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ABSTRACT 

If p is an unknown probability parameter, prior ignorance of its value is appropriately 

expressed by the prior probability density distribution )1(1)( pppf −∝ .  That is the only 

distribution that remains invariant under transformations that convert the original inference 

problem into another that should look identical to a truly ignorant observer.  This invariance 

principle for specifying an ignorant prior distribution, pioneered in the writings of the late E.T. 

Jaynes, is contrasted with the principle of “data translation” as set forth by Box and Tiao—a 

principle that typifies alternative approaches to “noninformative” prior distributions. 
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1.  INTRODUCTION 

1.1  Bayes’s Theorem: The Rule for Rationally Updating Opinions in the Light of Evidence 

Bayesians regard the laws of probability as the fundamental rules of empirical reasoning, 

deriving them from the principle of “coherence”: the requirement that rational opinions should 

be consistent with one another and with other commitments that we find deeply compelling a 

priori.  Bayes’s theorem is central to the logic of science in this view.  It articulates the rule for 

rationally updating our opinions of contending hypotheses in light of new evidence: 

)Pr()|ˆPr()ˆ|Pr( HHEEH ∝                                               Eq. 1 

where H is any of a series of contending scientific theories and Ê  is relevant evidence newly at 

hand.  Pr(H) is the prior probability of hypothesis H, expressing our rational degree of belief in 

its truth before acquiring (or considering) evidence Ê .   is the posterior probability, 

expressing an updated degree of belief in the truth of H in light of the new evidence 

)Ê|Pr(H

Ê .  Bayes’s 

theorem states that the posterior probability of each hypothesis is proportional both to its prior 

probability and to —the probability of obtaining evidence )|ˆPr( HE Ê  given that hypothesis H 

is true.  Considered as a function of the various contending hypotheses H for fixed evidence 

Ê —the evidence we actually observe—  is the likelihood of hypothesis H.  Bayes’s 

theorem can therefore be epitomized 

)|ˆPr( HE

updated opinion ∝ likelihood × starting opinion 

If the contending hypotheses are mutually exclusive and exhaust all the possibilities, their 

posterior probabilities can be normalized by imposing the additional constraint that they sum to 

unity. 
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The likelihood function  is an E transect of the sampling distribution , 

whose domain subtends not only the manifold of contending hypotheses H, but also the manifold 

of possible observations E (including the evidence actually observed, 

)|ˆPr( HE )|Pr( HE

Ê ): 

EE
HEHE ˆ)|Pr()|ˆPr(

=
= .  If the sampling distribution Pr(  describes the anticipated 

outcomes of some sort of experiment about to be undertaken, it can be said to embody the 

intended design of the experiment.  The way the sampling distribution depends on E is highly 

relevant to the design of an anticipated experiment, but completely irrelevant once the 

observation has actually been made, revealing the particular data-set 

)| HE

Ê .   As implied in Eq. 1, it 

is the relative values of the likelihood function for the different hypotheses H on fixed data Ê  

that matter; factors that don’t depend on H are irrelevant, and can be suppressed without loss of 

relevant information.  This aspect of Bayesian coherence is called the likelihood principle. 

1.2  Prior Probability Distributions: The Constraints of Ignorance 

While Bayes’s theorem provides a strict rule for rationally updating our opinions as new 

evidence emerges, it doesn’t provide the starting point for this chain of reassessments.  What 

prior probability distribution should be chosen for hypotheses about which we know little or 

nothing in advance?  Of course, there will be fortunate cases when the choice of prior probability 

distribution is of no practical importance because the likelihood function is a much steeper 

function of H than is any colorable prior probability distribution.  But there remain applications 

in which the evidence is more vague, so that the posterior probability distribution is sensitive to 

the prior distribution. 

In his Théorie Analytique des Probabilités of 1812, which set the stage for modern 

statistical inference, Laplace invoked what is now known as the principle of indifference: if 
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nothing is known in advance, all alternatives are “equally possible” and should be assigned equal 

prior probability. When the alternatives in question are discrete, this principle is compelling: the 

names of the alternatives are in that case arbitrary labels that could be reshuffled without altering 

the problem from the point of view of the ignorant observer—a constraint that can only be met if 

the prior probabilities are equal.  But what if the alternatives in question are the different possible 

values of a continuous parameter?  Should we assign uniform prior probability densities to the 

different values of the parameter? to the different values of its logarithm? its reciprocal?  The 

principle of indifference seems on the face of it inapplicable to this case. 

Myriad plausible but mutually incompatible desiderata for “noninformative” prior 

distributions for continuous parameters have been put forth over the years.  The choice among 

them would appear to be merely a matter of personal preference—an exceedingly unwelcome 

clash with the principle of coherence.  A foundational article by Jaynes (1968; 2003, pp. 372–

396) addressed this problem in a new and profoundly illuminating way that has yet to be fully 

absorbed by the Bayesian community.  He argued that ignorance imposes stringent constraints on 

prior probability distributions by requiring that they be invariant under transformations that 

convert the original prior inference problem into another prior inference problem that should 

look identical to a truly ignorant observer.  From this requirement he derives ignorant prior 

probability density distributions for the three most common types of continuous parameter: 

+∞<<∞−∝ µµ    ,1)(f  for a location parameter µ                                 Eq. 2 

(for example, the mean of a normal distribution); 

+∞<≤∝ σ
σ

σ 0   ,1)(f  for a scale parameter σ                                     Eq. 3 

(for example, the standard deviation of a normal distribution); and 
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10   ,
)1(

1)( ≤≤
−

∝ p
pp

pf  for a probability parameter p.                    Eq. 4 

It is the latter that will be the focus of this article. 

2.  IGNORANT PRIOR DISTRIBUTION FOR A PROBABILITY PARAMETER 

2.1  Jaynes’s Argument 

The random variable p is an unknown probability parameter; we can consider it to be the 

probability of “success” in some sort of repeatable trial.  What prior probability density function 

 properly represents prior ignorance of this parameter?  Jaynes’s (1968; 2003, pp. 382–386) 

argument for Eq. 4 relies on a peculiar rhetorical device he calls “split personalities taken to the 

extreme.”  The various probabilities p are regarded as prior opinions held by the members of a 

huge population of Bayesian analysts.  These Bayesians have conflicting prior information and 

that accounts for their conflicting prior probabilities.  The function  describes the 

distribution of Bayesians in the population holding the various prior probabilities.  Jaynes seeks a 

distribution function  that would appropriately represent a state of “total confusion” in the 

population.  He defines confusion thus: if you give all Bayesians in the population one additional 

piece of relevant evidence E, the distribution of their posterior probabilities is the same as the 

distribution of their prior probabilities (though of course each of their 

)( pf

)( pf

)( pf

individual posterior 

probabilities differs from their prior probabilities according to Bayes’s Theorem).  From this 

requirement Jaynes easily deduces that the distribution must have the form of Eq. 4. 

I’m unsatisfied with this argument.  Although it is certainly an interesting property of the 

distribution, it is not intuitively clear that “total confusion” as Jaynes defines it can be directly 
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equated with prior ignorance.  I present here two alternative arguments that seem to me much 

clearer, more direct applications of Jaynes’s general principles. 

It will be mathematically convenient in what follows to consider the random variable as 

the success:failure ratio 

( )S
S

S
S

p
pX

Pr
)Pr(

)Pr(1
)Pr(

1
=

−
=

−
≡                                              Eq. 5 

where  and S S  represent success and failure, respectively.   Jaynes’s ignorant prior distribution 

for p, Eq. 4, corresponds to the probability density function 

X
Xf 1)( ∝                                                            Eq. 6 

for X .  I will put forth two arguments for this distribution as the appropriate expression of prior 

ignorance. 

2.2  Argument I: Symmetry Between Unconditional and Conditional Success:Failure Ratios 

Bayesian I considers the success:failure ratio Eq. 5, and seeks a prior distribution  

that expresses his prior ignorance of that ratio.  He is then asked to consider 

)(Xf

( )ES
ESY

|Pr
)|Pr(

≡ ,                                                           Eq. 7 

the success:failure ratio conditional on some event E.  He is given the value of the likelihood 

ratio ( )SESER |Pr/)|Pr(≡ , which by Bayes’s theorem implies that RXY = .  This change of 

variable implies a strict relationship between the ignorant distribution  and his probability 

density distribution for Y—let’s call that distribution : 

)(Xf

)(Yg

RR
YfYg 1)( 





=                                                               Eq. 8 
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Now let’s consider a second Bayesian, II, who is asked at the outset to consider the 

conditional success:failure ratio Y (Eq. 7).  The fact that success and failure are both conditional 

on some unspecified event E conveys no useful information about the success:failure ratio.  After 

all, any pair of events whatever could be considered to be conditional on some unspecified 

background knowledge.  So Bayesian II assigns the same ignorant distribution to the conditional 

success:failure ratio Y as Bayesian I did to unconditional success:failure ratio X: .  She is 

then asked to consider the unconditional success:failure ratio X (Eq. 5), and (like Bayesian I) is 

informed of the value of the likelihood ratio 

)(Yf

( )SESER |Pr/)|Pr(≡ , which by Bayes’s theorem 

implies that RYX =

)(Yf

.  This change of variable implies a strict relationship between the ignorant 

distribution  and her probability density distribution for X—let’s call that distribution 

: )(Xh

( )RRYfXh =)(                                                         Eq. 9 

But now Bayesian I and II have precisely the same information, so their distributions 

must be the same.  This means that Bayesian II’s deduced distribution for X, , must be the 

same as Bayesian I’s 

)(Xh

original ignorant distribution ; and likewise that Bayesian I’s )(Xf

deduced distribution for Y, , must be the same as Bayesian II’s )(Yg original ignorant 

distribution .  In other words, consistency demands that the functions ,  and )(Yf )(⋅f g )(⋅ )(⋅h  

be all the same function, which we’ll call )(⋅f .  Bayesian I’s expression for , Eq. 8, 

therefore imposes the constraint  

)(Yg

RR
YfYfYg 1)()( ⋅





==                                            Eq. 10 
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and this must hold for any value of R greater than 0.  Precisely the same functional constraint is 

implied by Bayesian II’s expression for , Eq. 9, as can be seen by substituting h for g, X for 

Y and 1/R for R in the above equation.  The functional equation Eq. 10 has the unique solution 

given in Eq. 6. 

)(Xh

 The force of this argument rests on the symmetry between the unconditional and 

conditional success:failure ratios to the ignorant observer.  Either one can serve as the starting-

point for inference, and both must therefore be assigned the same “ignorant” prior distribution 

.  Bayes’s Theorem then imposes a functional constraint on )(⋅f )(⋅f  that can only be satisfied 

by Eq. 6. 

2.3  Argument II: Success:Failure Ratio Is a Scale Parameter 

The prior distribution deduced in the previous section, Eq. 6, is the same as that deduced 

by Jaynes (1968; 2003, pp. 378–382) when X is a scale parameter, Eq. 3.  I will argue now that 

the success:failure ratio can indeed be considered a fully legitimate scale parameter, so that 

Jaynes’s argument applies.  A change in scale in the success:failure ratio results from a change in 

scale in counting either successes or failures or both.  For example, let us suppose that success is 

redefined, so that one new success is counted for every n old successes (n can be any positive 

real number).  Similarly, suppose that failure is redefined so that one new failure is counted for 

every m old failures.   The new success:failure ratio Y has a simple scalar relationship to the old 

ratio X: RXY = , where R = m/n; the success:failure is now being measured on a new scale 

whose units are R-fold smaller than the old scale.  But if we’re totally ignorant in advance of the 

value of the success:failure ratio, it doesn’t matter to us which of the two scales the ratio is 

measured on: we’re equally ignorant in both cases.  In order to appropriately express prior 
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ignorance, therefore, the prior probability density distribution for success:failure ratio must be 

invarant under a change of scale—a stringent constraint that is only satisfied by the distribution 

in Eq. 6. 

3.  ALTERNATIVE NONINFORMATIVE PRIOR DISTRIBUTIONS 

3.1  Data-Translated Prior Distributions 

 Box and Tiao (1973, pp. 25–60) support an altogether different desideratum for 

noninformative prior distributions, which will serve to exemplify the many extant alternatives to 

Jaynes’s invariance principles.  These authors argue that noninformative prior distributions 

should to the extent possible be “data-translated.”  If the continuous parameter in question is X, 

they seek a transformation )(XY ϕ=  such that all E transects of the sampling distribution 

 have the same shape but different locations on the Y axis when plotted against Y.   The 

effect of observing different outcomes 

)|Pr( YE

Ê  is thus to slide (“translate”) the likelihood function 

EE ˆ=
YE )|Pr(  along the Y axis without changing its contour.  If we choose a prior probability 

distribution that is uniform in Y, the posterior probability function will therefore have the same 

shape as—and in that sense be “dominated” by—the likelihood function.  Box and Tiao contend 

that a uniform prior probability density in Y—or equivalently, the density function 

dXX /)dXf ()( ϕ∝

n̂

 in X—lets the data speak for themselves, and in that sense qualifies as 

“noninformative.”  Exact data-translated prior probability distributions exist only for a limited 

number of sampling distributions, but nearly exact data-translated prior distributions can be 

found in a wide variety of circumstances.  In particular, Box and Tiao (1973, pp. 34–35) consider 

a series of  identical trials in each of which the unknown probability of success is p; the 
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outcome of the trial series is the number of successes observed, r.  The nearly data-translated 

prior distribution in that case is 

[ ] 2/1)1(
1)(
pp

pf
−

∝  ,                                                 Eq. 11 

a function that differs from Jaynes’s general ignorant prior distribution for a probability 

parameter (Eq. 4).  Accepting data translation as reasonable would therefore undermine Jaynes’s 

invariance arguments as a single unifying principle for expressing prior ignorance. 

3.2  Criticisms of Data Translation 

But is data translation really reasonable?  It bases the prior probability distribution, not on 

the scientist’s state of knowledge about the actual scientific matter at hand (the competing values 

of the parameter of interest in this case), but rather on his investigative intentions, as embodied in 

the sampling distribution.   Inferences starting with such prior distributions violate the likelihood 

principle because they must take into account not only the dependence of the sampling 

distribution  on the continuous parameter of interest X, but also its dependence on the 

entire manifold of possible outcomes E, including all the data we might have observed but 

didn’t. 

)|Pr( XE

Consider as an example three investigators who are equally ignorant in advance of the 

probability p of success in a repeatable trial of the sort discussed above.  Independently, they 

design experimental trial series in order to learn more about p.  Investigator I sets out from the 

start to complete exactly 22 trials and will score the number of successes r; this is the design 

already described above.  Investigator II sets out from the start to continue trials until exactly 7 

successes are observed, and will score the number of trials n required to achieve this goal.  As 

investigator III is considering his options, he learns he will be handsomely rewarded by a patron 
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if he succeeds in finding evidence highly favorable to the hypothesis that the true probability of 

success p has the predetermined value π/1 .  As each new trial is completed, therefore, he plans 

to analyze the data to see how strongly they support his patron’s preconceived notion.  If at any 

point the results to date (the number of trials n and successes r) seem likely to earn him his 

reward, he’ll terminate the experiment; otherwise, he’ll continue until frustration, boredom or 

fatigue finally compel him to quit.  It is stipulated that none of the investigators will interfere 

with the actual trials or tamper with the results in any way. 

For investigator I the nearly data-translated prior distribution has already been given in 

Eq. 11.  For investigator II the nearly data-translated prior distribution is  

(Box and Tiao 1973, pp. 44–45).  Specifying a sampling distribution for investigator III would be 

a staggering task, involving as it would a detailed analysis of his degree of avarice for the 

reward, guess as to what sort of evidence will satisfy his patron, propensity to terminate an 

exhausting investigation that seems to have no prospect of yielding favorable results, level of 

commitment to standard canons of proper research procedure, etc.  Whatever the sampling 

distribution’s complexity, however, it can be factored into the form 

2/11 )1()( −− −∝ pppf

( ) ( ) ( ) EEE

E

E

EE

E
rnr

En

n

i
EinEnEi

n

i
Ei ppQQPQPQpE −

−

=

−

=

−







−=








−= ∏∏ 111)|Pr(

1

1

1

1

, 

where E is one of the possible outcomes, a particular succession of  successes and Er EE nr −  

failures in a total of  trials; PEn Ei is either p or p−1  depending on whether the ith trial in 

succession E is a success or failure, respectively; and QEi is the probability that the investigator 

will quit after obtaining the results of the first i trials of succession E.  The sampling distribution 

can therefore be written 
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( ) EEE rnr ppEpE −−= 1)()|Pr( α ,                                       Eq. 12 

where all the psychological complications are confined to the function )(Eα , which cannot 

depend on the unknown value of p.  The sampling distributions for investigators I and II will also 

have this form, though in their case the factor )(Eα  is much simpler: the constant 1 for any of 

the allowed outcomes (  for investigator I; any succession for which  and the last 

trial is a success for investigator II), the constant 0 otherwise.  In any case, we’ll assume for the 

sake of argument that a data-translated prior distribution could be specified in principle even for 

investigator III. 

22=En 7=Er

Having thus formulated their plans, investigators I–III carry out their respective trial 

series, and (we’ll suppose) obtain exactly the same data: 7 successes and 15 failures in precisely 

the same order of succession.  If they follow the advice of Box and Tiao, they will come to 

different inferences about p, embodied in different posterior probability density distributions.  

That’s because they have different sampling distributions and therefore start from different prior 

probability density distributions.  But this does not square with plain common sense.  The 

differences among the investigators lie entirely in their mental states before and during data-

collection—their intentions, hopes, expectations of reward, susceptibility to fatigue, commitment 

to investigative propriety, etc.  None of them interferes with the actual objective evidence in the 

case—the succession of successes and failures in the trial series.  If they start with the same prior 

information about p and collect the same objective data, surely their final inferences ought to be 

the same; their contrasting psychological states during data collection are irrelevant to any 

scientific judgment.  Admirers of data translation try to counter this indictment by claiming that 

the design of the anticipated experimental trial series is part of the investigator’s prior 
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knowledge, and can thus legitimately influence his prior probability distribution for p.  But this is 

not prior knowledge of the parameter p itself; it’s prior knowledge of his own psychological 

condition as he embarks on or carries out the experiment, and thus surely extraneous to rational 

inference.  To incorporate such “knowledge” into the inference problem is a classic case of what 

Jaynes (1989; 2003, p. 22) calls the “mind projection fallacy”: the “temptation to project our 

private thoughts out onto the real world, by supposing that the creations of one’s own 

imagination are real properties of Nature…”  In summary, the principle of data translation 

commits us to an unpleasant violation of the likelihood principle and consequent conflict with 

common sense. 

This conflict will never arise if, ignoring the counsel of Box and Tiao, investigators I–III 

adopt a common prior distribution, Eq. 4, that expresses their shared state of prior ignorance 

without reference to the anticipated trial series; and reason in accord with the likelihood 

principle.  That’s because their likelihood functions are proportional to one another regardless of 

the differences among the sampling distributions (Eq. 12) they’re derived from: 

 in all three cases.  Their results therefore carry precisely the same 

evidentiary information despite their psychological disparities—in full accord with intuition.  

Multiplying this likelihood function by Jaynes’s ignorant prior distribution Eq. 4, all three 

investigators arrive at the same posterior probability density distribution: 

.  For all three investigators, the “rule of succession”—that is, the 

probability, given the data, that the outcome of the next trial will be a success—is the same:  

7227 )1()|7,22Pr( −−∝ ppp

146 )1()7,22|( pppf −∝

Expectation of p given the data = 
22
7

)1(

)1(
)7,22|( 1

0

146

1

0

147
1

0
=

−

−
=⋅
∫
∫

∫
dppp

dppp
dppfp . 
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3.3  Jaynes’s Invariance Principle: Still the Foundation for Articulating Ignorance 

 Data translation’s clash with common sense should not surprise us.  It does not even 

pretend to meet the core requirement of any Bayesian probability distribution: that it accurately 

represent the investigator’s state of knowledge.  The steps leading from prior ignorance to data 

translation as a desideratum are correspondingly indirect, casual, tenuous; those leading to 

Jaynes’s invariance principle are direct, rigorous, perspicuous.  It will take a far more compelling 

principle than the former to seriously challenge the latter’s preeminent claim as a unifying 

foundation for articulating ignorance.  Such a challenge does not seem soon in prospect. 
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