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Tutorial

Prior information and uncertainty in inverse problems

John A. Scales∗ and Luis Tenorio‡

ABSTRACT

Solving any inverse problem requires understanding
the uncertainties in the data to know what it means to
fit the data. We also need methods to incorporate data-
independent prior information to eliminate unreason-
able models that fit the data. Both of these issues in-
volve subtle choices that may significantly influence the
results of inverse calculations. The specification of prior
information is especially controversial. How does one
quantify information? What does it mean to know some-
thing about a parameter a priori? In this tutorial we dis-
cuss Bayesian and frequentist methodologies that can
be used to incorporate information into inverse calcu-
lations. In particular we show that apparently conserva-
tive Bayesian choices, such as representing interval con-
straints by uniform probabilities (as is commonly done
when using genetic algorithms, for example) may lead
to artificially small uncertainties. We also describe tools
from statistical decision theory that can be used to char-
acterize the performance of inversion algorithms.

OVERVIEW

Solving an inverse problem means making inferences about
physical systems from data. These inferences are based on
mathematical representations of the systems, which we call
models. Functionals of the models represent observable prop-
erties of the system such as the mass density as a function of
space in the earth, the depth of continents, or the radius of the
core–mantle boundary.

In formulating inverse problems and interpreting inversion
estimates, we need to address the following questions.

1) How accurately are the data known? What does it mean
to fit the data?
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2) How accurately is the physical system modeled? Does
the model include all the physical effects that contribute
significantly to the data?

3) What is known about the model before the data are ob-
served? What does it mean for a model to be reasonable?

We address these questions by presenting methods that can
be used to study the performance of inversion estimates and
methods to include prior information in the inversion process.
We start by setting the general framework for the inverse prob-
lems considered. We then present two different approaches by
which prior information can be included in geophysical inverse
calculations: Bayesian and frequentist. These two approaches
differ fundamentally in the means by which probability is in-
troduced into the calculation. They also take fundamentally
different approaches to the treatment of observed data and
prior information. Bayesians define probabilities on the space
of models (prior information is thus probabilistic), conditioned
on the observed data. Frequentists assume a distribution prior
to observing the data, which does not change once the data
have been observed, and use deterministic prior information.
Usually probability only enters the calculations via the data
errors, which are assumed to have a random component.

The choice of prior probability model in Bayesian inference
is not always clear even when the prior information is well
defined. Our example shows how representing deterministic
constraints probabilistically may inject information into the
calculation that is not strictly required by the constraint. This
problem is worse in high-dimensional spaces. We provide ex-
amples of inverse problems to illustrate some of the points
raised in the tutorial.

Some notation

We use the symbol d for data. Typically, this is an element
of Rn, where n is the number of observations. The symbol m is
a model, typically an element of a linear vector space, usually
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infinite dimensional, such as the set of square integrable func-
tions on R3. In other words, m is a representation of the un-
known physical process. E( ) and var( ) stand for expectation
and variance operators, respectively.

An estimator of an unknown model m (or a functional
thereof) is a function m̂ of the data used to estimate the model.
The estimate given the data d is denoted as m̂(d). When the
dependence on d is understood, it is denoted as m̂.

Models are usually parameterized so that estimating a model
is equivalent to estimating its corresponding parameters m. But
clearly the choice of observables and parameterization is not
unique. For instance, in problems of elasticity we may use the
elastic stiffness tensor or the elastic compliance tensor. We can
use wave speed or wave slowness.

A GENERAL STATEMENT OF THE INVERSE PROBLEM

As the result of some experiment, n data are collected. The
data are related to the physical models through the forward
modeling operator. This operator is a function g that maps
models into data space. In practice the forward operator is
always an approximation. In geophysics this is primarily be-
cause one cannot afford to model the true complexity of the
earth. Even if this were possible, it might not be worth the ef-
fort given the instrument’s resolution and the noise level in the
data. This will be discussed later, but for now it suffices to be
aware that there is a systematic error associated with using g.
Let us represent it by an n-dimensional vector s. Finally, there
is an n-dimensional vector of random measurement errors, e.
Assuming additive errors, the connection between models and
data can be written as

d = g(m)+ e+ s.

The goal is to estimate m [or a functional L(m)], given a vector
d of measurements.

For example, suppose the forward operator, K, is linear and
the model is represented by an infinite sequence of coefficients,
m={mi }, with respect to some orthonormal basis. We model
the data as

d = Km+ e.

Since we have a finite amount of data, we can hope to estimate
only finitely many mi . Consider the vector containing the first `
coefficients, m`, and the sequence m∞ containing the rest. We
can write our model as

d = K`m` +K∞m∞ + e

[e.g., Trampert and Snieder (1996)]. In this case we can con-
sider the leftover K∞m∞ as a systematic error, s. But since K
maps an infinite-dimensional space into a finite-dimensional
one, the forward operator has a nontrivial kernel. So even in
the absence of measurement and modeling errors, the forward
operator will not be invertible and the set of models that pre-
dict the data equally well may be quite large. This in itself may
not be a problem; the problem is when these equally predicting
models yield wildly different values for the model functional
we want to estimate. By including prior information, we at-
tempt to constrain the range of feasible models and thus con-
trol the effects of those nullspace elements. We illustrate this
later with an example. Also, even when there is a unique solu-

tion, it may be unstable to small perturbations in the data. In
this case we may use some prior information to stabilize the
solution.

Example: Estimating the derivative of a smooth function

We start with a simple example to illustrate the effects of
noise and prior information in the performance of an estimator.
Later we will introduce tools from statistical decision theory
to study the performance of estimators given different types of
prior information.

Suppose we have noisy observations of a smooth function f
at the equidistant points a≤ x1≤ · · · ≤ xn≤ b:

yi = f (xi )+ εi , i = 1, . . . ,n, (1)

where the errors εi are assumed to be iid N(0, σ 2)—
independent, identically distributed random variables nor-
mally distributed with mean 0 and variance σ 2. We want to
use these observations to estimate the derivative f ′. We define
the estimator

f̂ ′
(
xmi

) = yi+1 − yi

h
, (2)

where h is the distance between consecutive points and
xmi = (xi+1+ xi )/2. To measure the performance of the esti-
mator (2) we use the mean square error, which is the sum of
the variance and squared bias. The variance and bias of equa-
tion (2) are

var
[

f̂ ′
(
xmi

)] = var(yi+1)+ var(yi )
h2

= 2σ 2

h2
,

bias
[

f̂ ′
(
xmi

)] ≡ E
[

f̂ ′
(
xmi

)− f ′
(
xmi

)]
= f (xi+1)− f (xi )

h
− f ′

(
xmi

)
= f ′(αi )− f ′

(
xmi

)
for some αi ∈ [xi , xi+1] (by the mean value theorem) . We need
some information on f ′ to assess the size of the bias. Let us
assume the second derivative is bounded on [a, b] by M :

| f ′′(x)| ≤ M, x ∈ [a, b].

It then follows that∣∣bias
[

f̂ ′
(
xmi

)]∣∣ = ∣∣ f ′(αi )− f ′
(
xmi

)∣∣
= | f ′′(βi )(αi − βi )| ≤ Mh

for some βi between αi and xmi . As h→ 0 the variance goes
to infinity while the bias goes to zero. The mean square error
(MSE) is bounded by

2σ 2

h2
≤ mse

[
f̂ ′
(
xmi

)] = var
[

f̂ ′
(
xmi

)]+ bias
[

f̂ ′
(
xmi

)]2

≤ 2σ 2

h2
+ M2h2. (3)

It is clear that choosing the smallest h possible does not lead
to the best estimate; the noise must be taken into account. The
lowest upper bound is obtained with h= 21/4√σ/M . The larger
the variance of the noise, the wider the spacing between the
points.
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We have used a bound on the second derivative to bound
the mse. It is a fact that some type of prior information, in
addition to model (1), is required to bound derivative uncer-
tainties. Take any smooth function g which vanishes at the
points x1, . . . , xn. Then, the function f̃ = f + g satisfies the
same model as f , yet their derivatives could be very different.
For example, choose an integer m and define

g(x) = sin
[

2πm(x − x1)
h

]
.

Then, f (xi )+ g(xi )= f (xi ) and

f̃
′(x) = f ′(x)+ 2πm

h
cos

[
2πm(x − x1)

h

]
.

By choosing m large enough, we can make the difference,
f̃
′
(xmi )− f ′(xmi ), as large as we want; without prior information

the derivative cannot be estimated with finite uncertainty.

BAYESIAN AND FREQUENTIST METHODS OF INFERENCE

There are two fundamentally different meanings of the term
probability in common usage (Scales and Snieder, 1997). If we
toss a coin N times, where N is large, and see roughly N/2
heads, then we say the probability of getting a head in a given
toss is about 50%. This interpretation of probability, based on
the frequency of outcomes of random trials, is therefore called
frequentist. On the other hand it is common to hear statements
such as “The probability of rain tomorrow is 50%.” Since this
statement does not refer to the repeated outcome of a random
trial, it is not a frequentist use of the term probability. Rather,
it conveys a statement of information (or lack thereof). This
is the Bayesian use of probability. Both ideas seem natural to
some degree, so it is perhaps unfortunate that the same term
is used to describe them.

Bayesian inversion has gained considerable popularity in its
application to geophysical inverse problems. The philosophy
of this procedure is as follows. Suppose one knows something
about a model before observing the data. This knowledge is
cast in a probabilistic form and is called the prior probabil-
ity model (prior means before the data have been observed).
Bayesian inversion then provides a framework for combining
the probabilistic prior information with the information con-
tained in the observed data to update the prior information.
The updated distribution is the posterior conditional model
distribution given the data; it is what we know about the model
after we have assimilated the data and the prior information.
The point of using the data is that the posterior information
should constrain the model more tightly than the prior model
distribution.

However, the selection of a prior statistical model can in
practice be somewhat shaky. For example, in a seismic survey
we may have a fairly accurate idea of the realistic ranges of
seismic velocity and density, and perhaps even of the vertical
correlation length (if borehole measurements are available).
However, the horizontal length scale of the velocity and den-
sity variation is to a large extent unknown. Given this, how can
Bayesian inversion be so popular when our prior knowledge is
often so poor? The reason is that, in practice, the prior model
is used to regularize the posterior solution. Via a succession
of different calculations, the characteristics of the prior model

are often tuned in such a way that the retrieved model has
subjectively agreeable features. But logically, the prior distri-
bution must be fixed beforehand. The features used to tune the
prior should in fact be included as part of the prior information
(Gouveia and Scales, 1997). So the practice of using the data
to tune the prior suggests that the reason for the popularity
of Bayesian inversion within the earth sciences is inconsistent
with the underlying philosophy. A common attitude seems to
be, “If I hadn’t believed it, I wouldn’t have seen it.”

Since Bayesian statistics relies completely on the specifica-
tion of a prior statistical model, the flexibility taken in using
the prior model as a knob to tune properties of the retrieved
model is completely at odds with the philosophy of Bayesian
inversion. One can, however, use an empirical Bayes approach
to use data to help determine a prior distribution. But having
used the data to select a prior, one must correct the uncer-
tainty estimates so as not to be overconfident [see Carlin and
Louis (1996)]. This correction is not usually done in geophysical
Bayesian inversion.

Bayesian inversion in practice

Two important questions must be addressed in any Bayesian
inversion. (1) How do we represent the prior information, both
the prior model information and the description of the data
statistics? (2) How do we summarize the posterior informa-
tion? The second question is the easiest to answer, at least in
principle. It is just a matter of applying Bayes’ theorem to com-
pute the posterior distribution. We then use this distribution to
study the statistics of different parameter estimates. For exam-
ple, we can find credible regions for the model parameters given
the data, or we can use posterior means as estimates and pos-
terior standard deviations as error bars. However, very seldom
are we able to compute all posterior estimates analytically; we
often have to use computer-intensive approximations based on
Markov Chain Monte Carlo methods [see, for example, Tan-
ner (1993)]. Nevertheless, a complete Bayesian analysis may
be computationally intractable.

The first question is a lot more difficult to answer. A first
strategy is a subjective, Bayesian one: prior probabilities are
designed to represent states of mind, prejudices, or prior ex-
perience. But depending on the amount and type of prior in-
formation, the choice of prior may or may not be clear. For
example, if an unknown parameter µ must lie between a and
b, are we justified to assume that µ has a uniform prior distri-
bution on the interval [a, b]? This question is addressed later,
but for now observe there are infinitely many probability dis-
tributions consistent with µ being in the interval [a, b]. To pick
one may be an overspecification of the available information.
Even an apparently conservative approach, such as taking the
probability distribution that maximizes the entropy subject to
the constraint thatµ lies in the interval, may lead to pathologies
in high-dimensional problems. This shows how difficult it may
be to unambiguously select a prior statistical model. One way
out of this dilemma is to sacrifice objectivity and presume that
probability lies in the eye of the beholder. Of course, this means
that our posterior probability will be different from yours.

A second approach attempts to make a somewhat more ob-
jective choice of priors by relying on theoretical considera-
tions such as maximum entropy (Jaynes, 1982) or transforma-
tion invariance (Jaynes, 1968; Dawid, 1983), or by somehow
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using observations to estimate a prior. This latter approach is
the empirical Bayes mentioned earlier. For example, suppose
one is doing a gravity inversion to estimate mass density in
some reservoir. Suppose further a large number of indepen-
dent, identically distributed laboratory measurements of den-
sity for rocks taken from this reservoir are available (a big if).
One could use the measurements to estimate a probability dis-
tribution for mass density that could be used as a prior for the
gravity inversion. This is the approach taken in Gouveia and
Scales (1998), where in-situ (borehole) measurements are used
to derive an empirical prior for surface seismic data.

An empirical Bayes analysis is basically an approximation to
a full hierarchical Bayes analysis based on the joint probabil-
ity distribution of all parameters and available data. In other
words, in a full Bayesian analysis the prior distribution may
depend on some paramaters that in turn follow a second-stage
prior. This latter prior can also depend on some third-stage
prior, etc. This hierachical model ends when all the remain-
ing parameters are assumed known. We can use the empirical
Bayes approach when the last parameters cannot be assumed
to be known. Instead, we use the data to estimate the remaining
parameters and stop the sequence of priors. We then proceed
as in the standard Bayesian procedure. For an introduction to
empirical and hierarchical Bayes methods, see Casella (1985),
Carlin and Louis (1996), Gelman et al. (1997), and references
therein. For a review on the development of objective priors,
see Kass and Wasserman (1996).

A third strategy is to abandon Bayes altogether and use only
deterministic prior information about models: wave speed is
positive (a matter of definition), velocity is less than the speed
of light (a theoretical prediction), the earth’s mass density is
less than 6 g/cm3 (a combination of observation and theory that
is highly certain). The inference problem is still statistical since
random data uncertainties are taken into account. Essentially,
the idea is to look at the set of all models that fit the data and
then perform surgery on this set, cutting away those models
that violate the deterministic criteria, e.g., have negative den-
sity. The result is a (presumably smaller and more realistic)
set of models that fit the data and satisfy the prior considera-
tions. We choose any model that fits the data to a desired level
and satisfies the prior model constraints. Tikhonov’s regular-
ization (Philips, 1962; Tikhonov and Arsenin, 1977) is one way
of obtaining an inversion algorithm by restricting the family
of models that fit the data. For example, among all the models
that fit the data, we choose one that has particular features—the
smoothest, the shortest, etc. [e.g., Scales et al. (1990), Gouveia
and Scales (1997)].

Bayes versus frequentist

In the Bayesian paradigm, probability distributions are the
fundamental tools. Bayesians speak of the probability of a hy-
pothesis given some evidence and conduct pre-data and post-
data inferences. Frequentists, on the other hand, are more con-
cerned with pre-data inference and run into difficulties when
trying to give post-data interpretations to their pre-data formu-
lation. In other words, uncertainty estimates such as confidence
sets are based on the error distribution, which is assumed to
be known a priori, and on hypothetical repetitions of the data
gathering process. However, see Goutis and Casella (1995) for
a discussion of frequentist post-data inference.

The choice of prior distributions is not always well defined. In
this case it would seem more reasonable to follow a frequentist
approach. But it may also be the case that the determinism that
frequentists rely on in defining parameters may be ill defined.
For instance, if we are trying to estimate the mass of the earth,
is this a precisely defined, nonrandom quantity? Perhaps, but
does the definition include the atmosphere? If so, how much
of the atmosphere? If not, does it take into account that the
mass is constantly changing (slightly) from, for example, mi-
crometeorites? Even if you make the true mass of the earth
well defined (it will still be arbitrary to some extent), it can
never be precisely known any more than the temperature of
an isolated gas.

So, which approach is better? Bayesians are happy to point
to some well-known inconsistencies in the frequentist method-
ology and to dificulties frequentists face to use available prior
information. Some Bayesians even go as far as claiming that
anyone in her/his right frame of mind should be a Bayesian.
Frequentists, on the other hand, complain about the some-
times subjective choice of priors and about the computational
complexity of the Bayesian approach. In real down-to-earth
data analysis we prefer to keep an open mind. Different meth-
ods may be better than others, depending on the problem.
Both schools of inference have something to offer. For col-
orful discussions on the comparison of the two approaches, see
Efron (1986) and Lindley (1975). Also see Rubin (1984) for
ways in which frequentist methods can complement Bayesian
inferences.

WHAT DIFFERENCE DOES THE PRIOR MAKE?

In a Bayesian calculation, whatever estimator we use de-
pends on the prior and conditional distributions given the data.
There is no clear, established procedure to check how much in-
formation a prior injects into the posterior estimates. [This is
one of the open problems mentioned in Kass and Wasserman
(1996).] In this example we compare the risks of the estimators.

To measure the performance of an estimator m̂ of m, we
define the loss function, L(m, m̂), where L is a nonnegative
function that is zero for the true model. That is, for any other
model m1, L(m,m1)≥ 0 and L(m,m)≡ 0. The loss is a mea-
sure of the cost of estimating the true model with m̂ when it is
actually m. For example, a common loss function is the square
error: L(m, m̂)= (m − m̂)2. But there are other choices, such
as `p-norm error: L(m, m̂)= |m− m̂|p.

The loss, L(m, m̂), is a random variable since m̂ depends on
the data. We average over the data to obtain an average loss.
This is called the risk of m̂ given the model m:

R(m, m̂) = EP L(m, m̂), (4)

where P is the error probability distribution and EP is the
expectation with respect to this distribution. For square error
loss the risk is the usual mean square error.

Bayes risk

The expected loss depends on the chosen model. Some esti-
mators may have small risks for some models but not for others.
To compare estimators, we need a global measure that takes
all plausible models into account. A natural choice is to take
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the expected value of the loss with respect to the posterior dis-
tribution, p(m | d), of the model given the data. This is called
the posterior risk:

rm | d = Em | dL[m, m̂(d)].

Alternatively we can take a weighted average of the risk [equa-
tion (4)] using the prior model distribution as weight function.
This is the Bayes risk:

rρ = EρR(m, m̂),

where ρ is the prior model distribution. An estimator with
the smallest Bayes risk is called a Bayes estimator. We use a
frequentist approach to define the Bayes risk since we have not
conditioned on the observed data. It makes sense, however, to
expect good frequentist behavior if the Bayesian approach is
used repeatedly with different data sets. In addition, and under
very general conditions, minimizing the Bayes risk is equivalent
to minimizing the posterior risk (Berger, 1985).

Let f denote the joint distribution of models and data. The
distribution (marginal) of the data is obtained by integrating f
over the models:

h(d) =
∫
M

f (m, d) dm,

where M is the space of models. From Bayes’ theorem, the
conditional distribution of m given d is

p(m | d) = f (d |m)ρ(m)
h(d)

,

where ρ(m), the prior distribution, is the marginal of f with
respect to m. The conditional distribution, p(m | d), is the so-
called Bayesian posterior distribution, which updates the prior
information in view of the data.

One can define a number of reasonable estimators of m
based on p(m | d)—for example, the m̂ that maximizes p(m | d)
(or that is close, in probability, to m). Or one could compute the
estimator that gives the smallest Bayes risk for a given prior
and loss function. It can be shown [Lehmann (1983), p. 239]
that, for square error loss function, the Bayes estimator is the
posterior mean.

Here is a simple example of using a normal prior to estimate
a normal mean. Assume n observations, (d1, d2, . . . ,dn)= d,
which are iid N(η, σ 2). We want to estimate the mean, η, given
that the prior, ρ, is N(µ, β2). Up to a constant factor, the joint
distribution of η and d is [Lehmann (1983), p. 243]

f (d, η) = exp

[
− 1

2σ

n∑
i=1

(di − η)2

]
exp

[
− 1

2β
(η − µ)2

]
.

The posterior mean is

η̂ = E(η | d) = nd̄/σ 2 + µ/β2

n/σ 2 + 1/β2
,

where d̄ is the arithmetic mean of the data. The posterior vari-
ance is

var(η | d) = 1
n/σ 2 + 1/β2

.

Note that the posterior variance is always reduced by the pres-
ence of a nonzero β. The posterior mean, which is the Bayes
estimator for square error loss, can be written as

η̂(d) =
[

n/σ 2

n/σ 2 + 1/β2

]
d̄+

[
1/β2

n/σ 2 + 1/β2

]
µ.

We see that the Bayes estimator is a weighted average of the
mean of the data and the mean of the Bayesian prior distri-
bution; the latter is the Bayes estimator before any data have
been observed. The Bayes risk is the integral, over the data, of
the posterior variance of η. Since the posterior variance does
not depend on d, the Bayes risk is just the posterior variance.
Note also that as β→ 0, or increasingly strong prior informa-
tion, the estimate converges to the prior mean. As β→∞, or
increasingly weak prior information, the Bayes estimate con-
verges to the mean of the data. Also note that as β→∞, the
prior becomes improper (not normalizable).

What is the most conservative prior?

Often, there is not enough information to choose a prior den-
sity for the unknown parameters or the information available
is not easily translated into a probabilistic statement; yet we
need a prior to be able to apply Bayes’ theorem. In this case
we try to find a noninformative, or conservative, prior that will
let us conduct the Bayesian inference while injecting a mini-
mum of artificial information, that is, information not justified
by the physical process.

We have defined the Bayes risk, rρ , and the Bayes estima-
tor for a given prior density. It stands to reason that the more
informative the prior, the smaller its associated risk; we there-
fore say that a prior ρ is least favorable if rρ ≥ rρ′ for any other
prior, ρ ′. A least favorable prior is associated with the greatest
unavoidable loss.

In the frequentist approach the greatest unavoidable loss is
associated with the maximum of the risk [equation (4)] over
all possible models. An estimator that minimizes this maxi-
mum risk is called a minimax estimator. Under certain con-
ditions the Bayes estimator corresponding to a least favor-
able prior actually minimizes the maximum risk [see Lehmann
(1983)]. This is true, for example, when the Bayes estimator
has a constant risk. In this sense we can think of a least favor-
able prior as being a route to the most conservative Bayesian
estimator.

How does one find a conservative (noninformative) prior?
There is no easy answer; even the terms conservative and
noninformative are not well defined. One possibility is to de-
fine a measure of information (e.g., entropy) and determine
a prior that minimizes/maximizes this measure (e.g., maxi-
mum entropy). We could also look for priors that are invari-
ant under some family of transformations. But even the pop-
ular maximum entropy methods run into problems (Kass and
Wasserman, 1996; Seidenfeld, 1987). For more information on
noninformative priors, see Box and Tiao (1973) and Kass and
Wasserman (1996).

EXAMPLE: A TOY INVERSE PROBLEM

We consider a simple example of estimating the mean η of a
unit variance normal distribution, N(η, 1), with an observation
d from N(η, 1), given that |η| is known to be bounded by β.
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Following Stark (1997), we use this as a model of an inverse
problem with a prior constraint. Without the prior bound, d is
an estimator of η, but we hope to do better (obtain a smaller
risk) by including the bound information. How can we include
this information in the estimation procedure? One possibility is
to use a Bayesian approach and assign a prior distribution to η,
which is uniform on [−β, β]. We will show that this distribution
injects stronger information than might be evident.

Bayes risk

Start with an observation d from N(η, 1) and suppose we
know a priori that |η| is bounded by β. We incorporate the
bound by assigning to η a prior uniformly distributed on
[−β, β]. The joint distribution of η and d is then

f (d, η) = 1
2β
I[−β,β]

1√
2π

exp
[
−1

2
(d − η)2

]
,

where I[−β,β](x)= 1 for x ∈ [−β, β] and zero otherwise.
We reproduce Stark’s Monte Carlo calculation of the Bayes

risk for this problem. Figure 1 shows the Bayes risk, using a
uniform prior on [−β, β] and the minimax risk to be described
next. As the constraint weakens (β increases), the Bayes risk
gets closer to 1.

Flat prior is informative

We used the uniform distribution to soften (i.e., convert to
a probabilistic statement) the constraint |η| ≤β. Now we want
to measure the effect of this constraint softening. Have we
included more information than we really had?

Given the observation d from N(η, 1) and knowing that
|η| ≤β, what is the worst risk (mean square error) we can hope
to achieve with the best possible estimator without imposing
a prior distribution on η? In other words, we want to compute
the minimax risk, R(β), given the bound β:

R(β) = min
δ

max
η∈[−β,β]

EP[η − δ(d)]2.

The value R(β) is a lower bound for the maximum risk of any
other estimator. Although its exact value is dificult to compute,
R(β)≤ min{β2, 1}. In addition, Donoho et al. (1990) show that

4
5

β2

β2 + 1
≤ R(β).

Figure 1 shows upper and lower bounds for the minimax risk
as a function of β. For β ≤ 3 the Bayes risk is outside the min-
imax bounds. This is an artifact of the way we have softened
the bound. In other words, the uniform prior distribution in-
jects more information than the hard bound on η, as judged by
comparing the most pessimistic frequentist risk with that of the
Bayesian estimator. Also, R(b)→ 1 as b→∞. So as the bound
weakens, the Bayes and minimax risk both approach 1.

PRIORS IN HIGH-DIMENSIONAL SPACES:
THE CURSE OF DIMENSIONALITY

As we have just seen, most probability distributions usually
have more information than implied by a hard constraint. To
say, for instance, that any model with ‖m‖≤ 1 is feasible is cer-
tainly not the same thing as saying that all models with ‖m‖≤ 1

are equally likely. And while we could look for the most conser-
vative or least favorable such probabilistic assignment, Backus
(1988) makes an interesting argument against any such prob-
abilistic replacement in high- or infinite-dimensional model
spaces. His point can be illustrated with a simple example.
Suppose that all we know about an n-dimensional model vec-
tor m is that its length, m≡‖m‖, is less than some particular
value—unity, for the sake of definiteness. In other words, sup-
pose we know a priori that m is constrained to be within the
n-dimensional unit ball Bn. Backus considers various proba-
bilistic replacements of this hard constraint; this is called soft-
ening the constraint. We could, for example, choose a prior
probability on m which is uniform on Bn, namely, the proba-
bility that m will lie in some small volume, δV ∈ Bn, shall be
equal to δV divided by the volume of Bn. Choosing this uni-
form prior on the ball, one can show that the expectation of m2

for an n-dimensional m is

E(m2) = n

n+ 2
,

which converges to 1 as n increases. Unfortunately, the variance
of m2 goes as 1/n for large n; thus, we seem to have introduced
a piece of information that was not implied by the original
constraint—namely that for large n, the only likely vectors m
will have length equal to one. The reason for this apparently
strange behavior has to do with the way volumes behave in
high-dimensional spaces. The volume Vn(R) of the R-diameter
ball in n-dimensional space is

Vn(R) = Cn Rn,

where Cn is a constant that depends only on the dimension n,
not on the radius [this is a standard result in statistical mechan-
ics; e.g., Becker (1967)]. If we compute the volume Vε,n of an
n-dimensional shell of thickness ε just inside an R-diameter

FIG. 1. For square error loss, the Bayes risk associated with a
uniform prior is shown along with the upper and lower bounds
on the minimax risk as a function of the size of the bounding
interval [−β, β]. When β is comparable to or less than the
variance (one in this case), the risk associated with a uniform
prior is optimistic.
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ball, we can see that

Vε,n ≡ Vn(R)− Vn(R− ε) = Cn
(
Rn − (R− ε)n

)
= Vn(R)

(
1−

(
1− ε

R

)n
)
.

(5)

Now, for ε/R¿ 1 and nÀ 1, we have

Vε,n ≈ Vn(R)(1− e−nε/R).

This says that as n gets large, nearly all of the volume of the
ball is compressed into a thin shell just inside the radius.

But even this objection can be overcome with a different
choice of probability distribution to soften the constraint. For
example, choose m to be uniformly distributed on [0, 1] and
choose the n− 1 spherical polar angles uniformly on their
respective domains. This probability is uniform on ‖m‖ but
nonuniform on the ball. However, it is consistent with the con-
straint and has the property that the mean and variance of m2

are independent of the dimension of the space (Scales, 1996).
So as Backus has said, we must be very careful in replacing

a hard constraint with a probability distribution, especially in
a high-dimensional model space. Apparently innocent choices
may lead to unexpected behavior.

EXAMPLE: VERTICAL SEISMIC PROFILE

We now present a simple example related to the first question
in the overview. We use a vertical seismic profile (VSP—used
in exploration seismology to image the earth’s near surface)
experiment to illustrate how a fitted response depends on the
assumed noise level in the data. Figure 2 shows the geometry

FIG. 2. Simple model of a vertical seismic profile (VSP). A
source is at the surface of the earth near a vertical borehole
(left side). A string of receivers is lowered into the borehole,
recording the transit time of a downgoing compressional wave.
These transit times are used to construct a best-fitting model.
Here, vi refers to the velocity in discrete layers, assumed to be
constant. We ignore the discretization error in this calculation.

of a VSP. A source of acoustic energy is at the surface near a
vertical borehole (left side). A string of receivers is lowered
into a borehole, recording the transit time of the downgoing
acoustic pulse. These transit times are used to construct a best-
fitting model of the velocity v(z) (or index of refraction) as
a function of depth. There is no point in looking for lateral
variations in v since the rays propagate nearly vertically. If the
earth is not laterally invariant, this assumption introduces a
systematic error into the calculation.

For each observation (and hence each ray) the forward prob-
lem is

t =
∫

ray

1
v(z)

d`.

If the velocity model and the raypaths are known, then the
traveltime can be computed by integrating the velocity along
the raypath.

The goal is to somehow estimate v(z) or some functional
of it. Unless v is constant, the rays will refract; therefore, the
domain of integration depends on the unknown velocity. This
makes the inverse problem mildly nonlinear. We will neglect
nonlinearity in the present example by assuming the rays are
straight lines.

How well a particular velocity model fits the data depends
on how accurately the data are known. Roughly speaking, if
the data are known very precisely, we will have to work hard
to come up with a model that fits them to a reasonable degree.
If the data are known only rather imprecisely, then we can fit
them more easily. For example, in the extreme case of only
noise, the mean of the noise is a reasonable fit to the data.

As a simple synthetic example we constructed a piecewise
constant v(z) with 40 layers and used 40 unknown layers to per-
form the reconstruction. We computed 78 synthetic traveltimes
and contaminated them with uncorrelated Gaussian noise. The
level of the noise is unimportant for our purposes; the point is
that, given an unknown level of noise in the data, different
assumptions about this noise will lead to different kinds of re-
constructions. With the constant-velocity layers, the system of
forward problems for all 78 rays reduces to

t = K · s, (6)

where s is the 40-dimensional vector of reciprocal layer velocity
(slowness to seismologists) and K is a matrix whose i – j entry
is the distance the i th ray travels in the j th layer. [See Bording
et al. (1987) for the details behind this tomography calculation.]
So the data mapping, g, is the inner product of the matrix K
and the slowness vector s.

Let to
i be the i th observed traveltime, tc

i (s) the i th traveltime
calculated through a given slowness model s, and σi the stan-
dard deviation of the i th datum. If the true slowness is so, then
the following model of the observed traveltimes is assumed to
hold:

to
i = tc

i (so)+ εi , (7)

where εi is a noise term with zero mean and variance σ 2
i . Our

goal is to estimate so. A standard approach to solve this problem
is to determine slowness values s that make a misfit function
such as

χ2(s) = 1
N

N∑
i=1

(
tc
i (s)− to

i

σi

)2

, (8)
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smaller than some tolerance. Here, N is the number of obser-
vations. The symbolχ 2 is often used to denote this sum because
when equation (7) holds and the noise is Gaussian and uncor-
related, χ2(so) is just an average of independent χ 2-distributed
variables.

We assume the number of layers is known—40 in this
example—but this is usually not the case. Choosing too many
layers may lead to an overfitting of the data. In other words
we end up fitting noise-induced structures. Using an insuficient
number of layers will not capture important features in the
data. There are tricks and methods to try to avoid over- and
underfitting. In this example we do not have to worry since we
will be using simulated data. To determine the slowness values
through equation (8), we have used a truncated singular value
decomposition reconstruction [see Hansen (1998) for a defini-
tion and examples], throwing away all the eigenvectors in the
generalized inverse approximation of s that are not required
to fit the data at the χ2= 1 level. The resulting model is not
unique, but it is representative of models that do not overfit
the data (to the assumed noise level).

We consider the problem of fitting the data under two differ-
ent assumptions about the noise. Figure 3 shows the observed
and predicted data for models that fit the traveltimes on av-
erage to within 0.3 and 1.0 ms. Remember, the actual pseudo-
random noise in the data is fixed throughout; all we are chang-
ing is our assumption about the noise, which is reflected in the
data misfit criterion.

We refer to these as the optimistic (low-noise) and pes-
simistic (high-noise) scenarios. The smaller the assumed noise
level in the data, the more the predicted data must follow the
pattern of the observed data. It takes a complicated model to
predict complicated data. Therefore, we should expect the best
fitting model that produced the low-noise response to be more

FIG. 3. Observed data (solid curve) and predicted data for two
different assumed levels of noise. In the optimistic case (dashed
curve) we assume the data are accurate to 0.3 ms. In the more
pessimistic case (dotted curve) we assume the data are accu-
rate to only 1.0 ms. In both cases the predicted traveltimes are
computed for a model that just fits the data. In other words we
perturb the model until the rms misfit between the observed
and predicted data is about N times 0.3 or 1.0, where N is the
number of observations. Here N= 78.

complicated than the model that produced the high-noise re-
sponse. If the error bars are large, then a simple model will
explain the data.

Now let us look at the models that actually fit the data to
these different noise levels (Figure 4). It is clear that if the data
uncertainty is only 0.3 ms, then the model predicts (or requires)
a low-velocity zone. However, if the data errors are as much as
1 ms, then a very smooth response is enough to fit the data, in
which case a low-velocity zone is not required. In fact, for the
high-noise case essentially a linear velocity increase will fit the
data, while for the low-noise case a rather complicated model
is required. (In both cases because of the singularity of K, the
variances of the estimated parameters become very large near
the bottom of the borehole.)

This example illustrates the importance of understanding the
noise distribution to properly interpret inversion estimates. In
this particular case, we didn’t simply pull these standard de-
viations out of a hat. The low value (0.3 ms) is what we get
if we assume the only uncertainties in the data are normally
distributed fluctuations about the running mean of the travel-
times. However, nature doesn’t know about traveltimes. Trav-
eltimes are approximations to the true properties (i.e., finite
bandwidth) of waveforms. Further, traveltimes themselves are
usually assigned by a human interpreter looking at the wave-
forms. Based on these considerations, we might be led to con-
clude that a more reasonable estimate of the uncertainties for
real data would be closer to 1 ms than 0.3 ms. In any event, the
interpretation of the presence of a low-velocity zone should
be viewed with some scepticism unless the smaller uncertainty
level can be justified.

To summarize, this example shows it is impossible to know
whether a certain model feature is resolved unless one under-
stands the data uncertainties.

FIG. 4. The true model (solid curve) and the models obtained
by a truncated SVD expansion for the two levels of noise, op-
timistic (0.3 ms, dashed curve) and pessimistic (1.0 ms, dotted
curve). Both of these models just fit the data in the sense that
we eliminate as many singular vectors as possible and still fit
the data to within one standard deviation (normalized χ 2= 1).
An upper bound of four has also been imposed on the velocity.
The data fit is calculated for the constrained model.
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SUMMARY

To solve any inverse problem we need an understanding of
the uncertainties in the data. We also need methods to incor-
porate data-independent prior information. Both of these is-
sues involve subtle choices that may significantly influence the
results of inverse calculations. The specification of prior in-
formation is especially controversial. In this tutorial we have
presented Bayesian and frequentist methodologies that can be
used to incorporate information into inverse calculations.

We can choose among a variety of methods to obtain inver-
sion estimates, but it is important to make sure the uncertainty
estimates we use are not artificial. Whether one uses a frequen-
tist or a Bayesian approach, it is always important to be aware
of the model assumptions on which estimates rely. “The choice
of models is usually a more critical issue than the differences
between the results of various schools of formal inference”
(Cox, 1981).
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