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Prior Distribution. A prior distribution p(θ) is a probability distribu-

tion describing one’s subjective belief about an unknown quantity θ before

observing evidence in a data set x. Bayesian inference combines the

prior distribution with the likelihood of the data to form the posterior

distribution used make inferences for θ. There are four philosophies con-

cerning the prior distribution’s role in Bayesian inference. The proponents

of these philosophies are the subjectivists, the objective Bayesians, the reg-

ularizers, and the modelers.

At is foundations, Bayesian inference is a theory for updating one’s sub-

jective beliefs about θ upon observing x. Subjectivists use probability dis-

tributions to formalize an individual’s beliefs. Each individual’s prior distri-

bution is to be elicited by considering his willingness to engage in a series of

hypothetical bets about the true value of θ. Models are required in order to

make prior elicitation practical for continuous parameter spaces. Because of

their computational convenience, conjugate priors are often used when they

are available. A model has a conjugate prior if the prior and posterior dis-

tributions belong to the same family. Table 1 lists conjugate likelihood-prior

relationships for several members of the exponential family. The prior pa-
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rameters in many conjugate prior-likelihood families may be thought of as

prior data. This provides an obvious way to measure the strength of the

prior (e.g. “one observation’s worth of prior information”). See then entry

on posterior distribution for an example calculation using conjugate

priors.

[Table 1 about here]

Very often one finds that any reasonably weak prior has a negligible ef-

fect on the posterior distribution. Yet counter examples exist, and critics of

the Bayesian approach find great difficulty in prior elicitation (Efron, 1986).

The objective Bayesians answer this criticism by deriving “reference priors”

which attempt to model prior ignorance in standard situations. Kass and

Wasserman (1996) review the vast literature on reference priors. Many refer-

ence priors are improper (i.e. they integrate to ∞). For example, a common

“non-informative” prior for mean parameters is the uniform prior p(θ) ∝ 1,

which is obviously improper if the parameter space of θ is unbounded. Im-

proper priors pose no difficulty so long as the likelihood is sufficiently well

behaved for the posterior distribution to be proper, which usually happens

in simple problems where frequentist procedures perform adequately. How-

ever the propriety of the posterior distribution in complicated models can be

difficult to check (Hobert and Casella, 1996).

One difficulty with reference priors is that noninformative priors on one

scale become informative after a change of variables. For example, a uniform

prior on log σ2 becomes p(σ2) ∝ 1/σ2 because of the Jacobian introduced by
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the log transformation. Jeffreys’ priors are an important family of reference

prior that are invariant to changes of variables. The general Jeffreys’ prior

for a model p(x|θ) is p(θ) ∝ det(J(θ))1/2 where J(θ) is the Fisher information

from a single observation.

Prior distributions are often used to regularize the parameters of compli-

cated models (Hastie et al., 2001). For example in the regression model y ∼

N (Xβ, σ2In), where X is the n × p design matrix, the prior β ∼ N (0, τ 2Ip)

leads to a posterior distribution for β equivalent to ridge regression,

p(β|X,y, τ, σ2) = N (B, Ω−1).

The posterior precision (inverse variance) Ω = (XTX/σ2 + Ip/τ
2) is the sum

of the prior precision Ω0 = Ip/τ
2 and the likelihood precision Ω1 = XTX/σ2.

If β̂ is the least squares estimate of β then the posterior mean B can be

written

B = (Ω0 + Ω1)
−1Ω1β̂.

This expression illustrates the compromise between information in the prior

and the likelihood. The posterior mean B is a precision-weighted average of

β̂ and the prior mean of zero. The prior distribution stabilizes the required

matrix inversion when X is rank deficient or nearly so, as often occurs in the

presence of collinearity.

Finally prior distributions can be used to model relationships between

complicated data structures. Hierarchical models, which are often to
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model nested data, provide a good example. In a hierarchical model, obser-

vations in a subgroup of the data set (e.g. student test scores for students in

the same school) are modeled as conditionally independent given the prior

for that subgroup. The prior parameters for the various subgroups are linked

by a hyperprior distribution. The hyperprior allows subgroup parameters to

“borrow strength” from other subgroups so that parameters of sparse sub-

groups can be accurately estimated. See the entry on hierarchical model

for details.
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Table 1: Conjugate prior distributions for several common likelihoods.

Likelihood Conjugate Prior
Univariate Normal Normal (mean parameter)

Gamma (inverse variance parameter)
Multivariate Normal Multivariate Normal (mean vector)

Wishart (inverse variance matrix)
Binomial Beta
Poisson/Exponential Gamma
Multinomial Dirichlet
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