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One-time Event
Problem 1 Frequentist fails at explaining the
probability of one time event.

1. What is the probability of John’s unborn baby
being a girl?

2. How about the probability of raining tomorrow?

Note The assumption of repeatable experiments is
not feasible. Bayesian thinks the probability of an
event as the belief degree of its occurrence.
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Subjective Probability
Gamble way of understanding subjective probability:

• Lose z if E occurs, where 0 ≤ z ≤ 1.
• Win (1 − z) if Ec occurs.

Choose z so that the gamble is fair (i.e., the overall
utility is zero), resulting in the equation

0 = expected utility of the gamble

= U(−z)P(E) + U(1 − z)(1 − P(E))
(1)

Suppose that z is small, solving for P(E) yields,

P(E) =
U(1 − z)

U(1 − z) − U(−z)
≈ 1 − z (2)
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Subjective Prior Density
1. Histogram approach

2. Relative likelihood approach

3. Matching a given functional form

4. CDF determination

Shortcomings of histogram approach:
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• No clearcut rule that
determines how many
intervals, what size
intervals, etc

• Not practicable
• No tail

Statistical Decision Theory – p.5/33



Relative Likelihood Approach
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Problem 2 Let Θ = [0, 1]

and P(θ = 3
4) = 3P(θ =

0), where argmax
θ

P(θ) =

3
4 , argmin

θ
P(θ) = 0.

If we know P(θ = 1
2) =

P(θ = 1) = 2P(θ =

0), P(θ = 3
4) = 2P(θ = 1

4),
then the density is fitted.

Note It does not matter that
∫

Θ

π(θ) 6= 1 .
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Matching a Functional Form
Example 1 Given a functional forma of π(θ).

1. Suppose θ ∼ N (µ, σ2). One need only decide the prior

mean and prior variance to specify π(θ).

2. Suppose θ ∼ β(r, s), the prior mean µ and prior variance

σ2. By µ = r
r+s

, σ2 = rs
(r+s)2(r+s+1)

, we can specify π(θ).

3. Let Θ = (−∞,+∞) and the prior distribution is N (0, σ2).

If we know the 1
4
-fractile and 3

4
-fractile are −1 and 1, we

can get σ2 = 2.19.

Example 2 The density with tail of Kθ−2 on (0,+∞) has no

moments.
aUnfortunately, the estimation of prior moments is often an extremely uncertain undertaking.

The difficulty is that the tails of density can have a drastic effect on its moments.
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Equivalent Sample Size
Example 3 Assume a sample X1, X2, · · · , Xn from a
N (θ, 1) distribution is observed, then X̄ ∼ N (θ, 1

n).
It is easy to determine the mean µ of π(θ), but
difficult to determine the prior variance σ2.

We will seea, the mean of posterior distribution is

x̄

(

σ2

σ2 + 1/n

)

+ µ

(

1/n

σ2 + 1/n

)

aThis suggests that the prior variance, σ2, plays the same role as 1/n in the determination of

θ. Hence, the idea of equivalent sample size is to determine n∗ s.t. a sample of that size would

make x̄ as convincing an estimate of θ as a subjective guess µ. Then, σ2 = 1/n∗ would be an

appropriate prior variance.
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CDF Determination
• Subjectively determine several α-fractiles, z(α).
• Plot the points (α, z(α)) and sketch a smooth

curve joining them.

 
  


Figure 1: Training is propitious to prior density
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Noninformative Prior
Example 4 Consider the mean of normal population
θ ∈ Θ = (−∞, +∞), whose noninformative prior
(NP) is π(θ) = 1,a that is improper density because

∫

π(θ)dθ = ∞ (3)

Example 5 If Θ is finite, it sounds reasonable that the
noninformative prior of θ is the uniform distribution
on Θ.
Example 6 Let η = eθ and π(θ) = 1 on R. Then
π∗(η) = η−1π(log η) = η−1.

aCalled uniform density on R, used by Laplace (1812) firstly. Any

value of θ is not a particular favor.
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NP of Parameter— My Opinion
1. The parameter θ is a random variable whose

knowledge is its distribution. In the case of
knowing nothing about θ, why should we prefer
the uniform distribution?

2. My opinion of knowing nothing about θ is that
the noninformative prior distribution of θ is
uniformly distributed on the set of all possible
distributions.

Note Any distribution can be as the prior knowledge
of θ if it is completely unknown, which at least mani-
fests the taste of decision maker.

Statistical Decision Theory – p.11/33



NP for Location Problem
Definition 1 Let X , Θ ⊂ R

p. If the density of X is
f(X − θ), then f is called location density and θ is
called the location parameter. For instance, Np(θ,Σ)
(Σ fixed) is a location density.

Note If we observe Y = X + c instead of X where
c ∈ R

p, and let η = θ + c, then Y has density
f(Y −η). Thus, (X,θ) and (Y ,η) problems are iden-
tical in structure, and it seems reasonable to insist that
they have the same NP. Let π, π∗ denote the NPs in the
(X,θ) and (Y ,η) problems, then ∀A ⊂ R

p, we have

P
π(θ ∈ A) = P

π∗

(η ∈ A)

= P
π(θ ∈ A − c)

(4)
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Location Invariant Prior
Definition 2 The density π is called location invariant
prior if it satisfies (4) or ∀A ⊂ R

p,
∫

A

π(θ)dθ =

∫

A−c

π(θ)dθ

=

∫

A

π(θ − c)dθ

(5)

Thus, ∀θ ∈ R
p, π(θ) = π(θ − c). Let θ = c, we have

π(c) = π(0) for all c ∈ R
p. Consequently, π should

be a constant. π(θ) = 1 is reasonable.a

aMore general case can be found in pp86-87 in [2].
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Scale Parameter
Definition 3 A (one-dimension) scale density is a
density of the form σ−1f(x/σ), where σ > 0. The
parameter σ is called a scale parameter. For example,
N (0, σ2).

Note Observe Y = cX (c > 0) instead of X . Let η =
cσ, then the density of Y is η−1f(y/η). Let π and π∗

denote the priors in the (X, σ) and (Y, η) respectively.

P
π(σ ∈ A) = P

π∗

(η ∈ A)

= P
π(σ ∈ c−1A)

(6)

where ∀A ⊂ R. Any distribution π satisfying (6) is
called scale invariant.
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NP for Scale Parameter
Suppose π is a scale invariant parameter, then

∫

A

π(σ)dσ =

∫

c−1A

π(σ)dσ

=

∫

A

π(c−1σ)c−1dσ

(7)

Consequently, π(σ) = c−1π(c−1σ). Let σ = c, we get
π(c) = c−1π(1). Set π(1) = 1, the noninformative
prior of σ is π(σ) = σ−1, which is also an improper
density since

∫ ∞
0 σ−1dσ = ∞.
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Table Entry Problem
Problem 3 The relative frequencies of the integers 1
through 9 in the first significant digit of the table
entries are ln(1 + i−1)/ ln 10, where i = 1, 2, · · · , 9.

Solution Assume that the distribution of table entries
is scale invariant. The normalized prior π on (1, 10) is
π(σ) = σ−1/ ln 10. So, σ will have first digit i when it
lies in the interval [i, i + 1), whose probability is

pi =

∫ i+1

i

[σ ln 10]−1dσ =
ln(1 + i−1)

ln 10

It may be coincidence, but intriguing.
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Jeffreys’ NP (1961)
• When θ is r.v., Jeffreys’ NP is

π(θ) =
√

I(θ) (8)

where I(θ) is the expected Fisher’s information

I(θ) = −Eθ

[

∂2 ln f(X|θ)

∂θ2

]

(9)

• When θ = (θ1, · · · , θp)
T, Jeffreys’ NP is

π(θ) =
√

det I(θ) (10)

where I(θ) is the expected Fisher’s information matrix

Iij(θ) = −Eθ

[

∂2

∂θi∂θj
ln f(X|θ)

]

(11)
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Location-Scale Parameters
Definition 4 A location-scale density is a density of
the form σ−1f((x − θ)/σ), for instance, N (θ, σ2)
where θ = (θ, σ). Fisher information matrix is

I(θ) = −Eθ





∂2

∂θ2

∂2

∂θ∂σ

∂2

∂θ∂σ
∂2

∂σ2





[

− (X−θ)2

2σ2

]

= −Eθ





−1/σ2 2(θ − X)/σ3

2(θ − X)/σ3 −3(X − σ)2/σ4





=





1/σ2 0

0 3/σ2





Hence, π(θ) =
√

1
σ2 ·

3
σ2 ∝ 1

σ2 , which is also improper.
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Discussion on NP
Example 7 Let θ be a binomial parameter, then
Θ = [0, 1]. The plausible NPs for θ are

• π1(θ) = 1 (Bayes 1763, Laplace 1812)

• π2(θ) = θ−1(1 − θ)−1 (Novick 1965)

• π3(θ) ∝ [θ(1 − θ)]−1/2 (Jeffreys 1968)

• π4(θ) ∝ θθ(1 − θ)1−θ (Zellner 1977)

where π1, π3, π4 are proper densities (π3, π4 upon
suitable normalization).
Note The Bayesian argued that operationally it is rare
for the choice of an NP to markedly affect the answer.
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Maximum Entropy Prior (MEP)
Definition 5 Let π be a probability density on discrete Θ.

H(π) = −
∑

Θ

π(θi) log π(θi) (12)

Theorem 1 Given the partial prior information about θ in the

form of restrictions

E
π[gk(θ)] =

∑

i

π(θi)gk(θi) = µk (13)

where k = 1, 2, · · · ,m. Then the MEP is

π̄(θi) =
exp{

∑m
k=1 λkgk(θi)}

∑

i exp{
∑m

k=1 λkgk(θi)}
(14)

where λk are constants determined by (13).
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Example of MEP
Example 8 Assume θ = N and given E

π(θ) = 5. By
(13), m = 1, g1(θ) = θ, µ1 = 5. The MEP is

π̄(θ) =
eλ1θ

∑∞
θ=0 eλ1θ

= (1 − eλ1)eλ1θ

Thus, E
π̄(θ) = (1 − eλ1)/eλ1. Setting this equal to

µ1 = 5, and solving, we have π̄(θ) = 5/6θ+1 or
θ ∼ NB(1, 5/6).

Note If Θ is continuous, there is no longer a com-
pletely natural definition of entropy.
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Jaynes Entropy (1968)
Definition 6 Let π0(θ) be the natural invariant NP.

H(π) = −E
π

[

log
π(θ)

π0(θ)

]

= −

∫

π(θ) log
π(θ)

π0(θ)
dθ

(15)

Theorem 2 The MEP restricted by (13) is

π̄(θ) =
π0(θ) exp{

∑m
k=1 λkgk(θ)}

∫

Θ
π0(θ) exp{

∑m
k=1 λkgk(θ)}dθ

(16)

where λk are constants determined by (13).

Note
When Θ is unbounded and the specified restrictions are

specifications of fractiles, (16) often nonexists.
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Example of Jaynes’ MEP
Example 9 Assume Θ = R, and θ is a location
parameter. The natural NP is then π0(θ) = 1. Let the
restrictions be

{

g1(θ) = θ, µ1 = µ (mean)

g2(θ) = (θ − µ)2, µ2 = σ2 (variance)

π̄(θ) =
exp{λ1θ + λ2(θ − µ)2}

∫ ∞

−∞

exp{λ1θ + λ2(θ − µ)2}dθ

Intuitively, π̄(θ) = N (µ − λ1

2λ2

,− 1
2λ2

). Hence,

λ1 = 0, λ2 = − 1
2σ2 , i.e., θ ∼ N (µ, σ2).
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Marginal Distribution
Definition 7 If X has density f(x|θ) and θ ∼ π(θ),
then the joint density of X and θ is

h(x, θ) = f(x|θ)π(θ) (17)

Definition 8 The marginal density of X is

m(x) =

∫

Θ

f(x|θ)dF π(θ)

=























∫

Θ

f(x|θ)π(θ)dθ

∑

Θ

f(x|θ)π(θ)

(18)
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Information about m
There are several possible sources of information
about marginal density:

• Subjective knowledge (θ is not intuitive)
• Data (Empirical Bayes proposed by Robbins)

Example 10 Assume θ = (θ1, · · · , θp) iid from π0

and X = (X1, · · · , Xp), then data x can be used to
estimate m0 (and hence m):

m0(xi) =

∫

f(xi|θi)dF π0(θi)

m(x) =

p
∏

i=1

m0(xi)
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Restricted Classes of Priors
Priors of a given functional form: Given a prescribed function g,

consider the priors

Γ = {π|π(θ) = g(θ|λ), λ ∈ Λ} (19)

where λ is called the hyperparameter of the prior.

Priors of a given structural form: Some relationship among θ is

suspected. For instance, assume θ = (θ1, · · · , θp) are iid,

Γ = {π|π(θ) =

p
∏

i=1

π0(θi)} (20)

where π0 is an arbitrary density.

Priors close to an elicited prior: ε-contamination class

Γ = {π|π(θ) = (1 − ε)π0(θi) + εq(θ), q ∈ Q} (21)
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ML-2 Prior
Definition 9 Suppose Γ is a class of priors under
consideration, and the π̂ ∈ Γ satisfies (for the
observed data x)

m(x|π̂) = sup
π∈Γ

m(x|π) (22)

then π̂ will be called the type 2 maximum likelihood
prior, or ML-2 prior for short.
Example 11 See pp99-101 in [2].
Further reading pp101-104 in [2].

• The moment approach to prior selection
• The distance approach to prior selection
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Marginal Exchangeability
Example 12 (Coin Tossing) It is difficult, maybe impossible, to give

precise and operationally realizable definitions of independence and of

θ that are not subjective.

Theorem 3 (deFietti, 1937) The fundamental entity should be a

(subjective) probability distribution, m, describing the actual sequence

of H and T that would be anticipated.

m(x) = m(x′)

=

∫ 1

0

[

n
∏

i=1

θxi(1 − θ)1−xi

]

dF π(θ)
(23)

where x′ is any permutation of x and F π(θ) = lim
n→∞

P
m

(

1

n

n
∑

i=1

Xi ≤ θ

)

.

Consequently, f(x|θ) =
n
∏

i=1
θxi(1 − θ)1−xi .
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Hierarchical Priors
One may have the structural and subjective prior
information at the same time, and it is often
convenient to model this stages.

1. Γ = {π1(θ|λ)|λ ∈ Λ}, where the functional form
of π is known.

2. π2(λ), the prior of hyperparameters λ, can be
chosen according to the subjective belief.

3. Computation of π(θ):

π(θ) =

∫

Λ

π1(θ|λ)dF π2(λ) (24)

Note Hierarchical is more robust than single.
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Example of Hierarchical Priors
1. Functional model

Γ = {π1(θ|λ)|π1(θ|λ) =
p
∏

i=1

π0(θi), π0 being

N (µπ, σ
2
π), µπ ∈ R, σ2

π > 0}

2. Hyperprior: π2(λ) =?

3. Computation of π(θ).a

aSee pp107-109 in [2].
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Bayesian Opinions
• Box (1980) said, “· · · , I believe that it is

impossible logically to distinguish between model
assumptions and the prior distribution of the
parameter.”

• More bluntly, Good (1976) said, “The subjectivist
states his judgements, whereas the objectivist
sweeps them under the carpet by calling
assumptions knowledge, and he basks in the
glorious objectivity of science.”

• Savage (1962) said, “It takes a lot of
self-discipline not to exaggerate the probabilities
you would have attached to hypotheses before
they were suggested to you.”
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Thank you
for your attention!
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