.4
-1.5 53 | 45.3 | +7.7| 48 |32.9 | +15.1 | 47 139.8| +7.2| 27 | 26.0] +1.0
—-0.5 68 |69.9( —1.9| 53 |[49.5| +3.5| 67 (724 —5.4| 31 |30.9|+0.1
+0.5 71 [69.9 | +1.1| 49 | 495 —0.5| 80 | 724 7.6 30 |30.9 | —0.9
+1.5 36 [456.3 | —9.3 | 26 |32.9| —6.9| 26 | 39.8| —13. 26 | 26.0 0
+2.5 19 [19.1] —0.1| 12 | 156.3 | —3.3 | 17 17 | 18.4 | —1.4
14.8 | 6.2
+3.5 5 10 4} 10 |10.7]—0.7
over +4 gf | 82| 081 5] 5.8) 402 10 | 9.0]+1.0
Total 281 | 281 207 | 207 254 | 254 190 | 190
Mediant —0.11f 0 —0.17 0 0 0 —0.07} 0
S.D.t 1.49 1.57 1,27 2.39
Skewness +0.08+0.05 +0.321+0.06 0 +0.09+0.06
x? 3.5 12.4 10.1 0.7
D.F. 5% 4 3 7
P 0.62 0.02 0.02 0.996

* For experiment 1 the class unit includes 2 calories per square meter per hour; for experiments 2, 3, and 4 it includes
1 calorie per square meter per hour.

1 Calculated from original data measured to 0.1 calorie, ungrouped.

1 Deviations in this experiment are measured not from the observed but from a standard mean, and the normal
curve fitted around the theoretical mean of zero, using the observed total frequency and 8.D. Hence the D.F. equals
classes minus 2.

If I differ with the conclusion of the test, I may inquire on what basis
I made my decision and what explains my difference. For this purpose
I can outline my own view as to what is the valid logical basis of the
decision in any case, even the routine one. My statement of the reason-
ing involved will differ in certain respects, I believe, from that which
would be given, say, by Fisher. Take the first two cases, in which the
decisions agree. I believe the viewpoint as represented by Fisher, say,
would, briefly, be something as follows:

I set up for the first case the null hypothesis that there is no differ-
ence between this distribution and a normal one. I make a test to see
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how frequently such an experience as I have at hand would appear on
this null hypothesis and, using the chi-square test for this purpose, I
arrive at the conclusion that an experience with as large a chi-square
difference would occur six times out of ten. There is, using the arbi-
trary limit of P =0.05, no disproof of the null hypothesis. In the second
case we go through the same reasoning and reach the conclusion that,
on the null hypothesis that there is no difference, so large a chi-square
would oceur only two times in a hundred, and the null hypothesis is
therefore rejected on account of the rarity of such an experience on
this hypothesis.

I believe this reasoning is fallacious and that, logically, there is no
ground for rejection, whatever the size of the P, if the consideration
is limited to that P alone. However, since I came to the same conclu-
sion and did, for instance, reject, in the second case, what do I think
is the valid reasoning?

I would say: I have a set of observations at hand which I think may
be normally distributed. (I think so because I have seen observations
of a similar character that I was satisfied followed sensibly the normal
curve.) I also think they may not follow the normal curve but some
regular non-normal curve. (I think this may be because I have seen
bodies of data like this which do not follow the normal curve but which
were, for instance, skew, etc.)® I then make an inquiry along the fol-
lowing lines: If the observations come from a normal distribution, how
frequently would such a chi-square as I got occur? The conclusion is,
“Quite rarely—only two times in a hundred.” I then make an inquiry,
not stated and not calculated, but I believe absolutely necessary for
the completion of a valid argument, as follows: If the distribution is
non-normal, this experience, judged by a chi-square difference, would
oceur quite frequently. (All I have to do is imagine that the non-normal
curve has the observed skew character of the distribution.) I therefore
reject the normal hypothesis on the principle that I accept that one of
alternative considered hypotheses on which the experienced event
would be more frequent. I say the rejection of the null hypothesis is
valid only on the willingness to accept an alternative ( this alternative
not necessarily defined precisely in all respects).

Now the line of reasoning that I have described, as contrasted with
what I have described as the more usual, would explain why my deci-
sion differs from the routine one in the third and fourth cases.

8 The importance of the consideration of a set of alternative hypotheses in statistical reasoning has
been set forth very entertainingly by Fry, 1933 (“A Mathematical Theory of Rational Inference,”
published in Scripta Mathematica, IT (1934), 204-221.) The argument developed here under II may be

considered an application of the general viewpoint advanced by Fry to the specific question of the in-
terpretation of the chi-square test.
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With regard to the third case, after I have tried the chi-square test,
I have reached the conclusion, that on the hypothesis of no difference
from normality, a distribution with so large a chi-square would occur
rarely. So far we are in exactly the same position as we were at this
point in the second case. But now let me examine the probability that
this experience would occur if the original supply were a regular non-
normal one. Would this experience occur more frequently? There is
no reason to say so. The distribution is perfectly symmetrical, i.e., the
skewness is zero (there were exactly 50 per cent of the cases on each
side of the mean), and a cursory examination of the differences from
expected frequencies in the different classes shows they are not sys-
tematic, i.e., the plus deviations and minus deviations alternate in
random order. Such a distribution is not to be expected frequently
from any plausible non-normal curve. We therefore have no reason at
hand for rejection of the normal curve.

My view is that there ¢s never any valid reason for rejection of the null
hypothesis except on the willingness to embrace an alternative one.* No
matter how rare an experience is under a null hypothesis, this does
not warrant logically, and in practice we do not allow it, to reject the
null hypothesis if, for any reasons, no alternative hypothesis is credible.
The fact that statisticians talk in terms of the null hypothesis and
disproving it, is due to the circumstance that the numerical calcula-
tions can usually be made only with this part of the problem. The
~ fact that the alternative hypotheses cannot be dealt with numerically
should not lead to the fallacious conclusion that they do not form an
integral part of the necessary logical structure by which the null
hypothesis is rejected.

It is easy to see by the reasoning that I have given why, in my view,
there is absolutely no reason for rejecting the normal fit for the fourth
case. The event at hand has been proved, by the finding of a P =0.996,
to be of a very rare kind under the normal hypothesis, surely, and on
the basis of the principle that such a rare event is itself a warrant for
rejection, we should reject it here, and Fisher seems to say we should.

4 It is not necessary, for the purposes in hand, to define the alternatives at the outset. Indeed it may
be economical not to do so. As the argument is advanced here, rejection of the null hypothesis depends
on the acceptance of an alternative according to which the observed event would be impressively more
frequent. It is understood, of course, that the alternative need not be defined completely or precisely.
We will be interested, therefore, in the end, only in such other hypotheses as agree with the observations,
and we may wisely wait till the analysis is made to select for consideration only such other hypotheses
as are agreeable. The procedures may therefore be outlined in logical order as follows: (1) The chi-
square P is evaluated; if it is not unusually low, the null hypothesis may be accepted so far as the
evidence in hand is concerned. (2) If the P is unusually low, other hypotheses, agreeing with the data
(i.e., which would yield a P like the one found) are to be considered. For any such a one we will then
wish to know: (a) is it alternative, i.e., different from the null hypothesis in a respect pertinent to
the problem in hand?; (b) does it have a priort plausibility? If both these conditions are fulfilled, the null
hypothesis is rejected in favor of the alternative.
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But in my formulation we must now ask whether the experience would
be comparatively frequent under a non-normal distribution. Of course,
the experience would be comparatively infrequent. If the fit seems mi-
raculous on the hypothesis of normality, it would be even more so on a
hypothesis of non-normality. Were an alternative hypothesis, to the
effect that the data had been falsified to render them normal, pertinent
and tenable in the circumstances, there would be ground for rejection.
But even then what would be rejected is not the hypothesis but the

data.
TABLE 2

DATA FROM A STUDY TO DETERMINE THE EFFECTIVENESS OF A CERTAIN
VACCINE IN THE PREVENTION OF THE COMMON COLD

Total Group Males Females
Affected Affected Affeoted
Num- Num- Num-
ber Per | ber Per | ber Per
No. cent No. cent No. cent
Experimental 143 121 | 84.6 70 57 | 81.4 73 64 | 87.7
Control 157 | 145 | 92.4 80 72 | 90.0 7 73| 94.8
Total 300 | 266 | 88.7 | 150 | 129 | 86.0 | 150 [ 137 | 91.3
Difference, Control-Experimental +7.8 +8.6 +7.1
P; x2for1 D.F. 0.02 0.07 0.06
P; Normal distribution
Difference/S.E. difference 0.02 0.07 0.06
P; Normal distribution
Mean difference/S.E. mean dif- 0.02
ence

P; Sum of x2 for 2 D.F. 0.05

III. In Table 2 are given the results from an experiment that was
performed to determine the effectiveness of a certain vaccine in the pre-
vention of the common cold. If we consider the total group, we see that
the experimental group had 7.8 per cent fewer affected than did the
control group. If this difference is examined by the chi-square test, we
get a P of 0.02, which is significant, we will say. (Half the P of the
chi-square tables is used since only positive differences are relevant
here.) The same question can, of course, be answered by examining
this difference with its S.E., the latter evaluated as /PQ(1/n,+1/n.)
where P is the rate for the total group; these two answers are identical,
as we know, for the four-fold table. Now let us look at the subdivision
of the data into males and females. Using the same procedures in each
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four-fold table, we get for the males a P=0.07, not significant, and for
the females P=0.06, not significant. We may combine the results for
the two sexes by using the mean of the two differences. Examining this
in the light of its S.E., we again get a P =0.02, the same value as before
for the combined group. Looked at this way, we substantiate the
previous conclusion that the significance of the difference for the ex-
perience taken as a whole is measured by a P of 0.02. Now suppose we
combine the experience of the males and females by using the theorem
that for independent tables we may use the sum of the chi-squares
with the sum of the degrees of freedom to obtain a P. We get P =0.05,
a value that may appear reasonable considering the P’s for the males
and females separately. But the P obtained this way, 0.05, is not
significant, while the value previously obtained, 0.02, is. In the problem
here cited there are methods available for combining the males and
females to perform a chi-square test other than that of summing the
chi-squares and the degrees of freedom, and I am only citing this
example to demonstrate that the P obtained in the latter way may not
be a good basis for judgment. I think that where the chi-square
test, using the sum of the chi-squares and the degrees of freedom, fails
in this example is in not being sensitive to the similar directional
character of the difference. Since the chi-square function squares the
differences from expectation, it destroys the value, if there be one, of
knowing the sign. One can, of course, make additional different tests
depending on the expectation of the distribution of signs. But my point
here is that the chi-square test routinely used is not doing this and,
except where you haul out an example, as I have done, you would not
know it because the general direction of the results when the P is
obtained by summing of the chi-squares and the degrees of freedom
is reasonable. The matter becomes of practical importance when the
separate tables cannot be validly combined into a single table, and
this as well as another point I shall attempt to illustrate next.

IV. In Table 3 is a resume of five series of observations on the
number of blood cells counted in a hemocytometer chamber. The cells
in each of 400 squares of the entire hemocytometer chamber were
enumerated. Since it had been domonstrated previously by “Student”
(Biometrika, 5 (1906-1907), 351-360) that this distribution is theoreti-
cally Poisson,and this being an important matter for me to know about,
I, like “Student” with his series, compared the Poisson distribution
by the chi-square test for each of the five experiments. The test was
made for each series in the usual way. That is, each observed mean
determined a Poisson, which was used to calculate the theoretical
frequency for each number of cells. The chi-square test was performed,
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TABLE 3
CHI-SQUARE TEST FOR “GOODNESS OF FIT,” POISSON DISTRIBUTION
Experiment
Erythro-
oytes 1 11 1L v v
Th. Ob. Th. Ob. Th. Ob. Th. Ob. Th. Ob.
0 0 0 ) 0 1 2
6.92 6.77 12.45
1 5 17.31 2 l 6 14.33 1 10
2 17.81 19 11 17.50 17 10 27.83 21
3 35.63 33 27.64 20 35.17 38 24.05 21 49.28 52
4 53.48 | 49 | 44.86 49 53.01 52 40.56 32 65.44 63
5 64.21 59 58.25 54 63.91 65 54.72 55 | 69.53 77
6 64.25 | 78 63.03 75 64.23 69 61.53 79 61.55 62
7 55.10 57 58.46 70 55.33 46 59.32 64 | 46.72 46
8 41.35 38 | 47.44 42 41.70 | 40 | 50.08 45 31.03 41
9 27.58 29 34.22 34 27.95 28 37.51 35 18.32 11
10 16.56 19 22.22 24 16.86 22 25.31 28 9.73 8
11 9.04 9 13.12 9 9.24 10 15.53 16 5
12 5 7 5 10 2
13 0 1 1 3 0
8.07 13.45 3.33 17.11 8.12
14 0 1 1 0 l 0
15 0 1 0 0
m 6.04 6.49 6.03 6.75 5.31
X2 6.48 11.35 4.20 10.01 9.33
D.F. 10 9 10 9 ' 9
P 0.77 0.25 0.94 0.35 0.41
s 2.46 2.33| 2.55 2.33 2.46 2.45 2.60 2.39 2.30 2.18
ns/m 357.53 332.51 396.29 338.30 357.80
P* 0.14 0.01 0.94 0.03 0.14

Total x2 =41.37; P =0.71 for 47 degrees of freedom.
Total ns?/m =1782.43; P =0.0006.

* The P here is the probability of getting in random samples from a Poisson distribution so large a
disorepancy between s2 and m as that observed. The appropriate P is therefore the one corresponding
to a difference from the mean chi-square as large in either direction as that observed, i.e., the P for a
discrepancy in one direction is doubled. The observed chi-square is given by ns?/m where n is the
number of degrees of freedom, which for each experiment is 399, and for the total chi-square is 1995.

comparing theoretical and observed frequencies and using as degrees
of freedom 2 less than the number of classes, since the theoretical
distribution and the observed data agree with respect to the mean and
total number. Table 3 gives the results. It is seen that in no single
instance would the Poisson be rejected by the routine chi-square test,
and considering the entire series together, by adding the chi-squares
and the degrees of freedom we get a P of 0.71, no value for rejection.
I, then, as a practitioner would say, as “Student” did say with a
similar experience, that the cells followed the Poisson distribution.
Having, therefore, decided to accept on the basis of the chi-square
test that the Poisson distribution applies, I now go forward with my
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experiment on the assumption that I can say that the standard devia-
tion is equal to the square root of the mean, which is true for the Pois-
son distribution. In fact, it was in order to be able to calculate the
variability from the mean that I made the test of the Poisson in the
first place. It was natural for me, then, to set down for each experi-
ment a comparison of the variance and the mean. When this was done,
it was found that for each experiment the observed value of the vari-
ance was less than the expected value for the Poisson! A glance at the
table should convince one that the S.D. is really less than /m, for
in each experiment it is less, and it is very improbable that five
random discrepancies would be simultaneously in the same direction
by chance. But if one wishes to make statistical tests for this, they
can be made in a number of ways. One can test the ratio between the
mean of the differences and its standard error in the classic way, or
by the ¢-test, and the mean difference is found to be exceedingly sig-
nificant. Whatever way the test is made, in fact, the difference from
the hypothesis that the variance is equal to the mean is in the order
of 4 sigmas. Interestingly enough, one of the ways of testing whether
the variance is equal to the mean is to use the chi-square function (not
the chi-square test as it has been discussed up to now). For the Poisson
distribution ns?/m is equal to chi-square for n degrees of freedom,
where 7 is the number of degrees of freedom used in calculating s. Table
3 shows the P value obtained by using this test for each of the experi-
ments; and for all the experiments .taken together it is 0.0006. We
have now the surprising result that, considering the experiment as a
whole, the chi-square test for goodness of fit of the Poisson shows no
reason for rejection, whereas any test for the principal characteristic
of the Poisson—namely, that the standard deviation is equal to the
square root of the mean—shows indubitably that this is not true.’

I should attribute this discrepancy in conclusions, according as to
whether they are drawn from the application of the chi-square test
for goodness of fit or from a direct test for the agreement of the vari-
ance and mean, to two defects of the chi-square test considered as a
test to be applied to a situation such as described here. The first is the
nonspecific character of the chi-square test. The test is frequently
referred to as a test for the “goodness of fit,” but it is such a test only
in the tautologic sense that it tests whether chi-square fits. A test can
be applied only as respects a certain measurement. We recognize
regularly that finding a significant difference between the mean of an

5 “Student’s” observations using yeast cells do not agree with mine in regard to the relation of the
standard deviation to the mean, and, therefore, with “Student’s” observations I should have drawn the
same conclusions that he did. What I mean is that he did not find it necessary to supplement the
chi-square test.
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experiment and a hypothetical curve does not warrant rejection of
the curve in other respects, say, the standard deviation. These two
statistics are functions, and it is because these functions are related
to certain specific physical characteristics that a significant difference
in respect of them has great meaning. So, too, a significant difference
tested by another function reflects a significant difference in kurtosis
or skewness, ete. Every function is only a variable mathematically,
and an independent investigation is required to reveal what this
variable represents physically. If I say that a significant difference
found by testing the probability of an experienced value of a certain
variable divulges a difference only as respects the character represented
by that variable, I may ask, “What characteristic does the chi-square
variable represent?” 1 don’t think there 7s any specific characteristic,
and I believe that is one of the chief deficiencies of the chi-square test
so far as its value for practice is concerned.

The second defect has to do with why, though we may be sure
there is a small regular difference between the distribution of cells in
the hemocytometer chamber and the Poisson, even the combined
experience embracing a frequency of 2,000 hemocytometer divisions
and about 13,000 erythrocytes did not divulge this as a significant dif-
ference when the various experiences were combined by summing the
chi-squares and the degrees of freedom. This, I think, is another
exemplification of the point I was trying to make under III. The dif-
ferences were all in one direction, but the chi-square test for different
independent samples combined, effected by adding the chi-squares and
the degrees of freedom, was insensitive to this fact.

There is no room here for further elaboration of these views, or
even for an adequate summary of the points already made. I may,
however, record my impression that in practice the chi-square test is
being relied on too much and too uncritically. As an exploratory tool
for preliminary survey it may have some usefulness. But for any more
searching analysis—as, for instance, if one wishes to base some theoreti-
cal development on the frequency function—one should seek first to
ascertain functions that refer specifically to the questions at hand, and
apply statistical tests that are sensitive to variations in those specific
functions.



