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SUMMARY

We de	ne a notion of strong matching of frequentist and Bayesian inference for a

scalar parameter� and show that for the special case of a location model strong matching is

obtained for any interest parameter linear in the location parameters� Strong matching is

de	ned using one
sided interval estimates constructed by inverting test quantities� A brief

survey of methods for choosing a prior� of principles relating to the Bayesian paradigm�

and of con	dence and related procedures leads to the development of a general location

reparameterization� This is followed by a brief survey of recent likelihood asymptotics

which provides a basis for examining strong matching to third order in general continuous

statistical methods� It is then shown that a �at prior with respect to the general loca


tion parameterization gives third order strong matching for linear parameters� and for for

nonlinear parameters the strong matching requires an adjustment to the �at prior which

is based on the observed Fisher information� A computationally more accessible approach

then uses full dimensional pivotal quantities to generate default priors for linear param


eters� this leads to second order matching� A concluding section describes a con	dence�

	ducial� or default Bayesian inversion relative to the location parameterization� This pro


vides a method to adjust interval estimates by means of a personal prior taken relative to

the �at prior in the location parameterization�



�� INTRODUCTION

We examine the agreement between frequentist and Bayesian methods for parametric

inference using recent methods from higher order likelihood asymptotics� We 	rst de	ne

strong matching� if the frequentist context gives a p
value p
�� for assessing a value � for

a scalar parameter of interest �
�� and if the Bayesian posterior analysis gives a posterior

survivor probability s
�� for the same parameter of interest and the same value �� then

equality of p
�� and s
�� is called strong matching�

In Section � we examine location models and show that a �at prior in terms of the

location parameter provides strong matching for the family of parameters that are linear

in the location parameterization� We also show that this natural �at prior does not in

general give strong matching for other parameters that can be described as curved in the

location parameterization�

In Section � we review the familiar choices for a default prior density� In most cases

these do not provide strong matching even for the special linear parameters just mentioned�

In Section � we examine the Bayesian paradigm and the closely related Strong Likeli


hood Principle� This leads to the de	nition of a less restrictive and perhaps more realistic

Local Inference Principle�

In Section � we examine con	dence and 	ducial methods and compare these with

the Bayesian inversion method� We note that con	dence and 	ducial methods di�er on a

minor procedural technicality and this in the present context is of negligible importance�

We also note that the Bayesian interval determined using the default prior can be easily

modi	ed by a personal or communal prior de	ned relative to the default prior�

In Section � we show that a location reparameterization exists for continuous models

under wide generality� The reparameterization is straightforward for a scalar full parame


ter� but is computationally more di�cult for vector parameters�

Section � gives a brief summary of recent likelihood asymptotics� This builds on

�



a long succession of asymptotic results which are brie�y outlined� The important recent

extension is from a 	xed dimension variable to the truly asymptotic case with an increasing

dimension variable� These results lead to a general p
value for testing a scalar parameter

using 	rst a reduction to the 	nite dimension case by conditioning� next a marginalization

from this to obtain a scalar measure of departure from a hypothesized value for the interest

parameter� and 	nally a third order approximation for the resulting p
value� Somewhat

related asymptotic results lead to an accurate approximation to the posterior survivor

function in the Bayesian context�

Section � examines strong matching for a scalar parameter in the context of a general

continuous model� It is seen that this matching is available immediately for parameters

that are linear in the location reparameterization of Section �� Then for nonlinear pa


rameters a modi	cation of the prior is generally needed� as anticipated from Section ��

The modi	cation is by a weight function computed from the observed Fisher information

function�

Section � examines to what degree these results can be obtained from pivotal quanti


ties� Section �� presents a third order location parameter pivotal quantity and discusses

how this can be used to determine a con	dence� 	ducial� and default Bayesian posterior�

�� DEFAULT PRIOR FOR A LOCATION MODEL� AN OBVIOUS CHOICE

Consider a scalar variable y from a location model f
y� �� where � is also scalar� We

write y � ��e� where e has a known density f
e�� As the distribution of the measurement

error e � y� � is free of �� it is appropriate to consider that y gives a direct measurement

of the unknown quantity �� We will use a more general notion of a variable measuring a

parameter in Sections � below�

The one
sided p
value for testing � � �� with data y� is

p
��� �

Z y�

��

f
y � ���dy � 
����

�



which records the probability position of the data relative to ��� By varying �� until

p
��� takes a 	xed value �� we can 	nd a � � � con	dence bound for �� In the Bayesian

framework a natural choice for default prior is the �at or uniform prior �
��d� � d�� The

corresponding posterior density is then �
�jy��d� � f
y� � ��d�� and the corresponding

posterior survivor function is

s
��� �

Z �

��
f
y� � ��d� � 
����

This record the probability position of �� relative to the observed y�� A one
sided posterior

probability interval of size ��� can be determined by varying �� until s
��� � �� Clearly�

we have strong matching� since p
��� � s
��� � pr
e � e�� �

Z e�

��

f
e�de where e� �

y� � ���

Now consider a vector variable y having yi � � � ei where the joint error density

is f
e� � f
y � ���� � is a vector of ��s� and the components ei of e are not necessarily

independent� To test a value � � �� the usual frequentist calculation derived from Fisher

is conditional along the line y� � L
�� parallel to the span L
�� of the vector of ��s� The

conditional p value is

p
��� �

Z ���

��

L
�� � �� � ����d��

where L
�� � cf
y� � ��� is the observed likelihood and the generic c is then taken to

be the normalizing constant� For the Bayesian case the �at prior �
��d� � d� is again

a natural default choice� giving the posterior density �
�jy�� � L
�� with the same c as

above and posterior survivor function s
���

s
��� �

Z �

��
L
��d� �

Again we have strong matching� p
��� � s
���� and the two probabilities each record

P 
�e � �e�� where �e� � ��� � ���

Now consider a location model with vector parameter �� f
y � ��� For a scalar

parameter component� �� say� the corresponding variable y� has a marginal distribution

�



free of ��� � � � �p� The corresponding p
value based on the marginal density f� for y� is

given by

p
���� �

Z y�

��

f�
y� � ���dy�

�

Z ���
�

��

�Z �

��

� � �
Z �

��

L
�� � �� � ����d��� � � � d��p

�
d���

�

Z
�������

�

L
�� � �� � ����d��

�

Z
e��e��

L
�e� ����de 
����

where e � �� � ��� e�� � ���� � ��� and �� � 
���� ��� � � � � �p�
�� The constant c used with the

likelihood function is again taken to be the normalizing constant� For the Bayesian case the

uniform prior gives the posterior density �
�jy�� � L
�� and posterior marginal survivor

function for ��

s
���� �

Z
������

L
��

�

Z
e��e��

L
�e� ����de � p
���� 
����

Again we have strong matching of frequentist and Bayesian inference�

The more general location model case with dim y � dim � can be put in the familiar

regression form f
y�X��� The frequentist analysis conditions on the residuals� y�X �� �

y� �X ���� and derives the following conditional density for ���

L
� � �� � ���� � L
�e� ���� �

where L
�� � cf
y�X��� e � ����� and the constant c is chosen to norm the distribution�

If the parameter of interest � is linear in �� � � �ai�i � a��� the frequentist p
value for

testing � � �� is

p
��� �

Z
�e��e�

L
�e� ����de

�



where �e � ����� and �e� � ������� The marginal posterior survivor function for � under

the default prior �
��d� � d� is

s
��� �

Z
�e��e�

L
�e� ����de

where �e � ��� � � and �e� � ��� � ��� Again we have strong matching of the frequentist

and Bayesian inference�

Thus for any scalar parameter location model� the �at prior �
�� � � gives strong

matching for all parameters� and for any vector
parameter location model� the �at prior

gives strong matching for any parameter linear in the location parameters� A simple

example shows that the �at prior does not in general give strong matching for nonlinear

parameters�

Consider 
y�� y�� with mean 
��� ��� and a standard normal error distribution� With

�at prior the posterior distribution for 
��� ��� has mean 
y��� y
�
�� and standard normal

error� The scalar parameter �
�� � f
���R��� ���g��� de	nes circles centered at 
�R� ���
Consider the hypothesis �
�� � �� which de	nes a circle through 
�� �R� ��� then under

the hypothesis� the distribution has mean located on this circle� Suppose the data value

is 
y��� ��� with say y�� � 
�� � R� for easier visualization� The usual frequentist p
value

would record probability for a standard normal centered on the hypothesized circle and

calculated interior to the circle through the data� this is given as

p
��� � G��
R� y����

where G�
�� is the distribution function of the noncentral chi with � degrees of freedom

and noncentrality parameter �� From the Bayesian viewpoint the posterior is a standard

normal centered at the data 
y��� ��� the resulting survivor function at �
�� � �� records

probability for a standard normal centered at the data and calculated outside the circle

�
�� � ��� this is given as

s
�� � ��GR�y�
�


��� �

�



It is easy to see that p
��� �� s
���� The geometry is more transparent� a normal density

is centered at a distance jy�� � �� � Rj from a circle and the calculation gives probability

bounded by the circle� In the frequentist case the point is inside the circle� in the Bayesian

case the point is outside� the 	rst probability is less than the second for this case chosen

for easier visualization�

As a partial converse for the scalar variable scalar parameter case suppose we have a

model for a scalar variable y and scalar parameter �� f
y� ��� and we have strong matching

for all y and � relative to a �at prior in the parameterization �� i�e�

Z y

��

f
y� ��dy �

Z �

�

f
y� ��d� �

Then f��
y� �� � fy
y� �� � �� where the subscripts denote di�erentiation with respect to

the variable before or after the semi
colon� this in turn implies that f
y� �� � f
y � �� ���

i�e� that f
y� �� is a location model�

�� ON CHOOSING THE PRIOR

Consider a scalar or vector continuous parameter �� Perhaps the oldest choice for

a default prior is the uniform prior �
��d� � cd� dating from Bayes 
����� and Laplace


������ and subsequently referred to as the prior that expresses insu�cient reason to prefer

one � value over another� This can have particular appeal if the parameterization has some

natural physical interpretation� However� in the restricted context with only a model and

data it lacks parameterization invariance� a uniform prior for � di�ers from a uniform prior

for say 	 � ���

In part to address this nonuniqueness Je�reys 
����� proposed a constant information

prior

�
��d� � ji
��j���d� 
����

where i
�� � Ef�
��
�� y� � �g is the information matrix and 
��
�� � 
�����
������

�� is

the Hessian of the loglikelihood function� This prior is invariant under reparameterization

�



and as such has some special properties� In particular in the scalar parameter case the

reparameterization



�� �

Z �

i���
��d� 
����

yields an information function i

� that is constant in value� In other words Je�reys� prior

d

�� is uniform in the parameterization 
� In the special case of a general location model

ffy �X

��g Je�reys� prior ji
��j���d� � cd
�

Cakmak et al 
����� consider a class of models f
y� ��� where � is scalar and y is

a scalar function of a vector of length n� For example y could be the minimal su�cient

statistic in a sample of size n from a one parameter exponential family� They called

such models asymptotic� as under regularity assumptions the model has an asymptotic

expansion in powers of n���� about a central point 
y�� ����� It is shown in that paper that

any such model is to the second order� i�e� ignoring terms of order O
n��� or higher� a

location model in the information parameterization 
����� Thus for the scalar case Je�reys�

prior gives matching to the second order�

In the case of a model f
y� �� with vector parameter �� it is well known that Je�reys�

prior 
���� does not treat component parameters in a satisfactory manner� For example

it gives the prior �
���d�d� � d�d���� for a location
scale model� which does not lead

to strong matching in the case of the normal distribution� whereas the choice �
�� �� �
d�d��� does for key parameters� In fact Je�reys himself recommended the prior d�d����

see Kass and Wasserman 
������ The two priors correspond in this transformation model

context to left and right invariant measures on the location scale group� What is not

widely noted� however� is that the right prior is invariant under change of origin on the

group parameter space and also has some other natural properties 
Fraser� ������

For the special case of location models we have seen in Section � that strong matching

is available for the wide class of linear parameters but is typically not available more

generally� This phenomenon has stimulated the development of default priors that are

speci	c to component parameters of interest� Thus Peers 
����� and Tibshirani 
�����

�



recommend a prior for � � 
�� �� with scalar parameter of interest � of the form

i
���
�� 
��g
��d�d�

where � is chosen orthogonal to the parameter � in the sense that i��
�� � �� The

arbitrariness in the choice of g
�� for the nuisance parameter can cause anomalies but the

use of i
���
�� for the interest parameter is a natural extension from the scalar Je�reys� case

based on 
�����

The appropriate handling of component parameters of interest seems to require that

the prior be developed for the parameter of interest� The reference priors of Bernardo


������ and subsequent generalizations 
see Bernardo � Smith� ����� are constructed for

a succession of scalar parameter components� In some cases the reference prior avoids

di�culties commonly associated with the Je�reys prior�

�� BAYESIAN PARADIGM AND RELATED PRINCIPLES

Our interest in this paper centers on default procedures that derive from the Bayesian

paradigm

�
�jy�� � �
��f
y�� �� � 
����

In 
���� the model information enters as the y� section of the full model� recorded as

cf
y�� �� � L
�� y�� � L�
�� � 
����

As such the analysis is said to conform to the Strong Likelihood Principle� that inference

should use only model information that is available from the observed likelihood function�

The Je�reys prior and the reference priors discussed in Section � both use sample

space averages for each � examined and thus do not conform to the Strong Likelihood

Principle�

At issue in a general sense is whether we should care about model information other

than at or near the observed data� A strong argument that we shouldn�t care has been

�



given by John Pratt 
����� in his discussion of Birnbaum�s 
����� analysis of su�ciency�

conditionality� and likelihood� Two instruments are available to measure a scalar �� the

	rst has a full range while the second has an upper limit on the reading� A measurement is

obtained which is within the reporting range of the second instrument� does it matter which

instrument made the measurement� To most Bayesians and a few frequentists the answer

is that it doesn�t matter� Variations on the example argue that only model information in

a neighbourhood of the data point is relevant for inference�

Pratt 
ibid� views these arguments as �a justi	cation of the 
strong� likelihood prin


ciple�� This may be an overstatement as it seems to require an instrument or sequence

of instruments that ultimately register only for the precise point� the observed data point

itself� Accordingly we focus on a more moderate principle that addresses a neighbourhood

of the data point�

Consider an instrument that has an interval range� producing the measurement when

it is in range and producing e�ectively the relevant end point when out of range� the

distribution function on the range fully records the behaviour of the instrument� Now

consider this restrained instrument in comparison with a regular instrument whose distri


bution function coincides on the particular interval� For a data value that falls within the

interval of the restrained instrument� the information available concerning the parameter

would seemingly be equivalent to that available from the same data with the unrestrained

instrument� We summarize this as a principle�

Local Inference Principle� Inference from a statistical model and data should use only

the distribution function at and near the data value together with the data value�

For a vector variable with independent coordinates� this would extend to the vector of

distribution functions� For the case with dependent coordinates some further framework

is needed that speci	es how the coordinates measure the parameters involved� pivotal

quantities can provide this extra framework� When the Local Inference Principle is applied

in later sections �near the data point� is taken to refer to properties up to 	rst derivative

��



at the data point�

The Local Inference Principle provides background for a notion of the sensitivity of a

measurement y to a change in the parameter �� the sensitivity concerning � at the data

point y� is de	ned as

v�
�� �
dy

d�

��
y�

� �F��
y
�� ��

Fy
y�� ��
� 
����

where dy�d� is calculated for 	xed value of the pivotal� which is the distribution function

F 
y� ��� and the subscripts in the third expression denote di�erentiation with respect to

the argument indicated by the semicolon� When we di�erentiate y with respect to � we are

using the pivotal quantity z � F 
y� �� and obtaining the derivative for 	xed z� We could

calculate this directly by solving for y as a function of z and � and then di�erentiating this

with respect to � for 	xed z� If we then view y � y
z� �� as applying the distribution of the

pivotal to the y
space we can view v�
�� as recording the velocity of probability movement

at the point y� for various � values� In this sense the velocity v�
�� at y� can be viewed

as describing how y at y� measures the parameter ��

With a vector y � 
y�� � � � � yn�
� of independent coordinates the sensitivity becomes a

velocity vector v�
�� that records the velocity of y at y� under change in the parameter

value ��

v�
�� � 
v�
��� � � � � vn
���
� �

dy

d�

��
y�


����

where vi
�� is given by 
���� applied to the coordinate yi and the third expression is

calculated for 	xed value of fF�
y�� ��� � � �Fn
yn� ��g which can be view as the vector of

coordinate by coordinate p
values� Again in this vector context the velocity v�
�� describes

how y near y� measures the parameter �� a generalized de	nition is available in Fraser �

Reid 
������ Further discussion of this is presented in Section ��

The Local Inference Principle allows the use of the observed likelihood function L�
��

of course� It also allows the use of the sensitivity vector v�
��� We will see in Section �

how the sensitivity vector provides an important calibration in the calculation of measures

of departure�

��



�� CONFIDENCE AND OTHER INVERSIONS

Consider a con	dence set C
y� which has coverage probability under the model f
y� ��

of at least ����� A quantity z
y� �� with certain pivotal properties is given by the indicator

function

z
y� �� � �C�y	
�� �

the corresponding survivor function has a lower bound ���� at z � ��

S
z� �� � prfz
y� �� � � � �g � ���� �

As our concerns in this paper focus on continuous variables we 	nd it convenient to re


strict attention to exact con	dence regions at arbitrary con	dence levels� speci	cally we

assume that con	dence procedures are based on a pivotal quantity z
y� �� that has a 	xed

distribution� is continuously di�erentiable� and has one
one mappings between any pair of

zi� yi� � for each i�

zi
yi� ��� yi
zi� ��� � � 
����

The last condition indicates that each coordinate variable yi can be viewed as measuring

�� as discussed in Section �� For a vector � each yi would be a vector of the dimension of

��

Now consider a set A on the pivot space with probability content 
� Then

C
y� � f� � z
y�� �� in Ag 
����

is a 
 level con	dence region� For example with 
y�� � � � � yn� from N
�� ��� and zi �


yi � ����� the set A � fz �
p
n z�sz � t�g using the right tail � point of a Student
n� ��

distribution gives the 
 � �� � lower con	dence bound  y� � t�s
�
y�
p
n�

A somewhat di�erent way of obtaining an assessment on the parameter space is pro


vided by the much maligned 	ducial method� This again requires a pivotal quantity and

we assume the continuity and other properties as above� The method also requires the

��



same dimension for variable and parameter or a reduction to this by conditioning on an

ancillary variable� accordingly we assume that an ancillary a
y� � a
z� is available so that

given a
y� � a
y�� � a� the pairwise links y � z � � are one
one�

The 	ducial distribution for � is obtained by mapping the pivotal distribution for given

a
z� � a� onto the parameter space using the one
one mapping z � � for 	xed y � y�� A


 level 	ducial region D
y�� then has a proportion 
 of the 	ducial distribution� We note

in passing that the inverse of D
y�� using the one
one mapping for 	xed y� gives a set A on

pivot space with probability content 
� The 	ducial approach has various well documented

di�culties in implementation� We will see however that it has some close connections to

Bayes posteriors using default priors� Thus despite its rather stigmatized role in statistics

we 	nd it convenient here to explore certain roles for the method in statistical inference�

We now compare the two inversion methods and assume a model
data instance

ff
y� ��� y�g together with the pivotal structure described above� First we note that the

	ducial is more restrictive in that it requires the set A to have conditional probability 


given the ancillary in addition to the marginal probability 
� This conditioning propoerty

is sometimes included with the con	dence approach as a positive feature� and in line with

this we add this as a requirement�

For 
 con	dence we choose a 
 region A and then invert� while for 	ducial we choose

a 
 region D
y�� and then note that there is a corresponding 
 region A� If indeed we

choose the regions after the model
data instance ff
y� ��� y�g is available� then there is

a one
one correspondence between con	dence and 	ducial procedures� indeed� there is

no mathematical di�erence� just a procedural di�erence� choose and invert or invert and

choose� There can of course be di�erences in assessment if we say choose to examine in

certain frameworks such as repeated sampling from the same ��

As a third method of inverting consider the use of the Bayesian paradigm 
����� A

prior density is a density with respect to some speci	ed support measure� Suppose we have

a preferred default prior� We could then combine it with the speci	ed support measure

��



to give a new support measure� the default prior density then becomes the uniform or

�at prior with respect to the new support measure and other possibilities say �
�� for the

prior become modi	cations of the default prior� This is part of the background urgency

underlying the Bernardo 
����� reference prior approach 
Bernardo � Smith� ������

In the location model case examined in Section � the location reparameterization

gave a natural Euclidean support measure� The �at prior relative to this measure gives a

Bayesian inversion that agrees with the con	dence inversion and the 	ducial inversion� The

option then of using a prior �
�� relative to the chosen parameterization can be viewed

as a way of supplementing con	dence or 	ducial intervals to account for the modifying

information �
��� We pursue this link more generally in Section ���

�� THE LOCATION PARAMETERIZATION

Consider a statistical model with observable variable and parameter of the same di


mension� With an observed data point y� we would of course be primarily interested in the

observed log likelihood 
�
�� � 

�� y��� Also in accord with the Local Inference Principle

of Section �� we would also want to have available the information in the gradient of the

log likelihood taken with respect to y at y��

	�
�� � r

�� y���
y�

� 
���y�

�� y�
��
y�

� 
����

As loglikelihood is typically viewed as a� log f
y� �� with arbitrary a we 	nd it necessary

for the uses of 
���� to work from likelihood that has been standardized to have value � at

the observed maximum likelihood value� that is� to take loglikelihood at the point y to be



�� y� � log f
y� ��� log f
y� ��� � 
����

In this case 	�
���� � �� If we work more loosely with 	
�� � 
���y� logf
y� �� then the

	
�� that we use in the various results to follow will be replaced by 	
�� � 	
��� and in

e�ect will be given as

	�
�� �
�

�y


�� y�

��
y�
� �

�y


�� y�

��
�����y�	

� 
����

��



Now consider a more general model f
y� �� where the dimension n of the observable

variable is larger than the dimension p for the parameter� The familiar reduction is by

means of su�ciency but this is only available for quite special model structure� An exam


ination of general asymptotic models shows that quite generally an approximate ancillary

say a
y� of dimension n� p is available thus permitting the conditional analysis as found

for example with location models� see Section �� The ancillary is approximate to second

order� as this su�ces for a third order approximation to the p
value� see Section � and

Fraser� � Reid 
������

For this general model context the gradient of likelihood would be calculated within

the conditional model or equivalently for computation calculated within the full model but

calculated tangent to the conditioning variable� Let V � 
v�� � � � � vp� be p vectors tangent

to the ancillary surface at the data point� Then we write 	�
�� � 
�V 
�� y
�� if the log

likelihood function has been standardized at the maximum likelihood value� this uses


�V 
�� y� � 
���V �� 

�� y� � f
�v�
�� y�� � � � � 
�vp
�� y�g 
����

where 
�v
�� y� � 
d�dt�

�� y� tv�
��
t
�

de	nes the directional derivative in the direction v�

More generally with 

�� y� � log f
y� �� we write

	�
�� � 
�V 
�� y
��� 
�V 
��

�� y�� 
����

which incorporates the likelihood standardization�

For notation we now use just 

�� and 	
�� but emphasize that these depend on the

observed data y� and also in the general case on the tangent directions V to the ancillary

at the data point�

In the context of the Strong Likelihood Principle or in the context of the standard

Bayesian paradigm we can view the e�ective model to be any model so long as the likelihood

at y� agrees with the observed 

��� In the present context with the Local Inference

Principle we can view the e�ective model to be any model in the much smaller class that

��



has both likelihood and likelihood gradient equal to the observed 

�� and 	
��� On the

basis of the discussion concerning the Local Inference Principle� we view this smaller class

of models as the more appropriate background for the inference context�

Now consider the possible models that have the given characteristics 

�� and 	
�� at

the data y�� An exponential model with given 

�� and 	
�� has the form

fE
y� �� �
c


���p��
expf

�� � 	�
��
y � y��gj����j���� 
����

where �� � �
��
��j �� is the negative Hessian calculated with respect to 	� This arises


Fraser � Reid� ����� Cakmak et al� ����� Cakmak et al� ����� Andrews� Fraser � Wong�

����� as a third order exponential model approximation and is referred to as the tangent

exponential model at the data y�� This model is shown 
Fraser � Reid� ����� to provide

third order inference at y� for any model with given 

�� and 	
���

In a somewhat related manner it is shown 
Cakmak et al� ����� Cakmak et al� �����

that the location model with given 

�� and 	
�� has the form

fL
y� �� �
c


���p��
exp

�

f�

 � y � y��g�j����� j���� 
����

where ����� is the observed information on the 
 � 

�� scale and 

�� is an essentially

unique location reparameterization� This arises as a third order location model approx


imation and provides third order inference at y�� The parameter 

�� has uniqueness


Fraser � Yi� ����� subject to expandability in a Taylor�s series� We refer to 

�� as the

location reparameterization for the statistical model with given 

�� and 	
�� at the data

y��

For the case of a scalar variable and scalar parameter an explicit expression is available

for 

���



�� �

Z �

���
�
�
��
	
��

d� 
����

where 
�
�� � 
�����

�� is the score function for the given model 
Fraser � Reid� ������

��



For the vector parameter case the de	nition of 

�� gives the di�erential equation


��
�� � �	�
���

��
�	�


����

where � is viewed as a function of 	� This has a unique solution subject to expandability in

a power series� A simple expression for 

�� as in the scalar case does not seem accessible


Fraser � Yi� ������

The notion of a variable measuring a parameter in a general sense has been discussed

above and viewed as an important part of statistical modelling� A coordinate by coordinate

pivotal quantity can provide a de	nition for this� Let z � z
y� �� be a pivotal quantity

as de	ned in Sections � and �� this can describe the manner in which a variable and

parameter are interrelated� or how the variable in a general sense measures the parameter�

The directions V � 
v�� � � � � vp� that are tangent to an essentially unique second order

ancillary are available from the pivotal quantity�

V �
�y

��

��
�y�����	

� �z��
�y� z��

��
�y�����	

� 
�����

where z�� � 
������ z
y� ��� z�y� � 
���y�� z
y� �� and the middle expression involves

di�erentiation for 	xed pivotal value� This provides quite generally the n� p matrix V for

the de	nition 
���� of 	
��� In the scalar parameter case the matrix V becomes a vector

v that is equal to 
����� the velocity vector v�
�� at � � ���� For background� see Fraser �

Reid 
������

�� RECENT LIKELIHOOD ASYMPTOTICS

Recent likelihood asymptotics has produced the conditioning procedure described in

Section � that in e�ect reduces the dimension of the variable from n for the primary variable

to p for the conditional variable which is then the essential measurement variable for the

parameter which is also of dimension p 
Fraser � Reid� ������ This then builds on earlier

theory that permits the reduction of this variable to a scalar pivotal quantity that gives an

��



essentially unique measure of departure from a value say � for a scalar interest parameter

�
��� 
Barndor�
Nielsen� ����� Fraser � Reid� ����� ������ And this in turn builds on

earlier likelihood and saddlepoint approximation theory that gives quite accurate p
values


Daniels� ����� Lugannani � Rice� ������

In almost all cases� frequentist or Bayesian� the resulting third order approximation

to the probability position of the observed measure of departure is obtained through one

or other of the combining formulas

!�
r�Q� � !
r� � �
r�

�
�

r
� �

Q

�
!�
r�Q� � !fr � r�� log
r�Q�g


����

where �
�� and !
�� are the standard normal density and distribution functions and r and

Q are very specially chosen measures of departure� These formulas were developed in

speci	c contexts by Lugannani � Rice 
����� and Barndor�
Nielsen 
����� ������

For the case of testing a scalar interest parameter �� r is quite generally the signed

likelihood ratio

r � sgn
 �� � �� �
h
�
�

��� y�� 

���� y�

�i���

����

where ��� is the constrained maximum likelihood value given the 	xed tested value for ��

The other ingredient Q is quite problem speci	c in the recent development of asymptotic

likelihood theory and a general de	nition has been a primary goal�

First consider a scalar full parameter � with interest parameter � � �� In this case

the reparameterization 	
�� from 
���� with 
����� is a scalar parameter and the Q is a

corresponding standardized maximum likelihood departure

qf � sgn
�� � �� � j �	� 	jj����j��� � 
����

With 
���� and 
���� this gives a p
value p
��� a third order approximation to a measure

of departure of data from what is expected when � is the true value� For the Bayesian

approach with � as the integration variable and �
�� as the prior� the survivor poste


rior probability s
�� is given by 
���� and 
���� with Q taken to be a standardized score

��



departure

qB � 
�
��j����j���� � �

���

�
��
� 
����

These give third order accuracy 
Fraser ����� Fraser � Reid� ������

Now consider the general case with interest parameter � and an explicit nuisance pa


rameter �� for this it is convenient to take �� � 
��� ��� Let 	
�� be the reparameterization

given by 
���� with 
������ The frequentist calculation needs a scalar parameter linear in

	
�� that is a surrogate for the interest parameter �� and the local form of �
�� at ���

provides the coe�cients�

�
�� �
���
����

j���
����j
	
�� � 
����

where ���
�� � ��
����	� � 
��
������� � 
�	
��������� � ���
��	��
�� 
��� The calcula


tions also require an information determinant for � at the tested �
�� � � but recalibrated

in the 	 parameterization�

j����	
����j � jj��
����j � j	��
����j�� 
����

where the r� 
r��� determinant is evaluated as with a design matrix X� jXj � jX �Xj����
For the frequentist p
value p
�� the formulas 
���� use

qf � sgn
 �� � �� � 
��� ����

�
j����j

jj���	
����j

����


����

and for the Bayesian survivor probability s
�� use

qB � 
�
����

�
j����j

jj��
����j

�����
�
���

�
����
� 
����

Examples may be found in Fraser � Reid 
����� ����� Fraser� Reid � Wu 
������ and

Fraser� Wong� Wu 
������ These formulas have third order accuracy 
Fraser � Reid� �����

����� Fraser� Reid� � Wu� ������ A general formula version without explicit nuisance

parameterization is available 
Fraser� Reid and Wu� ������

��



	� STRONG MATCHING

For a scalar parameter � and a location model we saw in Section � that a �at prior in

the location parameterization gives strong matching of frequentist and Bayesian methods�

We now use likelihood asymptotics to examine a converse� if strong matching is available

then what are the constraints on the model and the prior�

Consider a data point y� and suppose that strong matching occurs for all values of ��

that is� r
�� � s
��� The expressions for r
�� and s
�� using 
���� and 
���� both involve

the same signed likelihood ratio r but have di�erent expressions 
���� and 
���� for the

needed Q� The equality of r
�� and s
�� thus gives the equality of qf and qB � which with

the 	
�� as standardized �	 � � from 
���� gives

�
��

�
���
�


�
��

�	
�� �
	�
���

����

� c

����d

��d�

���� �

����

using 
����� the 	rst expression on the right is for the case that 	
�� is an increasing function

of � and has been centered with �	 � �� It follows that strong matching is obtained with a

�at prior in the location parameterization 
���� or equivalently with the prior

�
�� �
����� 
�
��

	
���� 	
��

����� 
����

based on the initial � parameterization� The constant in 
���� compensates for the possibly

di�erent scaling for 

�� and � at ��� thus c
�
��� � ��

It is of interest that the change of parameter de	ned by d

���d� is closely related to

the velocity v
�� of y with respect to � as recorded in 
����� based on a pivotal quantity�

We have from 
���� that

d

��

d�
� � 
�
�� y

��


�y
�� y��� 
�y
���� y��
�

dy

d�

���
y�

� 
����

In the third expression the di�erentiation is taken for 	xed 

�� y��

��� y�� thus treating this
standardized likelihood as a pivotal quantity near y�� for some related views on likelihood

��



as pivotal quantity� see Hinkley 
������ We can thus view 
���� as a velocity v
�� based

on an approximate pivotal rather than on the exact pivotal used in 
������

Now consider a statistical model f
y� �� with vector parameter �� We saw in Section �

that a location model with a �at prior in the location parameterization has strong matching

for parameters that are linear in the location parameter� We now examine inference for an

interest parameter �
�� that is possibly nonlinear in the present general model context�

For a data point y� let 

�� and 	
�� be the corresponding loglikelihood and log


likelihood gradient� We have noted in Section � that there is a corresponding essentially

unique location parameterization� let 

�� be such a parameterization� For statistical and

inference properties we note in passing that both 	
�� and 

�� are unique up to a�ne

transformations� they can then be standardized to coincide with � � ��� to 	rst derivative

at ����

Suppose that we have strong matching p
�� � s
�� for inference concerning �� It

follows then that qf and qB from 
���� and 
���� are equal giving

�
����

�
���
�


�
����

����

j	�
���j
j����j

j���
����j
j	�
����j

� 
����

where we assume that 	
�� is centered so that 	
��� � �	 � �� We now brie�y outline the

implications from this for the structure of the matching default prior�

To better examine the structure of the prior and to avoid the constant that appears

in the scalar case 
���� we standardize the parameterizations� First we take the de	nition

of 	
�� with respect to coordinates at y� to be such that ���� � I� next we rescale �� ��� so

that 	 and ����� agree to 	rst derivative at � � ���� We then choose a linear transformation

of the linear parameterization 

�� so that it too coincides with �� ��� at � � ���� In these

new parameterizations we then have ���� � ���� � ���� � 	�
��� � 
�
��� � I� This eliminates

the middle factor in 
�����

The derivation of the Bayesian survivor function s
�� assumes that the integration

coordinates are 
��� �� rather than the more general � used here� To handle the general case

��



here and yet avoid the use of the more general formula in Fraser� Reid � Wu 
������ we

recalibrate �
�� in a one
one manner so that j�����j � � along the curve � � ��� generated

by varying �� for this we note that the recalibration of � does not a�ect the Bayesian

survivor function derived from the integration parameter �� as the essential Bayesian inputs

are just the variable of integration and the prior density� With this rede	nition we then

obtain an interpretation for the 	rst factor in 
�����


�
 ���

����
�

���� ��
���
�
��

����
��

���

� 
����

We can view this as making a component type adjustment to the prior that in e�ect

attributes a �at prior to change in 
 along � � ���� This aspect then is in accord with the

results from the scalar parameter case in 
���� and 
����� it also has an observed information

correspondence with the Peers
Tibshirani prior mentioned in Section ��

The results for the scalar parameter case 
���� and the calculation just given for the

	rst factor in 
���� suggest that the location parameterization 

�� is the natural reference

parameterization for Bayesian integration� Accordingly we now take the integration vari


able � to be 

�� and then examine the prior when taken with respect to 
� In particular

the 	rst factor in 
���� becomes unity and we then obtain

�
 �
��

�
 �
�
�
j�����
����j
j	���
����j


����

where jj����
���� is the information determinant recalibrated in the 
 scale and j	���
���j
is the Jacobian determinant with � rescaled in 
 coordinates� all at ����

Now consider a rotation 
��� � � � � �p��� �� of the revised � coordinates such that � �

constant is tangent to �
�� at ���� If as a special case we have that �
�� is a linear

parameter in terms of the location parameterization 
� then we have that strong matching

is obtained with a �at prior that has �
 �
����
 �
� � �� In this case� � is equivalent to the

special �
�� at ��� and � � 
��� � � � � �p��� corresponds to the nuisance parameter� Now if

��



�
�� is nonlinear at ��� we still have j	���
���� � j	�	�
����j and thus have that

�
 �
��

�
 �
�
�
j�����
����j
j��		�
����j

�
j���
����j
j�		
����j

� 
����

which is the ratio of the Hessian determinant of loglikelihood at ��� calculated for the

curved nuisance parameter �
�� to the Hessian determinant calculated for the linear pa


rameter �
��� both treated as nuisance parameters at ��� and both calibrated in the same

parameterization� The 	nal expression in 
���� follows by noting that the ratio is free

of the coordinate scaling� provided that � is obtained from the integration coordinates

�� � 
��� ���

In conclusion� for the vector parameter case we have strong matching if the interest

parameter is linear 
in the latent location parameterization� and otherwise have strong

matching if the general �at prior is adjusted by the nuisance information ratio 
�����

For an example consider the normal circle problem at the end of Section �� For the

full parameter this is a location model and we have 
��� ��� � 
	�� 	�� � 

�� 
�� with

observed information determinants equal to one at all points� For a curved component

parameter we examined the distance � � f
�� � R�� � ���g of 
��� ��� from 
�R� ��� let
r � f
y� � R�� � y��g be the analogous distance of 
y�� y�� from 
�R� ��� Certainly r is a

natural variable measuring �� Also let � and a be the related polar angles for 
��� ��� and


y�� y�� relative to the positive axis from the point 
�R� ��� We can view � as the nuisance

parameter and note that a � � has the von Mises distribution with shape parameter �r

conditional on r�

The 	rst factor in 
���� has the value � for this example� as � directly records Euclidean

distance� The second also has the value � as the informations are already standardized�

The third factor from 
���� recorded in 
���� takes the value

j��
����

j		
����
�

r

�
�

�
����

�
���
�

Thus the prior ��� adjusts the general �at prior �d�d� � d��d�� to give strong matching

for �
�� to the third order�

��



We can give a geometrical overview of this by examining 
��� ��� and 
y�� y�� � 
���� ����

on the same �
dimensional plane� For given � we have 
��� ��� on the circle �
�� � �� for

given r we have 
y�� y�� on the circle r
y�� y�� � r� The vector from 
��� ��� to 
y�� y��

is standard normal from the frequency viewpoint and also from the Bayesian �at prior

viewpoint� From the frequentist viewpoint this vector is integrated on a region having

endpoint 
y�� y�� on the circle r � r�� from the Bayesian viewpoint this vector is integrated

on a region having origin point 
��� ��� on the circle �
�� � �� recall the comments at the

end of Section � on the probability on the inside or outside of a circle at a distance from

the datapoint� This shows clearly the need for the Bayesian adjustment for a curved

parameter component� and as indicated above the adjusted prior is uniform d�d� in the

polar coordinates�


� LOCATION PRIORS FROM PIVOTAL QUANTITIES

In the preceeding section we showed that strong matching to third order was ob


tained by the use of a �at prior with respect to a location parameterization 

��� An

explicit expression 
���� for 

�� was obtained in the scalar parameter case and an ex


istence result for 

�� was presented for the vector parameter case� These results were

based on an observed loglikelihood 

�� � 

�� y�� and an observed loglikelihood gradi


ent 	
�� � 
�V 
�� y
��� Calculation of the gradient 	
�� required an approximate ancillary

with vectors V � 
v�� � � � � vp� tangent to the ancillary at the data point� fortunately for

applications the tangents V can be derived from a pivotal quantity 
���� without explicit

construction of the approximate ancillary� In this section we show that the �at prior d

��

itself can be developed to second order directly from the pivotal quantity�

The approximate ancillary for these calculations was derived in Fraser � Reid 
�����

������ This used a location model 
Fraser� ����� that coincides with the given model at

�� � ��� to 	rst derivative� In appropriate coordinates the orbits of this location model

are straight lines parallel to L
��� the span of the vector of ones� If � is then considered

��



to second derivative at ��� the orbits lose their ancillary properties� However a quadratic

bending of the orbits can be developed which gives second derivative� second order an


cillarity as calculated in terms of the given model� this order of ancillarity then provides

third order inference� While the constructed ancillary would seemingly depend on the

data point� it can be shown to be free of that choice to the requisite order for third order

inference�

The bending of the orbits was to eliminate a marginal e�ect of second order magnitude

and thus to produce ancillarity to the second order� Our interest here however centers on

the conditional distribution on the orbits and how it is a�ected by the bending� For this

we follow Fraser � Reid 
����� and restrict attention initially to the scalar parameter case�

First consider the location model orbits 
Fraser� ����� derived from properties of

the given model to 	rst derivative at ��� The velocity vector v
��� from 
���� gives the

direction of the orbit at the data point and also the magnitude of y
change corresponding

to �
change at ��� Does the bending of the orbits a�ect this�

Consider the conditional distribution along the location orbit through y� but using

the given model rather than the tangent location model� The distribution will typically

not be location� however a reexpressions of the variable and the parameter can make it

location to second order 
Cakmak et al� ������ with standardized form say


������� exp

�
� 
y � ���

�
�

ap
n


y � ���

�
�

kp
n

�
� 
����

In terms of the original parameter and variable the non location characteristics will to

second order depend on some variable say x which by general theory 
Fraser � Reid� �����

can be examined in terms of a one dimensional conditional distribution� with standardized

form say

�p
��

e�x
���

to 	rst order� Now consider bending in the context of the two dimensional conditional

distribution for 
x� y�� For the conditional distribution of y suppose we bend the orbit

��



to the right say and condition on X � x � cy���n��� with c � �� the new conditional

distribution for y has location �
��cX�n���� and scale 
��cX��n����� At the point y � �

we then have that dy�d� � �� cX�n���� written as say expfk��n���g� which is a constant

free of �� Thus the bending changes the velocity v�
��� to expfk��n���gv�
����
Now consider the velocity vector v
��� At the data y� this is tangent to an orbit

generated by the location model derived from 	rst derivative change in the given model

at the value �� Such orbits are typically at an O
n����� angle to the bent orbit just

described except of course at the point having maximum likelihood value �� where the

orbit is tangent to the bent orbit� The conditional distribution on the bent orbit as

opposed to this � orbit distribution will then have a factor expfk��n���g coming from

the curvature in the manner described above for the value ��� In that bending result the

standardized variable y recorded distance from the maximum likelihood surface 
y � ���

Now the reference maximum likelihood surface corresponds to the value � and a contour

with 	xed y is parallel to this surface� To transfer the velocity vector v
�� to the bent orbit

with tangent space Lfv
���g we should thus project parallel to this � surface� The observed

maximum likelihood surface di�ers from this by an O
n����� angle� and the projection of

v
�� to Lfv
���g is through an O
n����� angle� Thus it su�ces to project parallel to the

observed maximum likelihood surface and still retain O
n��� accuracy�

Now let Hv
�� be this projection� We then have that the velocity vector on the curved

orbit is expfk��n���gHv
��� It follows that the location prior satis	es

d

�� � expfk��n���gjHv
��jd� 
����

when calibrated by unit change at y� or satis	es

d

�� �
jHv
��j
jv
���j d� 
����

when calibrated by unit change in � at ���

To simplify these expressions we now examine the process of projecting parallel to the

��



observed maximum likelihood surface� The observed maximum likelihood surface satis	es


�
��
�� y� � �

and the gradient vector nominally perpendicular to the surface is given by

k
y� ���� � 
���y
��
�� y� 
����

which is the vector w � k
y�� ���� at the data point y�� The length of the vectors in 
����

can then be compared by projecting them to L
w�� that is� by projection parallel to the

maximum likelihood surface� Accordingly we can rewrite 
���� as

d

�� �
w�v
��

w�v
���
d� � 
����

This expression for the prior was calculated from a distribution function viewpoint

whereas 
���� was derived from a likelihood viewpoint� A small detail remains to reconcile

the di�erent approaches� Consider the asymptotic distribution given the approximate

ancillary� Using the pivotal quantity F 
y� �� we obtain

d

�� � �F��
y
�� ��

Fy
y�� ��
d� �

as in 
����� while from the likelihood analysis we obtain

d

�� � � 
�
�� y
��


�y
�� y��� 
�y
��� y��
d� �

The integration results in Andrews et al 
����� show that these di�er to third order by a

constant factor expfk��ng and thus provide the same location reparameterization to that

order�

We now record a preliminary examination of the vector parameter case� A 	rst deriva


tive change at a parameter value � generates 
���� ����� a vector v
�� for each direction of

change from the value �� these can be assembled as an n� p array

V 
�� �
	
v�
��� � � � � vp
��



��



of p vectors corresponding to the p coordinates for �� The vectors V � V 
���� provide the

tangent vectors 
����� to the second order ancillary�

First suppose that � is the location reparameterization whose existence is established

in Fraser � Yi 
������ It follows that 	rst derivative change at a value � generates on the

ancillary surface the location orbits for the tangent location model� Within this location

model we seek the Jacobian determinant recording the ratio of volume change at y� to

volume change at ��

The bending of the conditional distribution in the vector parameter case was examined

in Fraser � Reid 
����� ������ Then following the pattern earlier in this section for the

scalar case� we 	nd that the standardized coordinates are rescaled by factors expfk��n���g
free of � and that projection can be taken parallel to the observed maximum likelihood

surface with retention of second order accuracy�

The gradient vectors nominally perpendicular to the maximum likelihood surface are

given by 
���� which at the data point y� form the n� p array

W � 
���y
��
�� y�� � 
����

We can then compare V 
�� to V 
���� projected parallel to the observed maximum likelihood

surface� by taking the inner product array with W giving the location prior

d

�� �
jW �V 
��j
jW �V 
���jd� 
����

as calibrated by unit change at the observed �� � ����

��� LOCATION PIVOTAL QUANTITIES

In Section � we discussed con	dence and other inversion procedures and found an

equivalence among them in the context of a location statistical model� a �at prior relative to

the location parameterization produces a Bayesian inversion that coincides with con	dence

and other inversions� In addition this then allows that a personal or communal prior

��



expressed relative to the location parameterization can be used to adjust con	dence or

	ducial priors to include the personal or communal input�

We note also that a location parameterization for the presentation of likelihood has

been strongly promoted by Professor David Sprott� For some discussion and related attrac


tive properties see Fraser � Reid 
������ The present use of the location parameterization

in the inversion context has close ties to reference priors� see for example� Bernardo and

Smith 
������

Consider 	rst the case of a scalar parameter � and suppose the corresponding variable

is scalar as isolated say by su�ciency or conditionality� in the present asymptotic context

the isolation is by conditionality� conditioning on an approximate ancillary as developed in

Fraser � Reid
������ If the parameter � itself is location then z � �� � � is pivotal� More

generally� the location parameterization 
���� gives the approximate pivotal quantity

z � j
���
�� 
 �
 � 
� � �j

���
��

Z �

��

�
�
�
	
��

d� 
�����

To the 	rst order this is standard normal� to the second order it has a 	xed distribution

which is available from likelihood 
���� in terms of 
� and to the third order it has piv


otal properties available from Section �� These pivotal quantities can be inverted to give

con	dence� 	ducial or �at prior intervals� and these are precisely the con	dence intervals

obtained from the recent likelihood asymptotics� The intriguing aspect of the location

presentation here is then that the intervals can in turn be directly adjusted by the prior

information density as presented relative to the location parameterization�

Now brie�y consider the vector parameter case� The location prameterization 

��

exists as noted in Section �� Let �j
���
�� be a square root of the observed information expressed

in terms of 
� then

z � �j
���
�� 
 �
 � 
�

is an approximate vector pivotal quantity with 	xed distribution properties conditional

on an approximate ancillary exactly in the pattern indicated by the scalar case above�

��



This can be inverted in the usual manner to give con	dence� 	ducial or �at prior Bayesian

regions and duplicate the methods in Sections � and �� And again we have that the location

presentation allows these intervals to be directly modi	ed by a personal prior provided it

is expressed location �at prior developed here�
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