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�� Introduction

Central in Bayesian statistics is Bayes� theorem� which can be written as follows�

���jx� � f�xj�������
Given the likelihood function f�xj�� and the prior ����� it is easy to calculate the posterior

distribution of �� ���jx�� which is used for doing inference� An important problem in Bayesian

analysis is how to de�ne the prior distribution� If prior information about the parameter � is

available� it should be incorporated in the prior density� If we have no prior information� we

want a prior with minimal in�uence on the inference� We call such a prior a noninformative

prior�

An important question is� how do we construct a noninformative prior	 The Bayes
Laplace

postulate� stated about ��� years ago says the following� When nothing is known about � in

advance� let the prior ���� be a uniform distribution� that is� let all possible outcomes of �

have the same probability� This is also known as the principle of insu�cient reason�

Fisher did not support the Bayes
Laplace postulate� He argued that Not knowing the chance

of mutually exclusive events and knowing the chance to be equal are two quite di�erent states

of knowledge� He accepted Bayes� theorem only for informative priors�

The fundamental problem by using the uniform distribution as our noninformative prior�

is that the uniform distribution is not invariant under reparametrization� If we have no

information about �� we also have no information about for example ���� but a uniform prior

on � does not correspond to a uniform prior for ���� By the transformation formula� the

corresponding distribution for a one
to
one function g��� is given below�

���� � �� � � g��� � ���� � j d
d�

g�����j

Another problem with the uniform prior is that if the parameter space is in�nite� the uniform

prior is improper� which means� it does not integrate to one� This is however not always a

serious problem� since improper priors often lead to proper posteriors�

These problems with the uniform prior will be more throughly discussed later� But �rst we

discuss the interpretation of noninformative priors�
�



�� Interpretation of Noninformative Priors

Kass and Wasserman ������ stated two di�erent interpretations of noninformative priors�

�� Noninformative priors are formal representations of ignorance� �� There is no objective�

unique prior that represents ignorance� instead noninformative priors are chosen by public

agreement much like units of length and weight� In the second interpretation� noninformative

priors are the �default� to use when there is insu�cient information to otherwise de�ne the

prior� Today� no one use the �rst interpretation to claim that one particular prior is truly

noninformative� The focus is on comparing di�erent priors to see if any is preferable in some

sense�

Box and Tiao ������ de�ne a noninformative prior as a prior which provides little information

relative to the experiment� Bernardo and Smith ������ use a similar de�nition� they say that

noninformative priors have minimal e�ect relative to the data� on the �nal inference� They

regard the noninformative prior as a mathematical tool� it is not a uniquely noninformative

or objective prior� These de�nitions are related to the second interpretation of Kass and

Wasserman �������

Pericchi and Walley ������ have a quite di�erent view� They say that no single probabil


ity distribution can model ignorance satisfactory� therefore large classes of distributions are

needed� They use the �rst interpretation of Kass and Wasserman ������� but they realize that

a single distribution is not enough� Therefore they introduce classes of prior distributions�

In the next Section� di�erent methods for �nding noninformative priors are presented� Most

of the methods are related to the second interpretation of Kass and Wasserman ������� but

a method related to what Pericchi and Walley ������ say is also presented�

�� Invariant Noninformative Priors

In the introduction� we saw that the fundamental problem by using the uniform distribution

as noninformative prior� is that it is not invariant under reparametrization� Now we will see

how we can construct invariant noninformative priors�

One approach is to look for an invariance structure in the problem and let the prior have the

same invariance structure� Mathematically� this means that the model and the prior should be

invariant under action of the same group and we should use the right Haar measure as prior�

The right Haar measure is the prior that is invariant to right multiplication with the group�

For reasons not to be discussed here� we prefer the right invariant Haar measure instead of

the left� as our noninformative prior� See for example Berger ������ or Robert ������ for a

more throughly discussion of group invariance and Haar measures�

We illustrate the method by two simple examples�
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Example �� Location parameters�

Let X be distributed as f�x���� which is a location invariant density� and � is called a location

parameter� A location invariant density is invariant to linear transformations� This means

that Y � X � a is distributed as f�y � �� with � � � � a� that is� X and Y have the same

distribution� but with di�erent location parameters� Since the model is location invariant� the

prior distribution should be location invariant� Therefore�

���� � ���� a� �a � ���� � ��

An invariant noninformative prior for a location parameter is the uniform distribution�

Another argument leading to the same result� is that since � and � are location parameters in

the same model� they should have the same prior�

Example �� Scale parameters�

LetX be distributed as �
�f�

x
� �� which is a scale invariant density with scale parameter �� That

the distribution is scale invariant� means that Y � cX has the same distribution as X� but

with a di�erent scale parameter� Since the density is scale invariant� the prior distribution

should be scale invariant�

��A� � ��A�c� �A � ������ and c � ��

This leads to

���� �
�

c
��
�

c
� c � � � ���� � ���

so the invariant noninfromative prior for a scale parameter is ���� � ���� which is an

improper distribution�

We see that in both cases� the invariant noninformative prior is improper� As we will see in

later examples� this is often the case�

A di�culty with this method is that all problems do not have an invariance structure and the

right Haar measure does not always exist� In the following we present methods for �nding

invariant noninformative priors which do not take the structure of the problem into account�

���� Je�reys� prior� This method was described by Je�reys ������� and it is based on the

Fisher information given by

I��� �E��
� log f�xj��

��
���

Je�reys prior is de�ned as

���� �I�������
�



Je�reys justi�ed his method by the fact that it satis�es the invariant reparametrization re


quirement� shown by the following two equations�

I��� �I�h�����h������

���� �I�h�������jh����j � ��h����jh����j
In the last equation we recognize the transformation formula�

A motivation for Je�reys� method is that the Fisher information I��� is an indicator of the

amount of information brought by the model �observations� about �� To favor the values for

� of which I��� is large is equivalent to minimizing the in�uence of the prior�

When the parameter � is one
dimensional� the Je�reys prior coincides with the right Haar

measure when it exists�

Je�reys prior can be generalized to multidimensional parameters � by letting the prior be

proportional to the square root of the determinant of the Fisher information matrix�

���� �jI���j����
However� there are problems with this generalized Je�reys prior� as the following example�

taken from Bernardo and Smith ������ will show�

Example �� We let x � fx�� � � � � xng be iid N�	� ���� First� we assume that the mean is

known� and equal to �� Then we have a scale density� and Je�reys noninformative prior for

� is given by ���� � ���� With this choice of prior� the posterior of � is such that

�
nX
i��

x�i ���
� � 
�n�

Then we assume that the mean is unknown� The two dimensional Je�reys prior for 	 and �

is now

��	� �� � �������

With this choice of prior� the posterior of � is such that

�
nX
i��

�xi � �x������ � 
�n����

This is however unacceptable� since we would expect to loose one degree of freedom when we

estimate 	�

Je�reys� advice in this case� and other location
scale families was to assume that 	 and � are

independent apriori and use the one
dimensional Je�reys prior for each of the parameters�

Then the prior for �	� �� is ��	� �� � ���� which is also the right invariant Haar measure�

and gives us the correct degrees of freedom in expression ���� It can be mentioned that the

prior given by equation ��� is the left invariant Haar measure�
�



���� Reference priors� Another well
known class of noninformative priors� is the reference

prior� �rst described by Bernardo ������ and further developed by Berger and Bernardo

������� The method for deriving the reference prior is also referred to as the Berger
Bernardo

method�

The method leads to Je�reys� prior in the one
dimensional case� but as we see later� it is

advantageous to Je�reys� method in the multidimensional case� The de�nition of a reference

prior is the prior that maximizes the missing information in the experiment� The reference

prior is derived as follows� Let Xn � fX�� � � � � Xng be iid random variables� De�ne the

Kullback
Leibler distance between the posterior and the prior distribution as

Kn����jxn�� ����� �
Z

���jxn� log����jxn�������d��

Let K�
n be the expected Kullback
Leibler distance with respect to Xn�

K�
n � EXn�Kn����jxn�� ������

The missing information is now given as the limit of K�
n as the number of observations� n

goes to in�nity� So we �nd the prior that maximizes

K�
�

� lim
n��

K�
n �

Unfortunately� this limit is usually in�nite� To overcome this di�culty� we �nd the prior �n
maximizing K�

n and �nd the limit of the corresponding sequence of posteriors� Then the

reference prior is given as the prior that produces the limiting posterior�

The Berger
Bernardo method can be extended to handle nuisance parameters� Then the

parameter is given by � � ��� ��� where � is the parameter of interest and � is the nuisance

parameter� We can write the prior for � as

���� �� � ���j�������
The idea is now to �rst de�ne the conditional prior ���j�� to be the reference prior for � with

� �xed� Then we �nd the marginal model

p�xj�� �
Z

p�xj�� �����j��d����

and take the prior for �� ���� to be the reference prior based on the marginal model p�xj���
There are some technical problems here� because the prior ���j�� is often improper� and the

integral ��� diverges� To accomplish this� we restrict the integral to a sequence of compact

sets�

The method is invariant in choice of nuisance parameter� This seems reasonable� since the

parameter of interest is independent of the nuisance parameter�

The method can also be generalized to multidimensional parameter spaces� Then we let the

parameter vector � � ���� � � � � �m� be ordered according to importance� with �� being the
�



most important parameter� We write the prior for � as

���� � ���mj��� � � � � �m��� � � �����j��������
and use the procedure above recursively� It should be noted that the ordering of the param


eters is very important� Di�erent orderings may lead to di�erent reference priors� In some

cases it might be di�cult to chose the �correct� ordering� However� this method avoids the

problem we saw with Je�reys� multidimensional method�

���� Other methods� Some methods related to those already discussed are now mentioned�

Box and Tiao ������ described a method based on something they called Data�translated

likelihoods� The method leads to Je�reys� prior� A likelihood function is data
translated

if it can be written as Ly��� � f�� � t�y��� They suggested to use a uniform prior when

this is satis�ed� An �approximate data
translated likelihood� was introduced to motivate for

Je�reys� general rule�

Jaynes ������ suggested to select the prior that maximizes the entropy� This method is

only good for discrete� �nite parameter space� If no further constraints are imposed on the

problem� this method gives the uniform prior� The method has been used successfully in

many problems�

Welch and Peers ������ developed a method called Probability matching� They seek a prior

���� so that the posterior con�dence interval for � has coverage error O�n��� in the frequentist

sense� This means that the di�erence between the posterior and frequentist con�dence interval

should be small� Their method is equivalent to Je�reys� prior when � is one
dimensional�

Tibshirani ������ extended the method to be able to handle nuisance parameters�

�� The Bounded Derivative Model

This model for prior ignorance is quite di�erent from the noninformative priors described so

far� This model is based on the following� We de�ne a class M of prior distributions� The

class of distributions M is understood through the upper and lower probabilities� de�ned

by P �A� � supfPf �A� � f � Mg and P �A� � inffPf �A� � f � Mg� The upper and lower

probabilities can be interpreted as upper and lower betting rates� We will bet against A on

rates larger than the upper probability and on A on rates smaller than the lower probability�

For example� if the lower probability is ����� you should be willing to bet on A at odds of

more than ��������� � �� to �� If the class M is convex and closed� it is fully determined

through the upper and lower probabilities� It should be noted that the class is �Not a class

of reasonable priors� but a reasonable class of priors�� This means that each single member

of the class is not a reasonable model for prior ignorance� because no single distribution

can model ignorance satisfactory� But the whole class� understood through the upper and

lower probabilities is a reasonable model for prior ignorance� When we have little apriori
�



information� P �A� should be near � and P �A� should be near �� which means that we will

never bet on or against A�

The bounded derivative model� de�ned by Walley ������ is a model for prior ignorance about

a one
dimensional parameter � � �� The model is de�ned as follows�

The bounded derivative modelM is the convex set of all pdfs f satisfying

�� f is continuous everywhere in ��

�� f��� � � �� � ��

�� f is di�erentiable and j�ln f�����j � c�

i�e� jf ����j � cf��� for almost all � � ��

All members of the class M are proper distributions� There is no general rule to chose the

constant c� but it should be chosen large enough for the model to be highly imprecise� and

small enough to produce useful inference�

The model is invariant only under linear transformations� Therefore� we should chose an

appropriate transformation of the parameter space such that transformed parameter space is

the whole real line� This might sometimes be di�cult� We see that the model is not invariant

under reparametrization� However� this is not as serious a problem for this model as it is for

the uniform distribution� see Walley �������

A basic property of the model is this inequality� which holds for any f � M and real numbers

�� and ��

f���� exp��cj� � ��j� � f��� � f���� exp�cj� � ��j��
From this property the following theorem can be proved� which is central for making inference�

Theorem �� Assume the likelihood function L satis	esZ
�

��

exp�cj�j�L���d� ���

Then� for any non�decreasing function Y � R � R� the posterior lower and upper mean of Y

are given by

P �Y jx� �
R
�

��
Y ��� exp��c��L���d�R
�

��
exp��c��L���d�

and

P �Y jx� �
R
�

��
Y ��� exp�c��L���d�R
�

��
exp�c��L���d�

�

This theorem can also be generalized to general functions Y � Refer to Walley ������ for

examples on use of the bounded derivative model�
�



�� Problems with Construction and Applications

In this section we discuss various problems related to construction and application of the

noninformative priors described in Section �� Many of the problems are related to the use of

improper noninformative priors�

���� Sample space dependence� The �rst problem to be discussed� is sample space de


pendence� The problem is illustrated by an example�

Example �� Let � be the proportion of successes in a Bernoulli population� Then � can

be estimated in two ways� by observing either y� the number of successes in n trials� The

distribution of Y is Bin�n� ��� Or we can observe z� the number of trials until r successes�

The distribution of Z is Neg�r� ��� We will 	nd a noninformative prior for �� By observing y�

Je�reys
 prior is ���� � ������������� By observing z� Je�reys
 prior is ���� � �������������

We see that the choice of noninformative prior depends on the sample space� This is also a

violation of the likelihood principle� which says that problems with proportional likelihoods

should result in the same inference�

���� The marginalization paradox� This problem is related to the use of improper nonin


formative priors when the parameter space is multi
dimensional� We illustrate the marginal


ization paradox by an example from Stone and David �������

Example �� Let x � fx�� � � � � xng be iid N�	� ���� The reference prior for �	� �� is ��	� �� �

��� which is independent of the ordering of the parameters� As said in the discussion of

Example �� this is also the right invariant Haar measure�

We now assume that we are going to do inference about � � 	��� so the posterior distribution

for � is needed� By using the given reference prior� the posterior for ��� �� is given by

���� �jx� � exp
�
�n�

�

�
�
n��x

�
� R�

���

�

where R� �
P

x�i � By integrating out �� we 	nd the marginal posterior for ��

���jx� � exp���
�n�

��

Z
�

�

n�� exp

���
�


� � r�

�
d
�

where r � n�x�R� We see that the marginal posterior for �� ���jx� is a function of r alone�

We also calculate the distribution of r given the parameters �	� ���

f�rj	� �� � exp���
�n�

����� r��n�	n��
��
Z
�

�

n�� exp

���
�


� � r�

�
d


and we see that f�rj	� �� is a function of � alone� By Bayes theorem we would expect to be

able to 	nd a marginal prior for �� ���� such that

���jr� � f�rj�������
�



However� this is impossible� This is what is called the marginalization paradox�

To overcome this problem� we can use a reference prior relative to the ordered partition ��� ���

which gives�

���� �� � �� � ����������

The marginal posterior for � is now given by

���jx� � �� � ��������exp���
�n�

��

Z
�

�

n�� exp���

�

� � r�
�d
��

Bayes
 theorem can now be used� with the marginal prior for � equal to �� � ��������

This shows that no single noninformative prior is universally noninformative� When the

parameter space is multi
dimensional� we should chose the noninformative prior in accordance

with the inferential problem at hand�

���� Other problems with improper priors� As mentioned� the reason why the marginal


ization paradox occurs is that we use an improper prior� In this Subsection� some other

problems with noninformative priors are shortly mentioned�

Strong inconsistency� The phenomenon is illustrated by the following example�

Example 	� Let x � N��� ���� where �� is known� Let B be the event that j�xj 	 j�j� From

the sampling model we 	nd that

P �Bj�� � �

�
� ����j�jpn��� � �

�

Since P �Bj�� � �
� for all values of �� we conclude that P �B� � �

��

The posterior distribution� using a uniform prior for 	 gives

P �Bjx� � �

�
� ����j�xjpn��� � �

�

Since P �Bjx� � �
� for all values of x� we conclude that P �B� � �

� �

We see that the sampling model and the posterior are inconsistent� This is referred to as

strong inconsistency�

Inadmissibility� Another important problem is that improper priors can lead to inadmissible

Bayes estimators� A Bayes estimator is inadmissible if there is another estimator with less

or equal expected loss for all values of the parameter �� and less expected loss for at least

one value of �� A well
known example is that the posterior mean using a uniform prior is an

inadmissible estimator of � under squared error loss if the number of observations n is greater

than or equal to three�
�



Improper posteriors� In some cases improper priors can lead to improper posteriors� An

example� taken from Kass and Wasserman ������ is the hierarchical model

Yij	i� � � N�	i� �
��

	ij� � N�	� ���

for i � �� � � � � n� and � is known� A natural choice of prior is ��	� �� � ���� but this leads to

an improper posterior�

���� Stein�s paradox� As mentioned in the foregoing Subsections� many problems occur for

improper priors� An idea� in order to overcome problems with improper priors is to use proper

approximations to improper priors� Examples are normal distributions with large variance�

or a uniform distribution on a compact set� However� this is not always a good solution� as

this example� taken from Bernardo and Smith ������� shows�

Example 
� Let x � fx�� � � � �xng be a random sample from Nk��� Ik�� Let t �
P

i �x
�
i where

�xi is the mean of the n observations from coordinate i� Since � is a location parameter� the

natural choice of noninformative prior for � is the uniform distribution� We approximate

��	�� � � � � 	k� � � by the product of k normal densities with large variance� Inferences about

� �
P

i 	
�
i is desired� We shall see that in this case the prior strongly dominates the data�

With the given choice of prior� the posterior of n� is 
�k�nt� with

E��jx� � t� k�n and Var��jx� � �

n
��t� k�n��

The sampling distribution for nt is 
�k�n�� with E�tj�� � �� k�n� By setting k � ���� n � �

and t � ��� we have that E��jx� 
 ��� and Var��jx� 
 ����

The unbiased estimator based on sampling distribution is

 � � t � k�n 
 ���

which is far from the posterior mean�

If we instead use the reference prior for f�� 
�� � � � � 
k��g� where the 

s are nuisance param�

eters� the marginal prior for � is ���� � ������ With this choice of prior� the posterior for �

is

���jx� � �����
��ntjk� n��
with mode close to  ��

Again we see that the prior should be chosen according to the inference problem at hand� In

addition the example illustrates two problems� The �rst one is that noninformative priors can

dominate the data� and the second is that proper approximations to noninformative priors

do not solve all problems with noninformative priors�
��



�� Some Open Problems

An important question is� when does noninformative priors lead to proper posteriors	 There

are no general rules for �nding out this�

An even more important problem is� how is one to know whether a posterior is data dom


inated	 Some solutions to this problem are discussed by Kass and Wasserman ������� but

they all have some disadvantages�

Finally it should be noted that in many models� it is di�cult to compute the prior� We have

seen situations where it is simple� but for other situations� such as non
normal hierarchical

models� it may not be clear how to compute the prior�
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