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SUMMARY

After discussing the role of prior information in statistical inference, histori-
cally and in current problems, we analyze the problem of seasonal adjustment in
economics. Litterman (1980) has shown how informative priors for autoregressive
coe�cients can improve economic forecasts. We �nd that in seasonal adjustment
informative priors can have a much greater e�ect on our conclusions. In our model,
even the dimensionality of the joint posterior distribution of the irregulars depends
on prior information about the seasonal component; and some functions of the ir-
regulars can be determined more accurately than in sampling theory.
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1. INTRODUCTION

The statistical problems envisaged in our pedagogy are almost always ones in which we
acquire new data D that give evidence concerning some hypotheses H;H 0; : : : (this includes
parameter estimation, since H might be the statement that a parameter lies in a certain
interval); and we make inferences about them solely from the data. Indeed, Fisher's maxim,
\Let the data speak for themselves" seems to imply that it would be wrong { a violation of
\scienti�c objectivity" { to allow ourselves to be inuenced by other considerations such as
prior knowledge about H .

Yet the very act of choosing a model (i.e. a sampling distribution conditional on H) is a
means of expressing some kind of prior knowledge about the existence and nature of H , and
its observable e�ects.

This was noted by John Tukey (1978), who observed that sampling theory is in the
curious position of holding it decent to use judgment in deciding which parameters should be
present in a model; but then indecent to use judgment in estimating their values. He saw the
Bayesian method as something which \allows one to do the indecent thing while modestly
concealed behind a formal apparatus".

Here we do this indecent thing, and note how it changes the problem of seasonal ad-
justment, an unusual problem in that all the parameters are nuisance parameters. But it is
just for this reason that our formal apparatus enables us take into account things beyond
the technical means, and even the concepts, of sampling theory. Jimmie Savage advocated
noninformative priors on the grounds that they didn't make much di�erence; we advocate
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informative priors on the grounds that they do make a very important di�erence. As Litter-
man (1980) found in a similar problem, taking into account cogent information not contained
in the sampling distribution can improve the accuracy and reliability of our conclusions.

In the following two Sections we digress to comment on the strange history of the prior
information issue, with its controversies still not entirely resolved, and to note some other new
applications of informative priors. Our seasonal adjustment calculation starts in Section 4.

2. NECESSARIANS

There is a surprisingly wide range of philosophical views about the role of prior infor-
mation. Since the 1930's a common view has been that it is just plain wrong to take prior
information into account. As a student in the late 1940's, the writer was strongly indoctri-
nated with this view. Indeed, in most orthodox works the term \prior information" does not
appear at all. Perhaps it was felt that since prior knowledge is hard to document, the user
would be under the temptation to slip in prior opinions, in the guise of prior knowledge { a
terrible sin in the view of some (van Dantzig, 1957).

But then there was a seemingly violent swing to the opposite extreme view of the so{
called \subjective Bayesians". Jimmie Savage (1954) proclaimed it his intention to incor-
porate prior opinions { not prior knowledge { into scienti�c inference (or at least into the
reasoning of an idealized being called \the person", thought of as a normative model for
scienti�c inference).

He rejected formal principles (symmetry, maximum entropy) by which prior probabilities
might express, and be determined by, prior knowledge; and accused those of us who advocated
such principles of holding \necessary" views of probability and of claiming to get something
for nothing (Savage, 1981, p. 731). Indeed, he took it as a fundamental tenet (Savage,
1954, p. 3) that two \persons" with the same prior knowledge might assign di�erent prior
probabilities without either being unreasonable.

These philosophical di�erences leave a practical scientist, concerned with problems of the
real world, with the uncomfortable feeling of being caught in the middle. From his viewpoint,
it then appeared that there were two active camps, holding opposite extreme positions equally
unreasonable and inapplicable to his problems of inference.

An earlier discussion (Jaynes, 1968) stressed the need to �nd a safe middle ground
between these extremes, which recognizes the relevance of cogent prior knowledge and the
need to take it into account (in seeming disagreement with Fisher); but also recognizes the
claims of logical consistency (in seeming disagreement with Savage). That is, we took it as
our fundamental \Desideratum of Consistency" that in two problems where we have the same
relevant prior information, we should assign the same prior probabilities; and showed that
this desideratum is already su�cient to determine priors in some cases. Savage (1981, p. 736)
proceeded to dismiss this as \an unusual necessarians position".

It appears to us, however, that this position and desideratum are neither unusual nor
\necessarian" as Savage de�ned that term. Zellner (1982) has also noted the contrast between
Savage's de�nition of \necessary views" and the actual position of Je�reys, whom he accused
of holding them. Indeed, it would be hard to cite anyone, in the entire history of probability
theory, who has ever held a \necessary" view (Keynes perhaps came closest).

Reliable judgments on these matters cannot, however, be made merely by examining a
writer's philosophical remarks. Doubtless all of us have had the experience of writing some
interpretive statement, while our minds were preoccupied with one context; and later seeing
it in print and wishing that we had made a di�erent choice of words, since the statement as
published was misleading if taken in a di�erent context.
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Any author who has written extensively over many years can be made to appear to
hold almost any position one wishes to impute to him, by a carefully selective quotation of
his philosophical remarks, made in many di�erent contexts. The comments of Kass (1982)
on Je�reys demonstrate this very nicely. Even Karl Popper (1959) can be made to seem a
Je�reys type Bayesian if one quotes only from his earlier chapters and not the later ones.

For this reason we think that the issue of being or not being a \philosophical necessarian"
is slippery, probably undecidable, and therefore not very relevant. What is relevant and
decidable is the actual content of one's calculations; whether he can be termed a \functional
necessarian".

In the early 1960's I had tried, in correspondence and conversation with Jimmie Sav-
age, to persuade him that Laplace and Je�reys were not necessarians, and in fact not only
their philosophical remarks taken as a whole { but far more importantly, their methods of
calculation { show the opposite of the position that he called \necessary".

Their use of probability theory, far from supposing that probability measures the extent
to which one proposition, out of logical necessity, con�rms the truth of another, clearly denies
this. For the numerical value of p(AjB) does not depend only on A and B; it depends also
on the sample space, or hypothesis space, in which A is embedded.

Even though we do not change the propositions A and B, when we change the set of
alternatives against which A is being compared, we clearly { and rightly { change p(AjB).
This \anti{necessary" dependence is always present implicitly, and sometimes appears ex-
plicitly, in the calculations of Laplace and Je�reys. It seems, then, that the only functional
necessarians are the sampling theorists who use signi�cance tests that make no reference to
alternatives. But Jimmie's only reaction to my arguments was to include me in his list of
necessarians! More speci�cally (Savage, 1981, p. 542), I became \a latter-day necessarian".

Jimmie Savage thus poses a curious problem to us: so much of what he said was ab-
solutely correct, deeply insightful, and of timely importance to statistics, that his failure to
appreciate the work of Je�reys stands out as an inexplicable puzzle. Fifteen years before Sav-
age, Je�reys (1939) had not only enunciated the same Bayesian principles and anticipated
Savage's generalities about prior probabilities; but he also constructed explicit priors and
demonstrated their successful application to real problems with a thoroughness that Savage
never approached. Yet in what must have been his �nal judgment, Savage (1981, p. 727) still
clung to his original position of 1954; in his eyes it was Je�reys' theory that was seriously
incomplete, and he saw no cogency in even its \ostensible beginnings".

My own view { then and now { has been that Savage's theory is seriously incomplete for
real applications, just because of its failure to deal seriously with prior knowledge. Je�reys
had at least made a good start on remedying this.

Recently (Jaynes, 1983) I made a strenuous e�ort to resolve this puzzle and reconcile
our di�erent positions. There seem to be two possible explanations. Firstly, it may be
that Savage gave Je�reys a cursory reading, through the eyes of one indoctrinated by the
\orthodox" teaching of the time, before his own independent thinking on the subject had
matured; and just never overcame a wrong �rst impression.

As a second possible explanation, we note that his \necessarian" charges were directed
mainly at physicists. I now conjecture that the problems Savage had in mind were quite
di�erent from the ones physicists faced. Part of the blame for this is mine, for in 1963 I had
ample opportunity to point out to him, in conversation, certain technical details (existence
of a deeper hypothesis space and prior knowledge about it) that gave many of our problems {
and also many of engineering and economics { more structure than those of the statistics
textbooks; but failed to do so.
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As a result, it may be that Jimmie Savage never needed to go beyond the \di�use prior"
mentality, because he never faced a problem in which there was speci�c prior information that
needed to be taken into account. So it appeared to him that those of us who were seeking a
formal apparatus by which one can construct informative priors, were \necessarians" { doing
things that seemed to him unnecessary.

3. NEW APPLICATIONS

Coming back to the present, it seems to us that if Bayesian theory is ever to lay any
claims of full logical consistency, a high priority research problem must be the development of
the formal apparatus that can realize the aforementioned desideratum by converting speci�c
prior information into speci�c prior probability assignments, in a wider variety of problems.
We face this need not only for logical reasons, but also for pragmatic ones. Today, there
are important new applications where informative priors are not just window dressing; but
required for the application to succeed at all.

To date we have made substantial progress in this direction, in the principles of Group
Invariance, Maximum Entropy, Marginalization (Jaynes, 1980), and Coding Theory (Ris-
sanen, 1983). As noted below, many current problems are now being solved routinely and
successfully by these principles. But it is basically an open-ended program and much remains
to be done.

These new applications are very recent; for the most part they have come into their own,
in the sense of general recognition and acceptance, only since our last meeting here four years
ago. Before then, our \necessarian" strivings did not have much e�ect on the treatment of
real problems, because in the one problem (Statistical Mechanics) where a formal principle
for determining priors was most needed, we had it already from J. Willard Gibbs { only
masquerading unrecognized under a di�erent name. In most of the other problems then
being considered it was only illogical and ine�cient, not fatal, to ignore prior information.

Indeed, once a model has been set up, in the \classical" problems of inference studied in
the past the data D were so much more informative than our prior information I about the
values of the parameters that it would have made little di�erence whether we used I or not.
Then from a pragmatic standpoint \orthodox" or sampling theory methods were satisfactory
unless there were technical problems { nuisance parameters, lack of su�cient or ancillary
statistics, a rectangular likelihood function, etc. { that sampling theory has not learned to
deal with in a satisfactory way.

But from the standpoint of logic and principle, problems of inference are basically ill-
posed if prior information is not considered. Even if our model is not freely chosen but
imposed on us from above, the answer to the query: \What do you know about H after
seeing the data D?" depends \necessarily" on this: \What did you know about H before
seeing D?"

All of us recognize this in our everyday inferences; in trying to guess whether it will rain
today we take into account not only how the sky looks now, but also what the weather map
showed yesterday. A medical diagnostician could be accused of malpractice if he failed to
take into account the available information about a patient's medical history as well as his
present symptoms. In many real situations, it would be foolhardy to \let the data speak for
themselves".

Nevertheless, most current Bayesian practice tends to imitate sampling theory in that
one incorporates little or no prior information beyond the choice of the model, and so seeks
\noninformative" priors. The Bayesian formal apparatus can then be expected to out-perform
sampling theory only when the latter faces some technical problem of the aforementioned
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kind. But the great potential advantage of Bayesian methods lies in exploiting this unused
capability of taking prior information into account with informative priors.

Probably the most impressive example of the power of prior information is the Statistical
Mechanics of J. Willard Gibbs (1902). For many years this was presented in a language and
conceptual framework so di�erent that most authors saw it as an un�nished, and only partly
satisfactory, attempt to apply the laws of physics; and did not recognize it as a problem of
inference at all. Only recently has Gibbs' work been seen in its simplicity and generality,
as a method of inference in which prior information about multiplicity factors W converts a
vague, ill-posed problem into a well-posed, accurately solvable one.

The Gibbs formalism is based on the maximization of entropy S = logW subject to the
constraints of our data. This is, from our present standpoint, not an application of a law of
physics, but simply locating the peak of a distribution that contains W (the \size" of the
deeper microscopic hypothesis space that I failed to communicate to Jimmie Savage) as a
factor. The accuracy of our predictions (sharpness of that peak) is due to the fact that W is
an enormously rapidly varying function of the macroscopic quantities { and of course, that
we know the laws of physics well enough to calculate it correctly.

Once this had been recognized, it was evident that the reasoning was equally applicable in
other problems than thermodynamics. The recent advances in the techniques for Spectrum
Analysis (Burg, 1975; Childers, 1978; Currie, 1981; Jaynes, 1982), Image Reconstruction
(Gull & Daniell, 1978; Frieden, 1980; Gull & Skilling, 1980), the determination of crystallo-
graphic and biological macromolecular structure from X-ray scattering data (Bricogne, 1982;
Wilkins, et al, 1983; Bryan, et al, 1983), and estimating mathematical functions from a few
moments (Mead & Papanicoleau, 1983) have resulted from this recognition of the Maximum
Entropy principle. In e�ect, it is a rule for constructing informative priors when we have
partial prior information that restricts the possibilities signi�cantly but not completely.

Also among Statisticians and Economists, several recent Bayesian works have recognized
the importance of prior information and the growing need for general methods for constructing
informative priors. Much thought and e�ort has gone into techniques for elicitation of such
priors from subject-matter experts; see, for example, Kadane (1980), Winkler (1980) and
references therein. Arnold Zellner's presentation at this meeting has an impressive survey of
recent uses of informative priors in Econometrics.

As already noted, Litterman (1980) showed that economic forecasts using an autoregres-
sive model can be improved by using informative priors that express common-sense judgments
about the autoregressive coe�cients (i.e. they surely fall o� rapidly with increasing lag). We
apply here the same idea to seasonal adjustment, showing how similar common-sense judg-
ments about the harmonic content of the seasonal component can improve our estimates of
the irregular component. It appears that in the seasonal adjustment case the e�ect may be
greater.

4. BAYESIAN SEASONAL ADJUSTMENT

We have a discrete time y series of length N ; think of it as a monthly economic report
over N=12 years:

yt = st + et; 1 � t � N (1)

composed of a periodic seasonal component: st = st+12, and the part et, variously termed
\irregular", \error", or \noise". The seasonal component is represented by a �nite Fourier
series, containing 12 parameters, (A0 : : :A6; B1 : : :B5):

st = A0 +
6X

k=1

[AkC(kt) +BkS(kt)] (2)
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where C(kt) = cos(2kt=12); S(kt) = sin(2kt=12). De�ne, for uniform summation limits,
B0 = B6 = 0. The inversions

A0 = (1=N)
NX
t=1

st; (3a)

Ak = (2=N)
X
t

stC(kt) 1 � k � 5 (3b)

A6 = (1=N)
X
t

(�)tst (3c)

Bk = (2=N)
X
t

stS(kt) 0 � k � 6 (3d)

are exact if N is a multiple of 12, as we suppose here.

There is still another parameter, the standard deviation � of our prior density for the ir-
regulars, p(e1 : : : eN jI), where I denotes the prior information. With no creative imagination,
we simply follow custom by assigning the iid Gaussian prior:

et � N(0; �); 1� t � N: (4)

The rationale by which this custom can be justi�ed is a rather lengthy topic; we think it is
far better justi�ed than is usually realized. More comments about this are in Appendix A.

Like any other model, this one can be extended endlessly; in particular we could combine
seasonal adjustment with detrending by adding to (1) terms linear, quadratic, etc. in t. We
keep our model as simple as possible so as not to obscure the point to be made; and so to heed
Arnold Zeller's wise advise about \sophicatedly simple" models. Further reasons include the
accuracy of our estimates and the need for diagnostic checks from limited data, discussed in
Appendix C.

As noted in the Introduction, this problem is unusual in that all of these parameters are
nuisance parameters. Our goal, just the opposite of the usual Bayesian goal, is to estimate
the \noise" instead of the \signal".

The calculation may be organized as follows. Using the abbreviations:

I = prior information

y = (y1 : : : yN); data

e = (e1 : : : eN); irregulars

s = (s1 : : : sN ); seasonal values

A = (A0 : : :B5); seasonal parameters,

we want the joint posterior density of (e1 : : :eN ) conditional on the data and the prior infor-
mation

p(ejyI) =
Z Z

p(ej�AyI)p(�AjyI)d�dA: (5)

But if y and A are given, then e is known; so � is irrelevant in the �rst factor: p(ej�yAI) =
p(ejyAI). Then � integrates out of the second factor, leaving,

p(ejyI) =
Z
p(ejyAI)p(AjyI)dA: (6)
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Direct evaluation of (6) would be tedious because as a function of A, p(ejyAI) is nonzero
only on a complicated set of points. But one can avoid going into all these intricate details
by calculating �rst the N -fold Fourier transform of (6): using the notation r � a =P

t rtat,

E(eir�ejyI) = eir�yE(e�ir�sjyI) = eir�yf(r): (7)

So in general the calculation could proceed in three steps:

(A) Evaluate the joint posterior density p(AjyI) of the seasonal parameters.
(B) Calculate, with s given by (2), the characteristic function

f(r) =

Z
e�ir�sp(AjyI)dA: (8)

(C) Invert f(r), translating by the data y:

p(ejyI) = (2�)�N
Z
f(r)eir�(y�e)dNr: (9)

Part A is the conventional Bayesian exercise. The joint likelihood of all the parameters
is proportional to p(yjAI):

L(A0 : : :B5; �) = ��N exp

�
�QL

2

�
(10)

where QL is the quadratic form

QL(A0 : : :B5) = ��2
NX
t=1

(
yt �

6X
k=0

[AkC(kt) + BkS(kt)]

)2

(11)

from which we �nd that the joint maximum likelihood estimates of (A0 : : :B5) are given by
(3) with st replaced by yt (this being exact if N is a multiple of 12 as supposed; otherwise
new small terms of relative order N�1 would be present).

We assign independent Gaussian priors for our seasonal parameters:

Ak � N(ak; �k); 0 � k � 6 (12a)

Bk � N(bk; �k); 1 � k � 5 (12b)

and de�ne for formal reasons, b0 = b6 = 0. Then their joint prior distribution has another
quadratic form:

p(A0 : : :B5jI) / exp(�QP

2
) (13)

where

QP =
6X

k=0

��2
k

�
(Ak � ak)

2 + (Bk � bk)
2
�
: (14)

In general the joint posterior density of the seasonal parameters will be

p(AjyI) / p(AjI)p(yjAI) = p(AjI)p(yjA�I)p(�jAI)d�: (15)
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But if we assign independent priors to � and A, we have p(�jAI) = p(�jI), and our result is

p(A0 : : :B5jyI) /
Z
p(�jI)��N exp

�
�(QL + QP )

2

�
d�: (16)

If � is supposed known in advance, then p(�jI) is a delta function concentrated on a
single point and in (16) we need only keep the exponential term. If � were initially completely
unknown, then the Je�reys prior p(�jI) = 1=� would be appropriate, and (16) would be a
multivariate t-distribution with the same quadratic forms. Realistic prior information is
presumably intermediate between these extremes. The choice of p(�jI) is discussed further
in Appendix B.

For present purposes (to illustrate an entirely di�erent point: the e�ect of prior infor-
mation about the seasonal component), even these extremes do not lead us to very di�erent
conclusions unless we have a large amount of data that sharply contradicts the informative
prior. But in that case a diagnostic check would lead us to doubt the correctness of the
model or the prior information. The way in which Bayesian theory automatically provides
the needed diagnostic check is explained in Appendix C. In the following we shall, therefore,
suppose � known.

Alternatively, one could say that we are calculating only p(Aj�yI), and an integration
of our �nal result with respect to any p(�jI) can still be performed.

This shortens the calculation, enabling us to bypass steps (B) and (C) above; for it is
obvious that p(ejyI) must be a multivariate Gaussian, determined by its �rst and second
moments. Evaluating the Fourier transforms (which amounts to calculating all moments) is
not needed. The distribution (16) reduces to

p(Aj�yI)/ exp

�
�(QL + QP )

2

�
: (17)

Expanding these merged quadratic forms we have, to within an irrelevant additive constant,

QL +QP =
6X

k=0

Mk

h
(Ak � Âk)

2 + (Bk � B̂k)
2
i

(18)

in which, as before, B0 = B6 = b0 = b6 = 0; and in consequence B̂0 = B̂6 = 0 from (20d)
below. The reciprocal variances (exact if N is a multiple of 6) are

Mk =
N

�2
+

1

�2
k

; k = 0; 6 (19a)

Mk =
N

2�2
+

1

�2k
; 1 � k � 5 (19b)

and the mean values (the optimal estimates with a symmetric loss function):

Â0 =M�1
0

"
N

�2
� 1
N

X
t

yt +
a0
�20

#
; (20a)

Âk =M�1
k

"
N

2�2
� 2
N

X
t

ytC(kt) +
ak
�2k

#
; 1 � k � 5 (20b)

Â6 =M�1
6

"
N

�2
� 1
N

X
t

(�)tyt + a6
�26

#
; (20c)

B̂k =M�1
k

"
N

2�2
� 2
N

X
t

ytS(kt) +
bk
�2k

#
: 0 � k � 6 (20d)
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The Bayes estimates (20) are weighted averages of the prior estimates ak, bk, and the
maximum likelihood estimates; a rather old result. In his Essai Philosophique (1814) Laplace
discusses a similar problem where the \prior" distribution (14) is { as it could well be in our
problem { actually the posterior distribution from a di�erent set of data, and records his
pleasure at �nding this rule by calling it \une analogie remarquable de ce poids, avec ceux
des corps compares a leur centre commun de gravite". This is possibly the origin of the term
\weighted average".

Thanks to what we shall term (in conformity with Stigler's Law of Eponymy; see Ap-
pendix A) the Gaussianity of p(AjyI), we need now only �nd the posterior expectations and
covariance matrix for the irregulars:

êt = E(etj�yI) (21)

Rtr = E(eter j�yI)� êtêr: (22)

We �nd for the former

êt = yt � gt � ��2
NX
r=1

Rtryr (23)

where

gt �
6X

k=0

[akC(kt) + bkS(kt)]

Mk�
2
k

(24)

is a kind of shrunken prior estimate of the seasonal component st, in which di�erent harmonics
are weighted according to their prior variances. (23) may also be written as êt = yt� ŝt where
ŝt is Laplace's \plus avantageux" weighted average estimate of st.

The covariance matrix R is found to be

Rtr =
6X

k=0

M�1
k cos

2�k(t� r)

12
(25)

which, like any covariance matrix, must be positive semide�nite; a direct proof of this which
also determines the rank of R is given below.

The joint posterior distribution of the irregulars is therefore

p(ejyI) = exp

�
�1

2
(e� ê)0R�1(e� ê)

�
: (26)

This solution reveals a great deal of interesting (and to the writer unexpected) insight into
the seasonal adjustment problem. To see the kind of results that are in (23) - (26) the next
Sections examine the e�ect of di�erent kinds of prior information (I1; I2; : : :), starting with
very simple special cases. Even the seemingly trivial cases are instructive.

How would sampling theory deal with this problem? One answer is given by Tukey et
al (1980). They would also subtract from the data an estimate of the seasonal as in (23);
but say \few would argue" that the proper way to estimate that seasonal is by the monthly
averages, which are the least squares estimates:

(ŝt)ST = (12=N)
X
m

yt+12k : (27)
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This is doubtless the most obvious thing to do. In similar problems it is much used also (to
reduce the amount of data to be analyzed) by geophysicists, who call it a \Brute Stack". But
we seem to be among those few; the Bayesian estimates in (23) appear so totally di�erent
from (27) that it is not clear whether there is any case in which they would agree. We shall
try to understand this di�erence, which arises entirely from prior information that brute
stacking ignores.

5. SIMPLE PRIOR INFORMATION - EXAMPLE 1

Example 1. Let the prior information be: I1 = \There is no oscillating seasonal com-
ponent, but there may be a DC o�set A0". Although this seems too trivial to be worth
analyzing, let us do it anyway. Mathematically, from the general solution (23), (25) we are
to pass to the limit

ak ! 0; bk ! 0; �k ! 0; 1 � k � 6

Then M�1
k ! 0, 1 � k � 6 and (23), (25) reduce to

R
(1)
tr =M�1

0 =
N

�2
+

1

�20
; 1 � t; r � N (28)

ê
(1)
t = yt �

�
N

�2
+

1

�20

�
�1 �

a0
�20

+
Ny

�2

�
(29)

with y = N�1
P

yt, the sample mean. The solution corrects for the unknown o�set A0 by
subtracting from the datum yt our \best" weighted average (20a) estimate of A0.

If now �0 ! 0 (we know in advance that A0 = a0) this reduces, as it should, to

êt = yt � a0 (30)

and in the opposite limit �0 !1 (we have no prior knowledge of A0) it becomes

êt = yt � y (31)

and we must \let the data speak for themselves", having nothing else to rely on.

Out of all the Bayesian results that are in Case 1, Eq. (31) appears to be the only
one that could have been found also from sampling theory. Of course, the prior estimate
a0 and weighting factors of (29) can hardly emerge from a theory which does not admit
prior distributions. But more important are the correlations of the di�erent et in their
joint posterior distribution expressed by the matrix R. Clearly, if e1 and e2 are negatively
correlated in this distribution, then we can estimate (e1+ e2) more accurately than (e1� e2),
while the opposite is true if they are positively correlated, as is the case here.

If our goal is to estimate some function f(e1 : : : eN), and not just the et individually,
these correlations in the posterior distribution can greatly a�ect both our estimate of f and
its accuracy. Yet it appears to us that sampling theory, far from being able to take this into
account, lacks even the conceptual basis and vocabulary in which one could state that such
logical connections exist.

The reason for this is clear when we note from (25) that these correlations come entirely
from the prior information; the posterior covariance matrix R can be known before one has
the data y. Faced with this result, a sampling theorist will tend �rst to question the cogency
and trustworthiness of the information contained in R. For that reason, we have pointed out
the phenomenon in a simple, intuitive case.
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A mechanical application of the sampling theory result (27) would estimate the sum or
di�erence of e1; e2 by

(ê1 � ê2)ST = [y1 � (ŝ1)ST ]� [y2 � (ŝ2)ST ] (32)

and since the sampling distributions of y1 and y2 are independent, would ascribe to both the
sum and di�erence estimates the same accuracy, given by their sampling standard deviation
of (24�2=N)

1

2 . Of course, a sampling theorist would perceive at once that in this case it
would be better to use all his data in the estimator (31), reducing the error. But if he tried
to judge the errors in the estimates by the sampling variances of the estimators, he would
�nd that

E([y1 + y2]
2jA0) = 4A2

0 + 2�2=N (33a)

E([y1 � y2]
2jA0) = 2�2=N (33b)

and thus conclude that the sum and di�erence estimates have equal probable error (2�2=N)
1

2 .

In contrast to this the Bayesian, looking instead at the posterior distributions, would
�nd from (28), (31)

E([e1 + e2]
2jyI1) = (ê1 + ê2)

2 + 4�2=N (34a)

E([e1 � e2]
2jyI1) = (ê1 � ê2)

2 (34b)

and conclude that the probable error in estimating (e1 + e2) is larger by a factor
p
2 than

indicated by (33); but that (e1 � e2) can be estimated with perfect accuracy.

But this is obviously the case; for if we know that there is no oscillating seasonal compo-
nent, then however poorly we may know the o�set A0, we evidently do know the di�erence

e1 � e2 = (y1 � A0)� (y2 �A0)

exactly. Indeed, all di�erences (em � en) are known exactly.

Presumably, an alert sampling theorist will see this also, and will decide not to use sam-
pling theory to estimate (e1� e2). Would he still use sampling theory for (e1+ e2)? Perhaps;
if so, the Bayesian will agree with his estimate, but will say that (33a) is overoptimistic about
its accuracy, by that factor

p
2.

But again the Bayesian result is obviously correct, for the sampling distribution variances
(2�2=N) in (33) are entirely irrelevant. In the sampling theorist's scenario we are to think of
repeating all this many times with A0. �xed; then our estimates would indeed vary according
to (33). But the true values of the et would vary along with them by the same amount, so
the accuracy of our estimates would have nothing to do with (33). It is determined, rather,
by the accuracy of our estimate of A0. In estimating (e1 � e2), whatever error may be in it
cancels out, as noted. But in estimating (e1 + e2) the identical error occurs twice; whatever
errors we are making in our estimates of e1 and e2 separately are not independent, which
would lead to a variance (2�2=N) as in (33); but they are perfectly correlated, leading instead
to (4�2=N) as in (34).

The point of this trivial example is to make it obvious that the prior information con-
tained in R, far from lacking in cogency and trustworthiness, has restored both the agreement
with deductive reasoning, and the recognition of the perfectly correlated errors, that a me-
chanical application of sampling theory would miss.

Of course, we do not suggest that a competent sampling theorist would fail to see these
points in such a simple case; we think that common sense would force him to agree with the
Bayesian results. But he would be hard put to give a sampling theory justi�cation for them,
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since that common sense is using prior information that formalism of sampling theory does
not recognize. In the more subtle cases to be considered next these e�ects of prior information
are still present and just as cogent; but they are no longer obvious.

6. SIMPLE PRIOR INFORMATION - EXAMPLE 2

Example 2. Now consider the prior information: I2 = \The seasonal component is purely
sinusoidal of period 12, with no DC o�set". We are to pass to the limit a0 ! 0, �0 ! 0, and

ak ! 0; bk ! 0; �k ! 0: 2 � k � 6 (35)

Now the covariance matrix (25) reduces to

R
(2)
tr =M�1

1 cos
2�(t� r)

12
(36)

and the estimate of irregulars to

ê
(2)
t = yt � Â1C(t)� B̂1S(t) (37)

where Â1, B̂1 are given by (20) and as in (2), C(kt) = cos(2kt=12), S(kt) = sin(2kt=12) are
the k'th harmonic seasonal sinusoids. The solution now subtracts from the data our \best"
weighted average estimate of the �rst harmonic seasonal part. Again, in the limits �1 ! 0,
�1 !1 this goes into what our common sense tells us it should.

But again, the interesting result is in what the covariance matrix (36) tells us. As we
shall prove in the next Section, R is now of rank 2; so our solution tells us that there are
(N-2) algebraically independent functions of the irregulars:

fm(e1 : : :eN ); 1 � m � (N � 2) (38)

that can be estimated exactly. To the writer and several others, this result was at �rst glance
very far from obvious indeed. It �rst appeared in our attempt to solve this case by the
Fourier transform method (8), (9), in which puzzling divergent integrals appeared in what
was thought to be a straightforward, highly convergent Gaussian calculation. Some study
was required before we were convinced that it is, after all, correct. But once understood, this
result also can be made to seem \obvious" by the following argument.

Factor the joint posterior distribution (26) into a two-point distribution and a conditional
distribution:

p(e1 : : : eN jyI) = p(e3 : : : eN je1e2yI)p(e1; e2jyI): (39)

Now if we know that there is only a �rst harmonic seasonal component, then the model
equations (1), (2) reduce to

yt = A1C(t) +B1S(t) + et: (40)

But if e1, e2 are given in additional to the data yt, then we can solve (40) for the two unknowns
A1 and B1. Then all the subsequent values (e3 : : : eN) are also known. In other words, the
possible vectors (e) compatible with our information do not vary over a manifold of dimension
N ; the posterior probability p(e1; e2jyI) on a two-dimensional manifold already contains full
information and the conditional probability in (39) is a product of delta-functions.

This is why the Fourier transforms diverged, when we tried to jump directly into the
limit �k = 0 at the beginning of the calculation. The di�culty is avoided if we �rst work out
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the general solution in the safe territory where all �k > 0, and then approach various limits
from it.

Given e1 and e2, the extrapolation to all t is just

et = yt + (y1 � e1)
S(t� 2)

S(1)
� (y2 � e2)

S(t� 1)

S(1)
; 1 � t � N (41)

for (41) has the required form of yt plus a �rst harmonic and is obviously true for t = 1,
t = 2; so it must be true for all t. Likewise, given any two values em, en the interpolation
and/or extrapolation determining the others is

et = yt + (ym � em)
S(t� n)

S(n�m)
� (yn � en)

S(t�m)

S(n�m)
; 1 � t� � N (42)

This is evidently most stable when jS(n � m)j = 1; i.e. when (n � m) is 6 months, 18
months, etc. It fails when (n �m) is a multiple of 12; for given en we know that en+12 =
yn+12 � (yn � en) and only one piece of information has been given.

If our prior information had been that there can be only two harmonics, for example
k = 1, k = 2 present in the seasonal component, then this argument would work if we factor
p(ejyI) into p(e1e2e3e4jyI) and a probability conditional on (e1 : : : e4). Then, given any four
non-redundant values of the irregular, the others would be known exactly. The joint posterior
density of (e1 : : : eN ) is nonzero only on a manifold of dimension 4; and so on.

We have here a kind of \anti-collinearity" phenomenon. Singularity of a covariance
matrix R does not mean that some components of the vector e cannot be estimated from the
data; it means just the opposite. That is, if R is of rank r, then the N -dimensional space
SN of its eigenvectors has a subspace Sr of dimension r, spanned by those eigenvectors of
R with nonzero eigenvalues, in which all the posterior probability is concentrated. Vectors
with non-zero projections into the complementary (N � r)-dimensional subspace SN�r have
zero posterior probability. But to keep them out of SN�r requires (N � r) algebraically
independent conditions on (e1 : : :eN ); hence (N � r) independent functions of (e1 : : : eN) are
determined exactly. Collinearity is not bad, but good!

There is a mathematical lesson to be learned from this example; from a casual glance
at the posterior distribution (26) one would at �rst say that if R becomes singular, then the
quadratic form

Q = (e� ê)0R�1(e� ê)

blows up and (26) becomes meaningless. But the quantity of interest is notQ, but exp(�Q=2),
which does not blow up. As an eigenvalue of R tends to zero, the \thickness" of the basic
support set of the distribution (26) in the direction of the corresponding eigenvector goes
smoothly and continuously to zero. In the limit the support set lies on a manifold of smaller
dimensionality. Instead of blowing up, we therefore have a mathematically well-behaved and
useful solution; (26) is nonzero only when (e� ê) lies entirely in the subspace Sr.

It seemed worth while to stress this point, because some working on the lore of improper
priors have become entangled in \paradoxes" much less subtle than this. In working with
any kind of singular mathematics we recommend very strongly the procedure that theoret-
ical physicists have learned, over many years, to follow: (I) start from safe territory where
everything is �nite, convergent, and well-behaved and there is no question about what is the
correct solution; (II) approach the singular cases cautiously, as limits from this.

The limit of a sequence of \good" solutions may or may not be a \good" solution in
itself. A mathematically well-behaved limit is one wherein certain quantities just become
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smaller and smaller and eventually disappear, leaving behind a simpler analytical expression.
If the limit is not well-behaved in this way (but instead, for example, blows up or oscillates
forever), then the limit cannot be interpreted as a valid solution to the problem, and any
attempt to �nd a solution by jumping directly into that limit would have led to nonsense,
the cause of which cannot be seen by looking only at the limit. We think that most of the
recent paradoxing in statistics could have been averted by following this \cautious approach"
policy.

7. EFFECT OF NEW PARAMETERS

We have seen the cases in which the prior information I1. tells us that only the DC
o�set A0 is present, and I2. that only the �rst harmonic component is present. Suppose now
I3 = \Both are present". How are our results changed?

There is a common \folk-theorem" in the statistical literature to the e�ect that adding
more unknown parameters in a problem must lead to a deterioration in the accuracy with
which we can estimate the old parameters; and so one should not do this unless the data
clearly call for it. Carrying this further, several authors state that it is fundamentally impos-
sible to estimate more than N parameters from N data points; and practically impossible to
estimate more than a small fraction of that number.

Although we feel intuitively that there must be some element of truth in these folk-
theorems, we have never seen a proof of either. But from our general solution we can learn
something about their validity and unstated quali�cations.

First, note that if we are estimating the seasonal parameters (A0 : : :B5), we have from
(18) that their posterior distributions are independent. Therefore our estimate of A1 and its
accuracy are the same whether or not A0 is considered known, or whether it is also being
estimated. The folk-theorem is simply wrong in this case.

There is a fairly general class of situations that include seasonal adjustment and many
other problems, in which these e�ects are easy to understand. Consider two di�erent prob-
lems; in problem (a), we are estimating an \old" parameter �, with prior information Ia that
speci�es a model containing only �. In problem (b) we are still estimating � but there is a
\new" parameter �, also unknown. The class of situations considered is that in which model
(a) corresponds to setting � = 0. The the posterior distribution of � in the two problems are:

p(�jD; Ia) = p(�jD; Ib; � = 0) (40)

p(�jD; Ib) =
Z
p(�jD; Ib; �)p(�jD; Ib)d� (41)

respectively. The model (a) result appears, in the context of model (b), as a conditional dis-
tribution conditional on � = 0; while the model (b) result is a weighted average of conditional
distributions conditional on all possible values of �.

Evidently, then, considering � unknown will in general make our estimate of � worse, in
agreement with that intuitive folk-theorem. But the folk-theorem can also be false, in some
cases, since it is possible for a weighted average of distributions to be more sharply peaked
than some particular one of those distributions. In this model, in order to cause appreciable
deterioration in our estimate of �, two conditions must be present: our estimate of � from
the conditional posterior distribution p(�jDIb�) must depend appreciably on �; and � must
itself be not well determined by the prior information Ib and the data D.

Once stated, this seems so obvious that intuition should have seen it long ago; but we
can point to no record indicating that it actually did. It would be hard for sampling theory
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to state such a result because the deterioration is caused by the old parameter becoming
correlated, in the posterior distribution, with an unknown quantity; and sampling theory
does not recognize such a notion.

Of course, the situation may be di�erent if introducing the new parameter causes a
drastic change in the model, not just adding a new dimension to the parameter space. The
two problems might be so di�erent that there is no meaningful comparison at all.

In our seasonal adjustment problem, there is no such drastic change, and adding A0 to
the Example 2 problem a�ects our conclusions thus: our estimate of the oscillating seasonal
component is not changed at all, because the added constant term is orthogonal to the
seasonal sinusoids C(kt), S(kt). But our estimates of the irregulars (e1 : : :eN ) are shifted by
an amount proportional to our estimate of A0, and their posterior correlations are increased
by an amount corresponding to the posterior error of our estimate of A0. But actually A0

can be estimated quite accurately from the data of a few years, and so the last factor in (41)
is sharply peaked and there is very little e�ect on the accuracy of our results.

The rules (40), (41) also enable us to judge how various extensions of our seasonal
adjustment model will a�ect our conclusions. In particular, detrending would have to be
included in many real problems by adding to the model equations (1), (2) a term Ct where
C is a new trend rate parameter to be estimated from the data. But the Bayesian detrended
seasonal adjustment will di�er from what is commonly done on intuitive grounds. Our new
joint posterior distribution of (A0 : : :B5) will not be an estimate from the detrended data;
but rather as indicated by (41) we should take a weighted average of the joint distributions
conditional on all possible values of C. The Bayes estimates would approach an estimate
from detrended data if C were itself accurately determined by the data.

We do not go into this analysis here, but it has been carried out and we �nd astonishingly
little change in our seasonal adjustment conclusions. The reason is that the new linear term
Ct is nearly orthogonal to the seasonal sinusoids. The estimates of (A1 : : :B5) are slightly
changed by amounts proportional to our estimate of the trend rate C, their joint posterior
distribution is no longer quite independent, and their probable errors are slightly increased,
by a factor of (1 � 6N�2)�1, which is only 4% for N = 12, and quite negligible if we have
data for two or more years.

Thus Bayesian seasonal adjustment { contrary to what a naive application of that folk-
theorem might suggest { accommodates detrending easily. Of course, estimates of the irreg-
ulars are corrected if there is evidence for a strong trend; but there is very little change in
their posterior correlations or accuracy.

8. RANK OF THE COVARIANCE MATRIX

The (N �N) matrix R de�ned in (25) is real and symmetric; therefore it has a full set
of N orthonormal eigenvectors hi = (h1i : : : hNi) and eigenvalues �i:

NX
r=1

Rtrhri = �ihti; 1 � t; i � N (42)

Let y be any real (N � 1) vector with components (y1 : : :yN ), not all zero and denote scalar
products of real vectors by (x; y) =

P
xtyt. Since y has an expansion y =

P
i(hi; y)hi, the

quadratic form

F (y) = (y0Ry) =
NX

t;r=1

Rtrytyr (43)
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can be decomposed as

F (y) =
NX
i=1

j(hi; y)j2�i: (44)

But in our case, from (25) this is also equal to

F (y) =
NX
k=0

M�1
k

�����
X
t

yt exp

�
i�kt

6

������
2

� 0 (45)

therefore R is positive semide�nite. But then if F (y) = 0, from (44) y must be orthogonal
to all hi with �i > 0; i.e. y is itself an eigenvector with zero eigenvalue; call it a zector for
short. The number of linearly independent zectors is (N � r), where r is the rank of R.

Consider, then, the prior information I1 of Sec. 5, that there is no oscillating seasonal
component but there may be a DC o�set A0, which led in (28) to Rtr =M�1

0 , 1 � t; r � N .
This gives

F (y) =M�1
0

�����
X
t

yt

�����
2

=M�1
0 (u0; y)

2 (46)

where the vector u0 with components (1 : : :1) is an eigenvector of R with eigenvalue � =
N=M0 > 0. But from (46) every vector z orthogonal to u0 yields F (z) = 0, and is therefore
a zector. In an N -dimensional space there are N � 1 linearly independent vectors orthogonal
to u0, therefore the positive eigenvalue is nondegenerate, and the rank of R is one, as stated
in Sec. 5.

The prior information I2 of Sec. 6, that only a fundamental seasonal component, of
period 12, is present, led to the covariance matrix (36) in which only the term in M�1

1 is
present. For this we have

F (y) =M�1
1

�����
X
t

yt exp(
i�t

6
)

�����
2

=M�1
1 j(u1 + iv1; y)j2

=M�1
1

�
(u1; y)

2 + (v1; y)
2
� (47)

where uk, vk denote the linearly independent vectors

uk with components (utk = cos �kt6 ; 1 � t � N)

vk with components (vtk = sin �kt
6 ; 1 � t � N)

(48)

Evidently, F (u1) > 0 and F (v1) > 0; and any vector z that is orthogonal to both u1 and v1
is a zector. There are N � 2 linearly independent zectors, so R(2) is of rank 2.

For the prior information I3 which allowed the possibility of both the DC o�set and the
�rst harmonic component, R yields the quadratic form

F (y) =M�1
0 (u0; y)

2 +M�1
1

�
(u1; y)

2 + (v1; y)
2)
�

(49)

from which it is now evident that R is of rank 3, since every vector orthogonal to u0, u1,
and v1 is a zector.

In general, then, we have

F (y) =
6X

k=0

M�1
k

�
(uk; y)

2 + (vk; y)
2
�

(50)
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and the rank of R is the number of scalar products appearing. Note, however, that the cases
k = 0, k = 6 are special, since v0 = v6 = 0. Every nonzero M�1

k
contributes 1 or 2 to the

rank, and when all are nonzero the maximum possible rank of R is 12.

Stated di�erently, every seasonal parameter in the set (A0 : : :B5) that is initially un-
known contributes one to the rank of R.

9. CONCLUSION

Our analysis has shown how prior information about the seasonal parameters can have
a major e�ect on our estimates of the irregulars or functions of them. In the extreme case
where we know that a particular harmonic component is zero, the dimensionality of the
posterior distribution is reduced. A real application will probably never be so utopian, but if
we know that a particular harmonic component must be very small, R will approach a matrix
of reduced rank, and as a result it will be possible to estimate some functions of the irregulars
much more accurately than one would have thought from the sampling theory result (27).

Consider, briey, what kind of prior information one might have in the case of a real
economic time series. From prior knowledge familiar to all of us, we expect that department
store sales will peak rather sharply in December, while sales of beer and ice cream will peak
more broadly in July, bank loans to individuals may peak just before April 15, agricultural
employment will peak at harvest time, etc.

In all these cases the fundamental seasonal component is clearly the major one. Indeed,
it is hard to think of any case where we believe there is a repetitive mechanism tending
to generate a second harmonic (i.e. a reason why anything should go from maximum to
minimum in alternate quarters), much less any higher harmonic. That is, virtually every
economic time series surely has a \driving mechanism" with a basic period of one year, the
appearance of harmonics being due only to the nonsinusoidal nature of the variation, rather
than to any inuence that encourages repetition after a shorter period.

There are two basic kinds of periodic but nonsinusoidal behavior: (a) high-low asym-
metry making, for example, sharp peaks but broad troughs, as we conjecture to be the case
for department store sales; and (b) up-down asymmetry tending, for example, to make the
falling portion of a curve steeper than the rising portion. It seems plausible that sales of
bathing suits might rise slowly throughout the Spring and Summer, but drop precipitously
in the Fall.

Type (a) behavior is represented by a Fourier series with only even order harmonics,
while type (b) has both odd and even. Doubtless, both e�ects are present to some extent
in most time series; but it seems highly unlikely that any economic quantity would exhibit
only odd harmonics, making the peaks and troughs mirror images of each other (although
that is the usual case for the electrical engineer's seasonal adjustment problem, elimination of
complex and changing hum interference waveforms from sensitive circuits). It appears that
in most cases the economist may expect the sinusoidal components of order k = 1; 2; 4 to
predominate, while k = 3; 4; 6 should be much weaker.

We suggest that putting this information into our priors may make a noticeable improve-
ment in seasonal adjustment, just as Litterman's use of priors that express our common-sense
judgment that high order autoregressive coe�cients are small, improves the forecasting of
time series.

Clearly, what is needed now is to put these ideas to the test by analysis of real data for
which conventional seasonal adjustments have been made by X-11, SABL, or some other cur-
rent program. The writer will undertake to do this computation but, not being a professional
economist, feels the need of help in choosing samples of data that appear to be promising
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for this purpose. Cases where hindsight was able to make a signi�cant correction of the �rst
seasonal adjustment would be particularly valuable.

APPENDIX A: WHY A GAUSSIAN ERROR DISTRIBUTION?

Stigler's Law of Eponymy (1980), illustrated by its name, states that \No scienti�c
discovery is named after its original discoverer". Thus we �nd that the distribution f(x) =
exp(�x2=2) was used by Laplace (1774) three years before Gauss was born, and by de Moivre
(1733) sixteen years before Laplace was born. So we are well within the Letter of the Law if
we continue to call f(x) a \Gaussian distribution".

The usual rationale for assigning iid Gaussian prior probabilities to \random errors" is
that if the real errors are the resultant of many small independent contributions, then by
the Central Limit Theorem the total error will have nearly a Gaussian frequency distribution
whatever the distributions of the individual small components. Such an argument, although
of course correct as far as it goes, does not take note of other reasons that may be equally
cogent or more so.

Our use of the term \prior probabilities" in this context may seem unusual; conven-
tionally, p(ejI) would be called a sampling distribution. Note, however, that \sampling
distributions" are from a Bayesian standpoint simply the prior probabilities we assign to the
errors, or \noise", not di�erent in logical status from prior probabilities assigned to param-
eters or hypotheses. Indeed, for seasonal adjustment the term seems particularly called for,
since our aim is just to convert the prior probability p(ejI) assigned to the noise, into its
posterior distribution p(ejyI).

In Bayesian inference, a sampling distribution is no more required to be a frequency
distribution than is any other prior. Our aim in writing a prior distribution for a parameter
is to represent our state of prior knowledge about the range of possible values that parameter
may have in the speci�c case at hand; and this is not necessarily a frequency in any real or
conceivable set of repetitions of the problem. Indeed, it will not be a frequency except in
the special case (of which no example is known to us) where our prior information about the
parameters consists solely of frequencies with which various values have occurred in other
cases.

But in almost every real problem there are special circumstances, which make the present
instance unique and not comparable to others. Then whether our parameter would or would
not have the same value in some other problem that we are not reasoning about, is irrelevant
for our problem.

Likewise, in writing a sampling distribution we are representing our state of prior knowl-
edge about the possible errors that may occur in the speci�c case at hand { which, depending
on special circumstances, may or may not be related to the frequencies of those errors in some
class of other imaginary cases that we are not reasoning about.

In fact, there is almost no real problem in which we actually have prior knowledge of the
frequency distribution of errors; and if we did have such knowledge, it would not in general
su�ce to determine a reasonable Bayesian sampling distribution. For in the case of errors
as well as that of parameters, it is typical of real problems that we have prior information
which does not happen to consist of frequencies; but is none the less cogent.

A rational prior error distribution, or sampling distribution p(ejI) should incorporate
all our prior information about the errors; not just the part of it that happens to refer to
frequencies. Indeed, the frequency part is usually missing altogether or incomplete, consisting
of only one or two moments of the error distribution. An experimental physicist or electrical
engineer usually knows the average power level of his noise, less often something about its
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spectral distribution; and seldom anything else. An economist making use of past experience
about the magnitude of the irregular uctuations; but either lacking, or mistrusting the
relevance of, past frequency data, would be in much the same position.

As we have argued extensively elsewhere, the prior distribution that most honestly rep-
resents our state of knowledge (i.e. that agrees with what we know but does not assume
anything beyond that) is the one with maximum entropy subject to the constraints imposed
by what we know. If the prior information �xes (or can be reasonably thought of as �xing)
the �rst two moments, this principle will lead to the Gaussian prior distribution, as has been
observed countless times.

However, this is not the whole story. Another of the common \folk-theorems" of statistics
is that if we use an iid Gaussian prior for the errors, but the errors do not in fact have an
iid Gaussian frequency distribution, then something terrible will happen to us and we shall
be led to draw all manner of wrong and misleading conclusions. Like the other folk-theorems
mentioned above, this one is in need of more careful statement.

We learn from the Asymptotic Equipartition Theorem of Information Theory (Feinstein,
1958) that the entropy of a distribution is essentially a measure of its \size"; i.e. over how
large a volume W of the sample space is the probability density of the errors, or \noise",
reasonably large? As N !1 the iid Gaussian distribution is the one that occupies, asymp-
totically, the greatest possible volume of N -dimensional sample space for given �rst and
second moments. As it is usually put in the literature of Information Theory, entropy is an
asymptotic measure of the size of the \basic support set" of the distribution.

From this we see that the Central Limit Theorem is, in a very fundamental sense, a spe-
cial case of the principle of maximum entropy. For �rst and second moments, being additive
under convolution, constrain the possible distributions that can be reached by convolution.
The CLT thus tells us that, baring very unusual circumstances, no other constraints exist; a
distribution with �nite �rst and second moments will expand under repeated convolution until
it �lls up the entire volume allowed by those two constraints. In a class of generalized CLT's,
distributions could be merged in other ways than convolution, and would expand asymptot-
ically into the one with maximum entropy subject to whatever constraints are imposed by
the new method of merging.

If we assign an iid Gaussian prior N(0; �) to our noise sequence (e1 : : : eN), then the high-

probability volume, or basic support set, is an N -dimensional sphere R of radius about �N
1

2 .
Any systematic e�ect that one is trying to detect by a signi�cance test will be e�ectively
obscured by this noise (i.e. we will not be able to distinguish it from the noise) if the e�ect
is so small that the sample values remain inside the noise sphere R. It will appear to be
statistically signi�cant if and only if its e�ect is large enough to carry the sample values
outside R.

Thus the iid Gaussian prior assignment is not a \physical assumption" that might lead
us to errors if wrong; quite the contrary, it is the safest, most conservative assignment we
can make if we know only the �rst two moments, because its high-probability region R takes
into account every possible noise vector that is allowed by that information. To use any
other prior assignment in this state of knowledge would amount either to contradicting our
prior knowledge (if our prior had di�erent moments); or to make additional assumptions, not
warranted by our information, that contract R to some arbitrary subset R0 � R; and thus
invite erroneous conclusions. For if the noise vector happens to lie in a complementary set
R - R0, there will appear to be a real, statistically signi�cant e�ect that is actually only an
artifact of our particular choice of R0.

Put di�erently, if we assign an iid Gaussian error distribution but the frequency distri-
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bution of errors in N measurements is not, in fact, iid Gaussian, then for a given mean square
error the result will not be that we shall see spurious e�ects that are not there; but only that
our discriminating power to see small e�ects is not as sharp as it could be, and the accuracy
of our parameter estimates is not as high as it could be.

If we had additional prior information, beyond the mean square error, about the speci�c
way in which the noise values depart from iid Gaussian, then we could use that information
to de�ne a subset R00 � R within which we know that the noise almost certainly lies; and
then any sample that falls in R � R00 will be statistically signi�cant. Thus additional prior
knowledge about the noise can be crucial for deciding whether a given data set does or does
not give signi�cant evidence for a real e�ect, and in determining the accuracy of our estimates.

But this information need not consist of frequencies. Any information that constrains
the possible N -dimensional noise vector to a subset R00 � R will have this e�ect of increasing
the discriminating power of our signi�cance tests and the accuracy of our estimates. In
particular, information about non-independence (the noise is not \white") makes the noise
sequence in part predictable, and is thus highly valuable for extracting systematic \signals"
form the noise.

Maximum-entropy spectrum analysis (Burg, 1975; Childers, 1978; Jaynes, 1982) is just
the means by which we exploit the increased predictability of a time series that results
from information about a few values of its autocovariance function. The maximum entropy
formalism is the analytical means for locating the subset R00 de�ned by this information.

Likewise, maximum-entropy reconstruction of images, crystallographic, or molecular
structure is the analytical means for locating the high-probability region R00 , in the space of
possible true states of nature, de�ned by the incomplete data of a blurred image. We think
that future advances in pattern recognition will come from a similar taking into account of
information that is ignored by sampling theory because it does not consist of frequency data.

There is no reason other than historical precedent why these methods should be con�ned
to physics and engineering; they should �nd use in any application where there is cogent
information that sampling theory �nds indigestible.

Thus we applaud the custom of assigning iid Gaussian priors. Nothing better could
have been done by the Bayesian or anyone else, unless he had additional, quite speci�c prior
information beyond the �rst two moments of the noise. Whatever the \true" frequency
distribution of the noise, if it is unknown then we cannot make use of it for inferences; and
if it is known, additional information may be equally cogent.

But what if our prior information is so meager that we do not even know the second
moment �2? This is perhaps the most common situation outside of physics. We do not claim
it as the optimal thing to do in every case, but it is useful and computationally feasible { a
kind of Bayesian jackknife { to reason as follows: if we did know �, the Gaussian assignment
would be indicated, so � is a relevant hyperparameter and the problem reduces to assigning
a prior to �.

APPENDIX B: THE PRIOR FOR SIGMA

In discussing our choice of prior p(�jI), we can answer some common misgivings by
noting that the Bayesian formalism automatically provides a diagnostic check on our priors
and model. Of course, their adequacy cannot be tested by Bayesian or any other methods if
we have only a small amount of data. But with enough data this becomes possible; for then
the posterior density of � from the Je�reys prior becomes sharply peaked, the data alone
pointing to a well-de�ned value of �. A highly informative prior sharply peaked at a very
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di�erent value thus stands in conict with the evidence of the data; intuitively, we would be
led to doubt the validity of our prior information or model.

This observation leads to the formal signi�cance tests of Je�reys, used recently by Zell-
ner and coworkers, if we convert that intuitive feeling into a well-posed question. In our
view, then, the \diagnostic phase" is indeed an essential part of inference; but it requires no
departure from Bayesian methods. Quite the contrary, Bayesian methods are required for a
full treatment of the diagnostic phase; nonBayesian signi�cance tests are only approximate
and/or incomplete substitutes for a full Bayesian test. These points are discussed further in
Appendix C.

If we have very little data, then of course our prior distributions can matter a great deal
for the conclusions we are able to draw, since our prior and posterior states of knowledge are
not very di�erent. But a t-distribution with many degrees of freedom goes asymptotically into
a Gaussian, and so if we have a reasonably large amount of data, even the aforementioned
extremes in the prior p(�jI) cannot lead us to very di�erent conclusions about seasonal
adjustment unless the data sharply contradict our informative prior, in which case we should
start over again anyway. So we made the simplest choice in the text.

APPENDIX C: THE \DIAGNOSTIC PHASE" OF INFERENCE

G. E. P. Box (1982) noted the Bayesian signi�cance test for comparing di�erent models,
but criticized it on the grounds that it could lead us to misleading conclusions if the class of
alternatives did not happen to include the true one. At �rst glance it may appear that a test
that does not refer to any speci�c class of alternatives is free from this objection. Such tests
are indeed useful, and we do not mean to argue against using them as easy approximations,
often good enough for the purpose. However, we note three reasons why a full,, well-posed
diagnostic test must be Bayesian.

In the �rst place, not specifying a class of alternatives does not mean that the alternatives
are not there; it means only that the test has not been fully de�ned. Any choice of test
statistic, whatever rationale is given for it, is necessarily an implicit assumption about some
class of alternatives. That is, given any null hypothesis H0, data D, test statistic t(D), and
rule such as \reject H0 if t > t0", we are judging H0 against a class of alternatives for which
one expects large values of t.

If one fails to specify what that class is, he is not thereby prevented from applying the
test; but having done so, he does not know what the test has accomplished, or what to do
if H0 is rejected. As Je�reys (1939) put it, there is not the slightest use in rejecting any
hypothesis unless we can do it in favor of some alternative known to be better.

Of course, not all \frequentist" signi�cance tests have a Bayesian interpretation, for there
are still frequentists who do not believe in the likelihood principle. For example, suppose that
the point at issue is the value of some parameter �. If D and D0 denote two di�erent data sets
that give the same likelihood function L(�), but D is in the \accept" region and D0 in the
\reject" region, then in two situations where we have the same state of knowledge about � we
are drawing di�erent conclusions, a violation of our basic \Desideratum of Consistency". Such
an irrational test cannot have { nor would we wish it to have { any Bayesian interpretation.

But a test that respects the likelihood principle (data sets that give the same likelihood
function also lead to the same decision) necessarily partitions the class of possible posterior
distributions p(�jDI) into \accept" and \reject" subclasses. Such a test can be interpreted
{ and de�ned { in Bayesian terms.

Thus for the most common signi�cance tests, Chi-squared, or the one-sided t-test and F -
test, it is straightforward mathematics to construct a Bayesian signi�cance test that leads to
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the same test statistic and the same procedure; but does refer to a speci�c class of alternatives,
and therefore does tell us what the test has accomplished.

Given a null hypothesis H0 and some class C of alternative hypotheses (H1; H1; : : :), a
usable test, that goes at least part way toward a full Bayesian posterior odds ratio test, is
to search out class C for the best alternative to H0 by the likelihood criterion; i.e. given the
data D, calculate the test statistic

t(D;C) = max
H�C

log [p(DjH)=p(DjH0)] (C1)

which tells us how much the data could support an alternative in C, relative to H0.

For example, the Chi-squared test with n categories is commonly cited as a test without
alternatives; yet Chi-squared is readily interpreted in Bayesian terms, as the statistic that
searches out the class Bn of Bernoulli alternatives (i.e. n possible results at each trial,
independence of di�erent trials). Chi-squared is a two-term Taylor series approximation to
2t(D;Bn). Thus the numerical value of Chi-squared has a de�nite meaning: it tells us how
much improvement in �t could be obtained within the class Bn of alternatives.

This brings up the second reason for using a Bayesian test, the logic of the decision
criterion, or choice of the critical value t0. In the traditional Chi-squared test the decision
is based, not on the numerical value of Chi-squared, but on tail areas of the Chi-squared
distribution conditional on H0. But the illogical nature of any test that tries to decide solely
on grounds of probabilities conditional on the null hypothesis, while simply ignoring the
probabilities conditional on the alternatives, is too obvious to dwell on.

The situation is particularly embarrassing if H0 is rejected; for surely, if we reject H0,
then we must also reject probabilities conditional on H0; but then if no other probabilities
have been used, what was the justi�cation for the decision? Orthodox logic seems to saw o�
its own limb. A Bayesian test is free of this dilemma, since it decides on grounds of all the
probabilities involved.

Another di�culty with interpreting the Chi-squared test as concerned with tail areas
but not with alternatives, is that there is then no reason why one tail should be better than
another; one ought to reject H0 just as readily if Chi-squared turns out to be much smaller
than expected. But then it would be clearly illogical to reject H0 in favor of any alternative in
Bn for H0 is supported by the data more than any such alternative. An unexpectedly small
Chi-squared could only be grounds for rejecting H0 in favor of an alternative for which Chi-
squared is expected to be small (such as one with negative correlations or some mechanism
that constrains the data).

But this brings home to us the third reason why a fully satisfactory diagnostic test must
be Bayesian; whether we should actually reject our model cannot be judged reasonably until
we take into consideration not only the class of alternatives in some quantity like t(D;C),
but also their prior probabilities. Usually, one is willing to reject H0 when Chi-squared
is large, because the indicated class of alternative in Bn is judged to have a reasonably
high prior probability. But one would seldom reject H0 when Chi-squared is unexpectedly
small, because the alternatives for which one expects a small Chi-squared have very low prior
probability. Tests that ignore alternatives and their prior probabilities could be { and we
think have been { very misleading.

A Bayesian test with a set of alternatives so poorly chosen that the true one is not even
in it could indeed be misleading, in the sense that it could not lead us to the true one; but
would a test that ignores alternatives leave us in any better positions? At least, the Bayesian
would know what class of alternatives had been searched out, and the most likely one in that
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class. Surely, an antiBayesian who does not know even that much is not in less danger of
falling into error; but more.

It would be very nice to have a formal apparatus that gives us some \optimal" way of
recognizing unusual phenomena and inventing new classes of hypotheses that are most likely
to contain the true one; but this remains an art for the creative human mind. In trying
to practice this art, the Bayesian has the advantage because his formal apparatus already
developed gives him a clearer picture of what to expect; and therefore a sharper perception
for recognizing the unexpected. To one who expects nothing in particular, nothing can be
unexpected. This applies especially to methods of data analysis that decline to use any formal
apparatus at all.
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DISCUSSION

J. J. DEELY (University of Canterbury, NZ)

Firstly, I must apologize to Professor Jaynes for not having enough time to verify the
details of his paper. I had to leave New Zealand early in August and have been on the go
ever since. I should also point out to him that his paper is the only one presented during this
conference in which two discussants were devoted solely to one paper. Perhaps the fact that
his �rst two initials are \E. T." had some bearing.

Professor Jaynes is to be commended for his labour of love in reminding us again that
the Maximum Entropy Principle (MEP) provides us with a method which converts prior
information into highly informative priors. This paper provides a new orchestration for that
old song. He uses a simple forecasting model:

yt = st + �t; 1 � t � N

where

st = A0 +
6X

k=0

�
Ak cos

2�kt

12
+ Bk sin

2�kt

12

�
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with B6 = 0. This implies a seasonal model with st = st+12 for every t. The coe�cients
are assumed to have prior distributions, Ak � N(ak; �k), Bk � N(bk; �k) and the errors
�t are independent and N(0; �). It is the choice of these prior distributions which causes
me concern. Professor Jaynes has stated \: : : a high priority research problem must be the
development of the formal apparatus that can realize the aforementioned desideratum, i.e.
to have a theory which deals seriously with prior knowledge by converting speci�c prior
information into speci�c prior probability assignments, in a wider variety of problems," and
\: : : problems of inference are basically ill-posed if prior information is not considered". he
then adds \: : : it (MEP) is a rule for constructing informative priors when we have partial
prior information that restricts the possibilities signi�cantly but not completely". I am in
complete agreement with these statements, but what has not been done is to convince me that
MEP is a good way to deal with prior information. This probably sounds like heresy but I feel
the subjective atmosphere here is so health that diverse opinions can be openly expressed.
(I hope that future Bayesian Symposiums will zealously guard this attitude). The reason for
my saying that I am not convinced about MEP begins with a lecture in my undergraduate
days at Georgia Tech. who introduced the subject of Entropy in a thermodynamics course, by
saying, \you will never use this again" and I believed him! More importantly my statistical
training brought me through classical procedures and least favorable prior distributions, and
to use Bayes only for admissibility. Hence it is not surprising that a paper, Deely, Zimmer
and Tierney (1970) appeared, which showed that MEP does not correspond to least favorable
priors, not even in the restricted minimax sense.

I give this bit of history to show how far o� the MEP track I am. To reach me and
others like me (if there are any?) a decision theoretic structure will have to be used or
something similar using beautiful mathematics { even hand waving { but not repeating over
and over again that MEP is good. Jim Berger has already suggested in his paper that using
the decision theory structure as a check for various procedures may not be a bad conversion
this week and that word is \neutral". In the paper he describes it in the following way, \As
we have argued extensively elsewhere, the prior distributions that most honestly represents
our state of knowledge (i.e. that agrees with what we know but does not assume anything
beyond that) is the one with maximum entropy subject to the constraints imposed by what
we know". Thus all that remains to do is to give a nice intuitive decision theoretic de�nition
of \neutral" or \honestly represents" and then derive necessary and su�cient conditions for
MEP to be neutral.

Now considering the speci�c applications in this paper, I'm not surprised at the nice
results. However as Professor Jaynes admits, his examples and results for them are not
realistic. \Clearly, what is needed now is to put these ideas to the test by analysis of real
data : : :" I certainly concur with this and would like to point out one de�nite area where
I think his model is unrealistic. To allow for changes in the seasonal vectors over time, it
seems to me that the coe�cients Ak and Bk (k = 1; : : :6) should be allowed to change. One
way to do this is to imagine the coe�cients being drawn repeatedly each 12 months from
the same distribution. Thus given data for N=12 = n years, forecasting the future requires
updating the prior information using the past data for n� 1 years. In this context I believe
MEP would be incoherent, and possibly I can prove this by the next Symposium.

A. F. SMITH (University of Nottingham):

I believe that Jaynes' paper contain a very important message but I'm not sure that it has
anything to do with Time Series or Entropy. However, it does concern a topic which Jaynes
emphasized at our previous conference: namely, the notation of \question posing" as a dual
activity to \inference" (formalized, to some extent, in the work of R. T. Cox). In particular,
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the business of deciding which questions can be well-answered by a particular data set (given
a parametric model and a prior speci�cation) can be thought of as corresponding to a prin-
cipal component analysis in parameter space, performed on the posterior covariance matrix
(perhaps following various exploratory non-linear transformations of individual parameters).
Part of Jaynes' analysis seems close in spirit to this idea, with the added re�nement that {
with all other ingredients �xed { one can give an operational meaning to \highly informative
priors" as those which lead to a simplifying principal component analysis.

J. R. M. AMEEN (University of Warwick):

It is appealing that prior probabilities should be considered as highly informative relative
to the hypotheses under which the data is collected, when the data have almost nothing to
tell on the basis of some discrimination measure between prior and posterior probabilities.
Is this the procedure under which Professor Jaynes' prior speci�cation turn out to be highly
informative?

Regarding model speci�cation, although the simplicity and restrictedness seem to be for
the sake of argument, the Dynamic Linear Models of Harrison and Stevens (1976) may have
been more justi�ed.

Prior probabilities need not be completely ruined by the occurrence of a sharp change
in the data as it is stated at the end of appendix B of the paper. This point is emphasized
with practical examples in Ameen and Harrison (1983).

J. BERGER (Purdue University):

This was a very enjoyable paper to read, not only because of the interesting Bayesian
analysis of seasonal adjustment, but also because of the many philosophical meanderings
that are sprinkled throughout. With only two of these meanderings did I not feel immediate
agreement.

One was in Appendix C, in the discussion of signi�cance testing \sawing o� its own limb".
the \justi�cation" for the decision to reject H0 if the tail area probability of the signi�cance
test is small, is surely just that data inconsistent with the hypothesis casts doubt on the
hypothesis. I fully agree, however, that any attempt to treat a tail area signi�cance level as a
measure of doubt in any quanti�able sense is generally meaningless. It is perhaps this which
Professor Jaynes is calling \limb-sawing" illogic: how can a signi�cance level provide any
absolute measure of doubt for the hypothesis if it is calculated under the hypothesis and the
hypothesis seems wrong. Of course, the comments about the need to consider alternatives
raise the main concern with signi�cance testing.

The only real disagreement I had was with the justi�cation in Appendix A of the Gaus-
sian error distribution. I view maximum entropy as a wonderful tool but, as with all wonderful
tools, fear the tendency to make the problem �t the tool. In particular, maximum entropy, as
here, works best when one assumes that prior knowledge provides moments of the distribu-
tion. Now I can conceive of many situations where such may be the case but, in the majority
of situations that I see, prior knowledge is more likely to be in the form of, say, medians and
quartiles of a distribution. Medians and quartiles can be assessed by consideration of sets
with large probability, while moments depend on delicate features of a distribution (such as
its tail behavior) which are hard to assess. It may be a mistake to assume that moments even
exist (i.e., the error distribution could have a fat enough tail that, as an approximation, it
would better to proceed as if the moments were in�nite). The rather unsatisfactory behavior
of maximum entropy distributions for speci�ed medians and quartiles (and continuous dis-
tributions) is then a source of concern. The justi�cation of normal error distributions (or,
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for that matter, normal prior distributions) by maximum entropy thus leaves me somewhat
uneasy.

W. H. DuMOUCHEL (M. I. T.):

I agree strongly with Professor Jaynes that the real opportunities for Bayesians lie in
the use of informative priors. How else could we hope to do better than frequentists? To use
noninformative priors is, basically, to play on their turf.

The author's discussion of the special problems involved in seasonal adjustment is in-
teresting, but, in spite of his apology, I regret the absence of real data in his presentation.
One wants to see the methods in action { which harmonics re used? Why? What values of
� and b are used? Quite possibly Professor Jaynes might develop more sympathy for those
who allow arbitrary harmonics to enter their models if he had experience with a wide variety
of real series, only a moderate proportion of which follow idealized seasonal models. For
example, there may be a spike in which one month stands out from its adjacent months,
or there may be more than one harvest time, several months apart, etc. If simple �ts to
trigonometric series work consistently will, frequentists should be able to pro�t from them as
well as Bayesians. Show us the data!

The assumption that the prior distributions of the size of the �rst and second harmonics
are independent doesn't seem reasonable to me. If one switches to polar coordinates, so that
R2
1 and R2

2 are (A
2
1+B2

1) and (A2
2+B2

2 ), respectively, then I wold be more willing to believe
that R1 is independent of R2=R1.

Finally, I am afraid I don't see the point of the author's elaborate discussion of the
singular posterior distributions of the feig, at least in the context of the Bayes/non-Bayes
controversy. Classical statisticians at least since Fisher have known that the residuals and
the �tted values form a Regression model each having singular distributions. Isn't that all
you are saying?

I. J. GOOD (Virginia Polytechnic Inst. and Statue Univ.):

Regarding minimax entropy I'd like to draw attention to my comment on the paper by
Bernardo and Bermudez.

A previous discussant said that the principle of maximum entropy is not a minimax
principle with the usual loss functions. But it seems to me that he minimization of expected
weight of evidence (minimum discrimination information), which is a generalization of the
maximization of entropy, must be a minimax procedure if weight of evidence is regarded as
a utility or quasi-utility (Good, 1969). This is by virtue of Wald's theorem that the least
favorable prior distribution is minimax. The minimax property by itself would not be of
much interest if weight of evidence were not a reasonable quasi-utility having the property
of invariance under transformations of the independent variable for continuous distributions,
and having the analogous \splitative" property for discrete distributions. That is, weight
of evidence, in the discrete case, is unchanged if categories are split, such as tossing a coin
(Good, 1973).

REPLY TO THE DISCUSSION

It is I who must apologize to John Deely for failure to get my complete manuscript to him
before this meeting. Desperate attempts to meet three publication deadlines simultaneously
led also to omission of some of the results (particularly numerical analysis of real data) that
I had hoped to present.

But all heard my vow not to speak at any more meetings until I could present such an
analysis. This should go a long way toward meeting the vary valid criticism of Deely and
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others, that one does need to judge performance in the arena of real applications, and not
just philosophy and theorems. Nobody feels that need more strongly than I, and only the
pressure of other prior commitments has deterred me.

However, we are not operating in a complete vacuum: my paper gives several reference
to recent work where useful numerical results, not duplicated by other statistical methods,
have been obtained with MEP. Applications in several di�erent �elds are now growing so
rapidly, the number of workers appearing to double every year, that it is no longer possible
for one person to keep up with what is being done.

And this growth owes nothing to philosophy of theorems. In every �eld of application,
nobody will believe that the method will work (the philosophy is attacked and the theorems
are ignored) until somebody actually applies it and shows that it does work. It is the computer
printouts { the sharp detail, uncluttered by the spurious artifacts that were generated by
previous methods of data analysis like lag windows and inverse �lters { that have produced
the converts. A method that gives such results would be used just as much if it had no
theoretical justi�cation at all.

Today, we are rather far beyond the stage of \repeating over and over again the MEP
is good" which would have been a valid criticism in 1965. Even at the time of Deely's 1970
criticism of MEP, Buge's Maximum-Entropy Spectrum Analysis (MESA) had been available
in the literature for three years. By 1978 the literature had grown to the point where the
IEEE issued a special volume (Childers, 1978) of reprints on MESA. The September 1982
IEEE Proceeding is a special issued devoted largely to it. But there is still a serious shortage
of such numerical results outside of physics and engineering. This can and will be corrected.

In a recent talk George Tias noted that: \In the marketplace of statistical ideas, there are
many sellers but few buyers" { a profoundly true observation in spite of the seeming paradox
that before one can become a seller he must �rst have been a buyer. The explanation is that
one must be a seller for a very long time, because of the di�culty { more acute in statistics
than in any other �eld { of clarifying to potential byers exactly what it is that one is trying
to sell.

Nothing could be further from our intention than to construct a \least favorable" prior.
We seek rather a prior that deals most honestly with our prior information by representing
the whole truth and nothing but the truth, thus enabling one to separate the truth from
the artifacts. The philosophy, the theorems, and the computer printouts all support the
view that MEP is accomplishing this. On the other hand, \least favorable" priors ignore {
and therefore in general contradict { our prior information, and could be disastrous in these
problems.

I cannot imagine what one could mean by a decision theoretic justi�cation for MEP.
Wald's decision theory makes no contact with any principles for assigning priors. Various
theoretical justi�cations for MEP are in the literature, but they appeal rather to requirements
of logical consistency, which are neutral toward the value judgments underlying decision
theory. This neutrality appears to me the very essence of \scienti�c objectivity".

Similarly, it was not my intention to discuss all the real problems of seasonal adjustment.
My paper formulated and solved one speci�c problem in order to demonstrate one point, the
e�ect that prior information can have in seasonal adjustment. Believing that point to be
new, we did not want to obscure it with unnecessary details. In various situations the model
chosen may indeed be \not realistic" in may di�erent ways; and so we noted the possibility,
and the ultimate necessity, of extending it. But, having seen this one solution, the extensions
are straightforward exercises that John Deely could assign to his students as homework.

In reply to Adrian Smith:
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My presentation had, indeed, very little to do with entropy which was, after all, invoked
only to justify what everybody has been doing all along. It is surprising that some other
comments are so preoccupied with entropy, since it the same Gaussian prior had been called
simply \assumptions" nobody would have questioned them. It seems that new rational are
disturbing even when they support previous practice, as Harold Je�reys and Jimmie Savage
found also.

There was, however, something to do with time series. Just how much will be clearer
when those promised but still undelivered analyses of real data are at hand.

I am in full { indeed, enthusiastic { agreement with Adrian Smith on the importance,
for practice and future theoretical development, of recognized that the \design of models" or
\design of hypotheses" cannot be separate from the \design of experiments". Now that we
are happily beyond the stage of mysticism (was the speci�c Latin square generated by a truly
random selection process?), a new attack on these problems is possible, in which we give just
as much attention to: \Which questions can be well-answered by a given kind of data?" as
to the converse: \Which kind of data can best answer a given question?"'

The instincts of good scientists have always told them that it is idle to invent hypotheses
which cannot be tested by the data that it is feasible to get. Progress is always made by
asking the questions that are answerable at the time. For Isaac Newton it would have been
foolish to ask questions which were not foolish for Erwin Sch�odinger 250 years later. For
Gregor Mendel it would have been foolish to ask questions which were not foolish for Francis
Crick today. The same point was made by Arnold Zellner's call for \sophisticatedly simple"
models in econometrics.

With the good beginnings made by R. T. Cox, it should be possible to formalize this
intuitive wisdom in a new theory of scienti�c inference, which includes the \diagnostic phase"
and hypothesis formulation automatically, and will prove to be a far more powerful tool than
our intuition; just as our present Bayesian principles formalize and strengthen our intuition
about plausible reasoning from given hypotheses. In both, prior information will be of crucial
importance. The principle components analysis in parameter space suggested by Adrian
Smith may be a very good starting point for this quest.

In reply to Jack Good:

Jack Good's remarks illustrate an important point that deserves to be emphasized; in
statistics it is the rule that a given procedure may be interpreted and justi�ed in various
ways.

The maximum entropy principle, as a rational for assigning priors, was questioned by
John Deely who wanted to see instead a minimax decision theory type argument; and by Jim
Berger, who left us wondering what he would like instead. Deely's goal seems to me dubious
because priors and decisions lie at opposite ends of the inference-action chain.

In contrast, the maximum entropy procedure exists independently of any rational' and
my comments on Professor Csiszar's paper noted one conceivable way of interpreting it in
decision-theory terms. Jack Good's comments seem to o�er a rational for thinking of entropy
as related to utility rather than priors, and so tend to support this view.

But we are not compelled to choose one view and abandon the others; perhaps they
are both appropriate n di�erent circumstances, and this shows only that he procedure solves
more than one problem. Such a situation is not new in statistics.

Indeed, as John Tukey has noted, a procedure does not have hypotheses, and really
needs no rational at all; its justi�cation lies in the results it gives. In this connection, nothing
in the procedure requires the quantity whose entropy is maximized to be even a probability.
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As far as the mathematics is concerned, \any" non-negative integrable function f(x) has
an entropy H = � R f(x) log f(x)dx, whose maximization is a well-posed problem under
very general conditions. The solution will be a purely mathematical result, independent of
whatever conceptual meaning you or I might attach to f(x).

Some of the current applications take advantage of this exibility; the cited work of Pa-
panicolaou and Meed �nds the maximum entropy procedure a surprisingly powerful method
for approximating functions f(x) about which only a few moments are know, wit advantages
in both accuracy and stability over other common schemes such as Pad�e approximants.

Other interesting examples of the procedure escaping from the con�nes of its original
rational (such as �lling gaps in incomplete contingency tables) are in the articles cited and
in others shortly to appear.

Jim Berger's comments came as welcome relief because, unlike most of my recent dis-
cussants and commentators, he does not ask me to defend statements that I did not make.
Instead, I am able to note that I did say, in di�erent words, the things that the mentioned.
But his remarks end abruptly just at the most interesting point; I hope he will end the
suspense by continuing his lie of thought elsewhere.

On the trivial \limb-sawing" matter, surely we agree that probabilities conditional on
an hypothesis that we have rejected stand in a rather peculiar logical position. Would you
use them for future predictions? In principle, it must be the probability of the hypothesis,
conditional on the data, that justi�es our decision to reject it. Pragmatically, it doesn't
matter because the two probabilities are related mathematically through Bayes' theorem.
But orthodox statistics cannot say it that way, and so puts up a logically puzzling rationale.

The important matter here is the status of iid Gaussian sampling distributions and of
maximum entropy as a principle for assigning probability distributions. As Jim correctly
notes, the former is only a special case of the latter. I too stated that this rationale for the
Gaussian assignment holds when the prior information consists of the �rst two moments (or
just the second moment) of the noise; and that when our prior information is di�erent, a
di�erent prior distribution will be appropriate. So we are in agreement here.

But Jim and I seem to work on di�erent kinds of problems; my experience is that in the
great majority of those arising in physics and engineering the �rst two moments are exactly
the prior information we have, because they are connected directly to the noise energy. I have
never seen a real problem in which we had prior information about percentiles, and would
need to know more about them (are percentiles the only information?) before deciding what
to recommend.

Now we come to the serious point that calls for more explanation. He suggests that
if the prior information does not consist of moments, then not only will the id Gaussian
distribution not be appropriate, but also that the maximum entropy principle may not be
appropriate to �nd the new distribution. This is tantalizing because it seems to imply either
that eh proposes to leave us with no principle, or that some other principle will then be more
appropriate.

All I can say to this is that, if Jim Berger or anyone else is in position of a principle
for assigning priors that can, while using the same prior information, give more satisfactory
results than does maximum entropy in even one cases, then I and a few thousand others are
breathlessly eager to hear what it is. If I knew of a better principle, I would be expounding
it and using it in my current research.

In reply to Dr. Ameen:

The point of may work was to show the surprisingly large e�ect that prior information
can have in seasonal adjustment. to do that, one naturally chooses one speci�c model to
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analyze, and keeps it as simple as possible. Anyone who wishes to analyze a di�erent model
is perfectly free to do so. Presumably, the same sensitivity to prior information will be found
in any model of seasonal adjustment { or indeed any problems where we want to estimate
\noise" { if it is given a full Bayesian analysis.

Finally, in response to Prof. DuMouchel:

Professor DuMouchel calls on me to defend statements that I did not make. As in
other replays, I must emphasize that the purpose of my presentation was to demonstrate,
by analyzing a simple case, the large e�ect that prior information can have in seasonal
adjustment. It is indeed true that in the real world one can �nd other cases than the one I
chose. Therefore extensions of my model, in a dozen di�erent ways, are also of interest; by
all means, let us study them.

Let me assure everybody that, being one of them, I have the greatest sympathy for \those
who allow arbitrary harmonics to enter their models". Nothing in my argument forbids one
to model whatever harmonics he pleases. But in the model I chose to analyze (known period
of one year, monthly data) there are no higher harmonics than the sixth.

Likewise, nothing forbids one to consider di�erent prior probabilities than the ones I
chose. I one has evidence supporting a non-independent prior distribution for the �rst and
second harmonics, by all means use it. Presumable, still more interesting things will then
be found. I would be very interested to learn how these di�erent kinds of prior information
interact; perhaps Professor DuMouchel might tell us about this at a future meeting.

Having statisticians since Fisher known about the singular posterior distributions for the
feig that I pointed out? How could they even recognize the existence of correlations in any
posterior distributions, without becoming Bayesians?
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