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1. INTRODUCTION

Central in Bayesian statistics is Bayes’ theorem, which can be written as follows:
m(0|z) < f(x]0)7(6).

Given the likelihood function f(z|f) and the prior = (), it is easy to calculate the posterior
distribution of 8, 7 (#|x), which is used for doing inference. An important problem in Bayesian
analysis is how to define the prior distribution. If prior information about the parameter 8 is
available, it should be incorporated in the prior density. If we have no prior information, we
want a prior with minimal influence on the inference. We call such a prior a noninformative

prior.

An important question is, how do we construct a noninformative prior? The Bayes/Laplace
postulate, stated about 200 years ago says the following: When nothing is known about 8 in
advance, let the prior w(0) be a uniform distribution, that is, let all possible outcomes of 6

have the same probability. This is also known as the principle of insufficient reason.

Fisher did not support the Bayes/Laplace postulate. He argued that Not knowing the chance
of mutually exclusive events and knowing the chance to be equal are two quite different states

of knowledge. He accepted Bayes’ theorem only for informative priors.

The fundamental problem by using the uniform distribution as our noninformative prior,
is that the uniform distribution is not invariant under reparametrization. If we have no
information about 6, we also have no information about for example 1/, but a uniform prior
on 6 does not correspond to a uniform prior for 1/6. By the transformation formula, the

corresponding distribution for a one-to-one function g¢(#) is given below:

f6)=1, 6=g(8) = n(0)= %g—w

Another problem with the uniform prior is that if the parameter space is infinite, the uniform
prior is improper, which means, it does not integrate to one. This is however not always a

serious problem, since improper priors often lead to proper posteriors.

These problems with the uniform prior will be more throughly discussed later. But first we

discuss the interpretation of noninformative priors.
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2. INTERPRETATION OF NONINFORMATIVE PRIORS

Kass and Wasserman (1996) stated two different interpretations of noninformative priors:
1) Noninformative priors are formal representations of ignorance. 2) There is no objective,
unique prior that represents ignorance, instead noninformative priors are chosen by public
agreement much like units of length and weight. In the second interpretation, noninformative
priors are the “default” to use when there is insufficient information to otherwise define the
prior. Today, no one use the first interpretation to claim that one particular prior is truly
noninformative. The focus is on comparing different priors to see if any is preferable in some

sense.

Box and Tiao (1973) define a noninformative prior as a prior which provides little information
relative to the experiment. Bernardo and Smith (1994) use a similar definition, they say that
noninformative priors have minimal effect relative to the data, on the final inference. They
regard the noninformative prior as a mathematical tool, it is not a uniquely noninformative
or objective prior. These definitions are related to the second interpretation of Kass and
Wasserman (1996).

Pericchi and Walley (1991) have a quite different view. They say that no single probabil-
ity distribution can model ignorance satisfactory, therefore large classes of distributions are
needed. They use the first interpretation of Kass and Wasserman (1996), but they realize that

a single distribution is not enough. Therefore they introduce classes of prior distributions.

In the next Section, different methods for finding noninformative priors are presented. Most
of the methods are related to the second interpretation of Kass and Wasserman (1996), but
a method related to what Pericchi and Walley (1991) say is also presented.

3. INVARIANT NONINFORMATIVE PRIORS

In the introduction, we saw that the fundamental problem by using the uniform distribution
as noninformative prior, is that it is not invariant under reparametrization. Now we will see

how we can construct invariant noninformative priors.

One approach is to look for an invariance structure in the problem and let the prior have the
same invariance structure. Mathematically, this means that the model and the prior should be
invariant under action of the same group and we should use the right Haar measure as prior.
The right Haar measure is the prior that is invariant to right multiplication with the group.
For reasons not to be discussed here, we prefer the right invariant Haar measure instead of
the left, as our noninformative prior. See for example Berger (1980) or Robert (1994) for a

more throughly discussion of group invariance and Haar measures.

We illustrate the method by two simple examples.



Example 1. Location parameters:

Let X be distributed as f(x—80), which is a location invariant density, and 0 is called a location
parameter. A location invariant density is invariant to linear transformations. This means
that Y = X + a is distributed as f(y — ¢) with ¢ = 0 + a, that is, X and Y have the same
distribution, but with different location parameters. Since the model is location invariant, the

prior distribution should be location invariant. Therefore:
(@) =n(0—a) Yo = w(0) =1

An invariant noninformative prior for a location parameter is the uniform distribution.

Another arqument leading to the same result, is that since 8 and ¢ are location parameters in

the same model, they should have the same prior.

Example 2. Scale parameters:

LetX be distributed as %f(%), which is a scale invariant density with scale parameter o. That
the distribution is scale invariant, means that Y = cX has the same distribution as X, but
with a different scale parameter. Since the density is scale invariant, the prior distribution

should be scale invariant:
m(A) =m(A/c) VA€ (0,400) and ¢ > 0.

This leads to

1 o
mo)==7(=) ¢>0 =n(o)=0""
c e
so the invariant noninfromative prior for a scale parameter is w(o) = o~t, which is an

improper distribution.

We see that in both cases, the invariant noninformative prior is improper. As we will see in

later examples, this is often the case.

A difficulty with this method is that all problems do not have an invariance structure and the
right Haar measure does not always exist. In the following we present methods for finding

invariant noninformative priors which do not take the structure of the problem into account.

3.1. Jeffreys’ prior. This method was described by Jeffreys (1946), and it is based on the

Fisher information given by

dlog f(x|6)

1(6) =FEq( T )2

Jeffreys prior is defined as

7 () ocI'/(8).
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Jeffreys justified his method by the fact that it satisfies the invariant reparametrization re-

quirement, shown by the following two equations:

1(8) =I(h(8))(h'(8))*

m(6) oI (h(6))'/2|h(6)| = 7 (h(6))|1/(8)]
In the last equation we recognize the transformation formula.

A motivation for Jeffreys’ method is that the Fisher information /(#) is an indicator of the
amount of information brought by the model (observations) about 6. To favor the values for

6 of which I(6) is large is equivalent to minimizing the influence of the prior.

When the parameter € is one-dimensional, the Jeffreys prior coincides with the right Haar

measure when it exists.

Jeffreys prior can be generalized to multidimensional parameters 6 by letting the prior be

proportional to the square root of the determinant of the Fisher information matrix:
7(6) oc|1(8)]"/7.

However, there are problems with this generalized Jeffreys prior, as the following example,
taken from Bernardo and Smith (1994) will show.

Example 3. We let @ = {xy,...,2,} be iid N(pu,0?). First, we assume that the mean is
known, and equal to 0. Then we have a scale density, and Jeffreys noninformative prior for
o is given by (o) = o~L. With this choice of prior, the posterior of o is such that

n

D @i/’ ~xi.
=1
Then we assume that the mean is unknown. The two dimensional Jeffreys prior for p and o

18 now

(1) m(p, o) = a2

With this choice of prior, the posterior of o is such that

n

(2) D (zi—2)*)/o* ~ xi.
=1
This is however unacceptable, since we would expect to loose one degree of freedom when we

estimate u.

Jeffreys’ advice in this case, and other location-scale families was to assume that g and o are
independent apriori and use the one-dimensional Jeffreys prior for each of the parameters.
Then the prior for (u, o) is m(p, ) = ot which is also the right invariant Haar measure,
and gives us the correct degrees of freedom in expression (2). It can be mentioned that the

prior given by equation (1) is the left invariant Haar measure.
4



3.2. Reference priors. Another well-known class of noninformative priors, is the reference
prior, first described by Bernardo (1979) and further developed by Berger and Bernardo
(1989). The method for deriving the reference prior is also referred to as the Berger-Bernardo
method.

The method leads to Jeffreys’ prior in the one-dimensional case, but as we see later, it is
advantageous to Jeffreys” method in the multidimensional case. The definition of a reference
prior is the prior that maximizes the missing information in the experiment. The reference
prior is derived as follows. Let X" = {X,,...,X,} be iid random variables. Define the

Kullback-Leibler distance between the posterior and the prior distribution as

Ko(r(8)a"),7(6) = [ (6] log(r(612")/7(6)db
Let K] be the expected Kullback-Leibler distance with respect to X™:
K] = Exn(K,(r(0]z"),7(0)))

The missing information is now given as the limit of K] as the number of observations, n
goes to infinity. So we find the prior that maximizes
K, = lim K.
o T LN
Unfortunately, this limit is usually infinite. To overcome this difficulty, we find the prior =,
maximizing K] and find the limit of the corresponding sequence of posteriors. Then the

reference prior is given as the prior that produces the limiting posterior.

The Berger-Bernardo method can be extended to handle nuisance parameters. Then the
parameter is given by 8 = (¢, A), where ¢ is the parameter of interest and A is the nuisance

parameter. We can write the prior for € as
(¢ A) = m(A|)m(9).

The idea is now to first define the conditional prior 7(A|¢) to be the reference prior for A with

¢ fixed. Then we find the marginal model
g (al6) = [ plaloNm (o)

and take the prior for ¢, 7(¢) to be the reference prior based on the marginal model p(z|®).
There are some technical problems here, because the prior 7(A|¢) is often improper, and the
integral (3) diverges. To accomplish this, we restrict the integral to a sequence of compact

sets.

The method is invariant in choice of nuisance parameter. This seems reasonable, since the

parameter of interest is independent of the nuisance parameter.

The method can also be generalized to multidimensional parameter spaces. Then we let the

parameter vector @ = (6y,...,60,,) be ordered according to importance, with #; being the
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most important parameter. We write the prior for € as

77(0) = ﬂ(0m|017 e 70m—1) .. .7T(02|01)7T(01)

and use the procedure above recursively. It should be noted that the ordering of the param-
eters is very important. Different orderings may lead to different reference priors. In some
cases it might be difficult to chose the “correct” ordering. However, this method avoids the

problem we saw with Jeffreys’ multidimensional method.

3.3. Other methods. Some methods related to those already discussed are now mentioned.
Box and Tiao (1973) described a method based on something they called Data-translated
likelihoods. The method leads to Jeffreys’ prior. A likelihood function is data-translated
if it can be written as Ly(¢) = f(¢ — t(y)). They suggested to use a uniform prior when
this is satisfied. An “approximate data-translated likelihood” was introduced to motivate for

Jeffreys’ general rule.

Jaynes (1968) suggested to select the prior that maximizes the entropy. This method is
only good for discrete, finite parameter space. If no further constraints are imposed on the
problem, this method gives the uniform prior. The method has been used successfully in

many problems.

Welch and Peers (1963) developed a method called Probability matching. They seek a prior
7(6) so that the posterior confidence interval for # has coverage error O(n~!) in the frequentist
sense. This means that the difference between the posterior and frequentist confidence interval
should be small. Their method is equivalent to Jeffreys’ prior when 6 is one-dimensional.

Tibshirani (1989) extended the method to be able to handle nuisance parameters.

4. THE BOUNDED DERIVATIVE MODEL

This model for prior ignorance is quite different from the noninformative priors described so
far. This model is based on the following: We define a class M of prior distributions. The
class of distributions M is understood through the upper and lower probabilities, defined
by P(A) = sup{P;(A) : f € M} and P(A) = inf{P;(A) : f € M}. The upper and lower
probabilities can be interpreted as upper and lower betting rates. We will bet against A on
rates larger than the upper probability and on A on rates smaller than the lower probability.
For example, if the lower probability is 0.95, you should be willing to bet on A at odds of
more than 0.95/0.05 = 19 to 1. If the class M is convex and closed, it is fully determined
through the upper and lower probabilities. It should be noted that the class is “Not a class
of reasonable priors, but a reasonable class of priors.” This means that each single member
of the class is not a reasonable model for prior ignorance, because no single distribution
can model ignorance satisfactory. But the whole class, understood through the upper and

lower probabilities is a reasonable model for prior ignorance. When we have little apriori
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information, P(A) should be near 1 and P(A) should be near 0, which means that we will

never bet on or against A.

The bounded derivative model, defined by Walley (1997) is a model for prior ignorance about

a one-dimensional parameter # € ©. The model is defined as follows:

The bounded derivative model M is the conver set of all pdfs f satisfying

1. f is continuous everywhere in ©.

2. f(8) >0 V6coO.

3. f is differentiable and |(In f)(0)] < ¢,
i.e. |f(0)] <cf(8) for almost all § € ©.

All members of the class M are proper distributions. There is no general rule to chose the
constant ¢, but it should be chosen large enough for the model to be highly imprecise, and

small enough to produce useful inference.

The model is invariant only under linear transformations. Therefore, we should chose an
appropriate transformation of the parameter space such that transformed parameter space is
the whole real line. This might sometimes be difficult. We see that the model is not invariant
under reparametrization. However, this is not as serious a problem for this model as it is for
the uniform distribution, see Walley (1997).

A basic property of the model is this inequality, which holds for any f € M and real numbers
0y and 6:

J(B) exp(~cl6 — bo]) < 1(8) < J(6) explcld — o).

From this property the following theorem can be proved, which is central for making inference.

Theorem 1. Assume the likelihood function L satisfies
/ exp(c|8]) L(#)df < oo.

Then, for any non-decreasing function'Y : R — R, the posterior lower and upper mean of Y

are given by

_ffooo Y (6) exp(—c8)L(8)do

P{Y|e) = J7° exp(—ch)L(0)d6
and
Piy|e) :ffooooif(O) exp(ch)L(6)df

J=_exp(ch)L(8)do

This theorem can also be generalized to general functions Y. Refer to Walley (1997) for

examples on use of the bounded derivative model.
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5. PROBLEMS WITH CONSTRUCTION AND APPLICATIONS

In this section we discuss various problems related to construction and application of the
noninformative priors described in Section 3. Many of the problems are related to the use of

improper noninformative priors.

5.1. Sample space dependence. The first problem to be discussed, is sample space de-

pendence. The problem is illustrated by an example.

Example 4. Let 8 be the proportion of successes in a Bernoulli population. Then 6 can
be estimated in two ways, by observing either y: the number of successes in n trials. The
distribution of Y is Bin(n,8). Or we can observe z: the number of trials until r successes.
The distribution of 7 is Neg(r,0). We will find a noninformative prior for 8. By observing y,
Jeffreys’ prior is w(6) x [0(1—0)]_1/2. By observing z, Jeffreys’ prior is 7 (#) x 671 (1—0)_1/2.

We see that the choice of noninformative prior depends on the sample space. This is also a
violation of the likelihood principle, which says that problems with proportional likelihoods

should result in the same inference.

5.2. The marginalization paradox. This problem is related to the use of improper nonin-
formative priors when the parameter space is multi-dimensional. We illustrate the marginal-

ization paradox by an example from Stone and David (1972).

Example 5. Let v = {x1,...,2,} be iid N(u, a?). The reference prior for (u, o) is w(y, o) =
o~ which is independent of the ordering of the parameters. As said in the discussion of

Example 3, this is also the right invariant Haar measure.
We now assume that we are going to do inference about = /o, so the posterior distribution
for 8 is needed. By using the given reference prior, the posterior for (0, 0) is given by
nf? nbx  R? )
2 o 2072

where R* =Y 2%. By integrating out o, we find the marginal posterior for 8,

(0, 0)|z) exp(—

7 (0lz) o exp(—3inb?) /0 w" % exp(—1w® 4 row) dw,

where r = nz /R. We see that the marginal posterior for 0, w(0|x) is a function of r alone.

We also calculate the distribution of r given the parameters (u,o):

f(rlp, o) < exp(—2n8®)(1 - rz/n)(n_?’)/z/ W' exp(—3w? + réw)dw
0
and we see that f(r|u, o) is a function of 8 alone. By Bayes theorem we would expect to be

able to find a marginal prior for §, =(8) such that
w(0]r) o< f(r|0)m(0).
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However, this is impossible. This is what is called the marginalization paradoz.

To overcome this problem, we can use a reference prior relative to the ordered partition (8, 0),

which gives:
7(0,0) = (2+6%)"1/27!

The marginal posterior for 8 is now given by
m(f)z) o< (2 + 02)_1/2[exp(—%n02) / w" L exp(—L1w? + réw)dw].
0

Bayes’ theorem can now be used, with the marginal prior for 8 equal to (2 + 02)_1/2.
This shows that no single noninformative prior is universally noninformative. When the
parameter space is multi-dimensional, we should chose the noninformative prior in accordance

with the inferential problem at hand.

5.3. Other problems with improper priors. As mentioned, the reason why the marginal-
ization paradox occurs is that we use an improper prior. In this Subsection, some other

problems with noninformative priors are shortly mentioned.

Strong inconsistency: The phenomenon is illustrated by the following example:

Example 6. Let x ~ N(6,0%), where 0% is known. Let B be the event that |z| > |0|. From
the sampling model we find that

N | —

1
P(BIF) = &+ O(=206l\7/0) >
Since P(B|0) > % for all values of 8, we conclude that P(B) > %

The posterior distribution, using a uniform prior for p gives
1
P(Blz) = 3~ b (—2|z|v/n/o) <

Since P(B|z) <  for all values of x, we conclude that P(B) < 3.
We see that the sampling model and the posterior are inconsistent. This is referred to as

strong inconsistency.

Inadmissibility: Another important problem is that improper priors can lead to inadmissible
Bayes estimators. A Bayes estimator is inadmissible if there is another estimator with less
or equal expected loss for all values of the parameter 6, and less expected loss for at least
one value of 8. A well-known example is that the posterior mean using a uniform prior is an
inadmissible estimator of @ under squared error loss if the number of observations n is greater

than or equal to three.



Improper posteriors: In some cases improper priors can lead to improper posteriors. An

example, taken from Kass and Wasserman (1996) is the hierarchical model
Yilpi, 0~ N (i, 02)
il ~ N (1, 7%)

fori=1,...,n, and o is known. A natural choice of prior is 7(x, 7) = 771, but this leads to

an improper posterior.

5.4. Stein’s paradox. As mentioned in the foregoing Subsections, many problems occur for
improper priors. An idea, in order to overcome problems with improper priors is to use proper
approximations to improper priors. Examples are normal distributions with large variance,
or a uniform distribution on a compact set. However, this is not always a good solution, as

this example, taken from Bernardo and Smith (1994), shows.

Example 7. Letx = {z1,...,®,} be a random sample from Ni(p, Iy). Lett =Y. 7?7 where
Z; is the mean of the n observations from coordinate ©. Since p is a location parameter, the
natural choice of noninformative prior for p is the uniform distribution. We approximate
m(p1, ..., pk) = 1 by the product of k normal densities with large variance. Inferences about
¢ = >, u? is desired. We shall see that in this case the prior strongly dominates the data.
With the given choice of prior, the posterior of ng is x3(nt) with
= 200t + ke /).

n
The sampling distribution for nt is x3i(n¢) with E(t|¢) = ¢+ k/n. By setting k = 100, n =1
and t = 200 we have that E(¢|z) ~ 300 and Var(¢|z) ~ 322.

E(¢le) =t+k/n and Var(¢|z)

The unbiased estimator based on sampling distribution is

p=t—k/n=~~100

which is far from the posterior mean.

If we instead use the reference prior for {¢,wy, ... ,wr_1}, where the w’s are nuisance param-
eters, the marginal prior for ¢ is 7(¢) = ¢~Y2, With this choice of prior, the posterior for ¢
15

m(0lz) o 67N (ntk, ng)

with mode close to qAﬁ

Again we see that the prior should be chosen according to the inference problem at hand. In
addition the example illustrates two problems. The first one is that noninformative priors can
dominate the data, and the second is that proper approximations to noninformative priors

do not solve all problems with noninformative priors.
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6. SOME OPEN PROBLEMS

An important question is, when does noninformative priors lead to proper posteriors? There

are no general rules for finding out this.

An even more important problem is, how is one to know whether a posterior is data dom-
inated? Some solutions to this problem are discussed by Kass and Wasserman (1996), but

they all have some disadvantages.

Finally it should be noted that in many models, it is difficult to compute the prior. We have
seen situations where it is simple, but for other situations, such as non-normal hierarchical

models, it may not be clear how to compute the prior.
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