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One-time Event

Problem 1 Frequentist fails at explaining the
probability of one time event.

1. What is the probability of John’s unborn baby
being a girl?

2. How about the probability of raining tomorrow?

,_’;-\\
‘%\\\\\

i
\Note' : : :
The assumption of repeatable experiments Is

not feasible. Bayesian thinks the probability of an
event as the belief degree of its occurrence.
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Subjective Probability

Gamble way of understanding subjective probability:
Lose z If £ occurs, where 0 < z < 1.
Win (1 — z) if E€ occurs.

Choose z so that the gamble Is fair (i.e., the overall
utility 1s zero), resulting in the equation

0 = expected utility of the gamble (1)
= U(—2)P(E) + U(1 - 2)(1 - P(E))

Suppose that z is small, solving for P(E) yields,

U(l — 2)

PIE) = U(1 — z) — U(—=z)

~1—z (2)
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Subjective Prior Density

1. Histogram approach

2. Relative likelihood approach

3. Matching a given functional form
4. CDF determination

Shortcomings of histogram approach:
No clearcut rule that

determines how many .-

Intervals, what size

Intervals, etc
Not practicable

No tail N
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Relative Likelihood Approach

Problem 2 Let © = [0, 1]
and P(§ = 2) = 3P(4 =

0), where argmax P(0) =
0
2, argmin P(6) = 0. 31
0 2 ¢
If we know P(9 = 3) = ,
PO = 1) = 2P(0 = AT S
0),P(0 = %) = 2P (0 = i), theta

then the density Is fitted.

NO®Y 1t does not matter that / mw(0) # 1.
o
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Matching a Functional Form

Example1 Given afunctional form? of 7(4).

1. Suppose § ~ N (u,0?). One need only decide the prior
mean and prior variance to specify 7 (4).

2. Suppose f ~ ((r, s), the prior mean 1, and prior variance

0% By p=—= 0% = s We can specify 7 (6).

3. Let©® = (—oo, +oo) and the prior distribution is A/ (0, o2).
If we know the ;-fractile and 2-fractileare —1 and 1, we
can get 02 = 2.19.

Example 2 The density with tail of K6~ on (0, +o0c) hasno
moments.

aUnfortunater, the estimation of prior moments is often an extremely uncertain undertaking.
The difficulty is that the tails of density can have a drastic effect on its moments.
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Equivalent Sample Size

Example 3 Assume a sample X, X5, --- . X,, from a
N(6,1) distribution is observed, then X ~ N (6, ).
It is easy to determine the mean p of 7(6), but
difficult to determine the prior variance o*.

We will see?, the mean of posterior distribution is

g <02 :Z21/n> T H (02 1/7;/7)

AThis suggests that the prior variance, o2, plays the same role as 1/n in the determination of
6. Hence, the idea of equivalent sample size is to determine n* s.t. a sample of that size would
make Z as convincing an estimate of § as a subjective guess p. Then, 02 = 1/n* would be an
appropriate prior variance.
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CDF Determination
Subjectively determine several a-fractiles, z(«).

Plot the points («, z(«)) and sketch a smooth
curve joining them.

Figure 1: Training IS propitious to prior density
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Noninformative Prior

Example 4 Consider the mean of normal population
0 € © = (—o0, +00), whose noninformative prior

(NP) is w(0) = 1,2 that is improper density because

/ 7(0)df = o (3)

Example 5 If O Is finite, It sounds reasonable that the
noninformative prior of 4 Is the uniform distribution

on ©.
Example 6 Letn = e and 7(#) = 1 on R. Then
() =~ 'w(logn) =~

4Called uniform density on R, used by Laplace (1812) fi rstly. Any
value of 6 isnot a particular favor.
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NP of Parameter— My Opinion

1. The parameter 6 iIs a random variable whose
knowledge Is its distribution. In the case of
knowing nothing about 8, why should we prefer

the uniform distribution?

2. My opinion of knowing nothing about 6 Is that

the noninformative prior distribution of 6 IS
uniformly distributed on the set of all possible
distributions.

MI Any distribution can be as the prior knowledge

of @ If it Is completely unknown, which at least mani-
fests the taste of decision maker.
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NP for Location Problem

Definition 1 Let X', © C RP?. If the density of X Is
f(X — @), then f is called location density and 8 is
called the location parameter. For instance, AV,(6, X)
(22 fixed) Is a location density.

M If we observe Y = X + c instead of X where
c € RP,and let n = 0 + ¢, then Y has density
f(Y —mn). Thus, (X, 0) and (Y, n) problems are iden-
tical In structure, and 1t seems reasonable to insist that
they have the same NP. Let 7, 7* denote the NPs in the

(X,0)and (Y, n) problems, then VA C RP, we have

Pf@c A) = P"(nc A)
= P00 € A—c) )
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| ocation Invariant Prior

Definition 2 The density = Is called location invariant
prior If It satisfies (4) or VA C RRP,

/A 7(0)d0 = /A _ w(0)do

= /A’]T(H — ¢)d@

Thus, VO € RP 7(0) = w(60 — c). Let @ = ¢, we have
m(c) = w(0) for all ¢ € RP. Consequently, = should
be a constant. 7(0) = 1 is reasonable.®

()

AMore genera case can be found in pp86-87 in [2].
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Scale Parameter

Definition 3 A (one-dimension) scale density Is a

density of the form o~ f(x /o), where o > 0. The
parameter o Is called a scale parameter. For example,

N(0,0?).
Note

Observe Y = cX (c > 0) Instead of X. Letn =
co, then the density of Y is ' f(y/n). Let = and =*
denote the priors in the (X, o) and (Y, n) respectively.

P"(c € A) = P™(nec A)
= P"(c e clA) (©)

where VA C R. Any distribution 7 satisfying (6) Is
called scale invariant.
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NP for Scale Parameter
Suppose 7 IS a scale invariant parameter, then

/A 1(0)do = /61A7T(a)dg

- /A 1(c o) Lo

Consequently, 7(c) = ¢ !'n(c¢ to). Let 0 = ¢, we get
m(c) = ¢ '7(1). Set w(1) = 1, the noninformative
prior of o is (o) = o~ !, which is also an improper
density since [,” o 'do = oo.

(7)
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Table Entry Problem

Problem 3 The relative frequencies of the integers 1
through 9 In the first significant digit of the table

entries are In(1 +¢~1')/In 10, where s = 1,2, --- , 9.

M Assume that the distribution of table entries
is scale invariant. The normalized prior 7 on (1,10) is

m(o) = o~1/In 10. So, o will have first digit s when it
lies in the interval [z, 7 + 1), whose probability is

1+1 In(1 -—1
pi:/ (01n10]'do = n(l+i7)

It may be coincidence, but intriguing.
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Jeffreys’ NP (1961)

When 6 isr.v., Jeffreys NPis

m(0) = v1(0) (8)

where 1(0) is the expected Fisher’s information

B 0%1In f(X|0)
(6) =~ | S0 ©

When 0 = (0,--- ,0,)", Jeffreys NPis
m(0) = /det 1(0) (10)

where 1(0) is the expected Fisher’s information matrix

(0) = —Eo | 5wl
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| ocation-Scale Parameters

Definition 4 A location-scale density Is a density of
the form o1 f((x — 0) /o), for instance, N (0, 0%)
where 8 = (0, o). Fisher information matrix is

ok 02
_ 802  009c | | (X—0)2
() = —Eo | 27 %) [P
0000  Ho2

N 2(9X)/03)

200 — X)/o® —3(X —0)*/c*

|
R
=
< q
DN
V)
3 ©
N
N~

% - 2% x =, which is also improper.
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Discussion on NP

Example 7 Let 6 be a binomial parameter, then
= |0, 1]. The plausible NPs for 6 are

1].
m(0) =1 (Bayes 1763, Laplace 1812)
m(0) = 011 — 6)~! (Novick 1965)
m3(0) o [ (1 — 6)]71/2 (Jeffreys 1968)
m4(0) o< 07(1 — 0)1=7 (Zellner 1977)

where m;, 73, w4 are proper densities (73, 4 UpoN
suitable normalization).

M The Bayesian argued that operationally it is rare
for the choice of an NP to markedly affect the answer.
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Maximum Entropy Prior (MEP)

Defi nition 5 Let 7 be a probability density on discrete ©.

Z m(60;) log 7( (12)

Theorem 1 Given the partia prior information about 6 in the
form of restrictions

= Z W(Qi)gk(ez‘) — Mk (13)

wherek =1,2,--- ,m. Thenthe MEP s

ooy exp{D oty Aegr(0i)}
0 = S x0T Megn (6] G4

where )\, are constants determined by (13).
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Example of MEP

Example 8 Assume ¢ = N and given E™(#) = 5. By
13), m =1,¢1(0) =0, uy = 5. The MEP is

ST
— X" A0
D g€

Thus, E™(0) = (1 — e)/eM. Setting this equal to
11 = 5, and solving, we have 7 () = 5/6°+1 or
6 ~ NB(1,5/6).

7(0) = (1 — eM)eM?

w If © Is continuous, there Is no longer a com-
nletely natural definition of entropy.

Statistical Decision Theory — p.21/33



Jaynes Entropy (1968)

Defi nition 6 Let (@) be the natural invariant NP.

H(r) = —FE7 [log W(Q)]
mo(0) 15
- —/ﬂ(e) log ™94 -
- S 0(0)
Theorem 2 The MEP restricted by (13) is
77‘((9) T‘-O(Q) eXp{Z?l?zl )\kgk(e)} (16)

B f@ o

0) exp{>_,_; M\gr(6)}db

where )\, are constants determined by (13).

When O Is unbounded and the specifi ed restrictions are

specifi cations of fractiles,

(16) often nonexists.
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Example of Jaynes’ MEP

Example 9 Assume © = R, and ¢ Is a location

parameter. The natural NP is then 7y(6) = 1. Let the

restrictions be

{ q1(0) =6, t1 = 1 (mean)
2(0) = (0 —

()%, e = o (variance)

_ exp{ A0 + o0 — 1)*}
/ exp{ A6 + Xo(0 — 11)*}db

O

Intuitively, 7(0) = NV (1 — 5=, 2A2) Hence,

)\120,)\2 22,|e (QNN(/L, )
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Marginal Distribution

Definition 7 If X has density f(x|0) and 6 ~ 7 (6),
then the joint density of X and 6 Is

h(z,0) = f(z|0)m(6) (17)
Definition 8 The marginal density of X is

|
pag
2
>
S
S
S|

(9)

RGO -

> f(xlf)m(6)
(O
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Information about m

There are several possible sources of information
about marginal density:

Subjective knowledge (@ Is not intuitive)
Data (Empirical Bayes proposed by Robbins)

Example 10 Assume 8 = (6,,--- ,6,) iid from 7

and X = (X1, ---,X,), then data = can be used to
estimate m, (and hence m):

m()(ili'z) — /f(ZEZ’@Z)dFWO(QZ)

m(z) = Hmo(xi)
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Restricted Classes of Priors

Priorsof a given functional form: Given a prescribed function g,
consider the priors

['={n|m(0) = g(O|\), N € A} (19)

where ) is called the hyperparameter of the prior.

Priorsof agiven structural form: Some relationship among 6 is
suspected. For instance, assume 8 = (64, --- ,6,) areiid,

p

[ = {n|x(0) =] | m0(6:)} (20)

i=1
where 7o IS an arbitrary density.

Priorscloseto an dlicited prior: e-contamination class

['={7|m(0) = (1 — e)mo(6s) +eq(0),q € Q}  (21)
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ML-2 Prior

Definition 9 Suppose I' is a class of priors under

consideration, and the & € I" satisfies (for the
observed data x)

A

m(x|7) = sup m(x|7) (22)

mel’

then 7 will be called the type 2 maximum likelihood
prior, or ML-2 prior for short.

Example 11 See pp99-101 in [2].
Further reading pp101-104 in [2].

The moment approach to prior selection
The distance approach to prior selection

Statistical Decision Theory — p.27/33



Marginal Exchangeability

Example 12 (Coin Tossing) It isdiffi cult, maybe impossible, to give
precise and operationally realizable defi nitions of independence and of
6 that are not subjective.

Theorem 3 (deFietti, 1937) The fundamental entity should be a
(subjective) probability distribution, m, describing the actual sequence
of H and T that would be anticipated.

m(x) = m(x')

/01 {ﬁ gvi (1 — g)L—

1=1

dF™(6)

where x’ is any permutation of  and £~ (6) = lim P™ <% > X < 9).

Consequently, f(z|6) = T 6% (1 — 6)\—=:.
1=1
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Hierarchical Priors

One may have the structural and subjective prior
Information at the same time, and it is often
convenient to model this stages.

1. I' = {m(@|A) |\ € A}, where the functional form
of 7 Is known.

2. (), the prior of hyperparameters )\, can be
chosen according to the subjective belief.

3. Computation of 7(0):

T(0) = /Am(m)\)dF”Q()\) (24)

MI Hierarchical 1s more robust than single.
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Example of Hierarchical Priors

1. Functional model
' = {m(@|\)|m(0|\) = Hwo( i), mo being
N(Um w) ur € R, o >O}

2. Hyperprior: mo(\) =7
3. Computation of 7(8).2

ﬂng!a'

=E

4See pp107-109 in [2].

Statistical Decision Theory — p.30/33



Bayesian Opinions

Box (1980) said, ““- - -, | believe that it Is
Impossible logically to distinguish between model
assumptions and the prior distribution of the
parameter.”’

More bluntly, Good (1976) said, “The subjectivist
states his judgements, whereas the objectivist
sweeps them under the carpet by calling
assumptions knowledge, and he basks in the
glorious objectivity of science.”

Savage (1962) said, “It takes a lot of
self-discipline not to exaggerate the probabilities
you would have attached to hypotheses before
they were suggested to you.”
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Thank you
for your attention!
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