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Putting the newest of Bayes into
context for astronomers

Alanna Connors

ABSTRACT In his paper� J� Berger has issued a friendly invitation to

Bayesian methods� both classical and new� In this paper I try to put some

of those concepts into context for astronomers� Particularly for those for

whom Bayesian inference is new� I hope to help translate why it might

be of interest to invest the signi�cant amount of intellectual and software

e�ort involved in retooling� I highlight some of the standard bene�ts and

objections to classical Bayesian inference� then sketch out two simple exam�

ples� For the �rst� because we are astrophysicists� everything works� For the

second� more complicated example� maybe physicists could use thoughtful

expert help after all� I conclude with a few personal thoughts on moving to�

wards likelihood ratios� either frequentist or Bayesian� and towards leaving

the appealing but �ad hoc� statistics for data	exploration�

� Goals�Context

��� Introduction

Why might recent developments in Bayesian analysis� or even standard
Bayesian procedures� be of interest to astronomers and physicists� J� Berger�
in �BE��� presents some examples� from the point of view of a statistician�
In this paper� I try to translate these concepts to a point of view more famil	
iar to astronomers and physicists� �BE��� focuses on hypothesis testing and
model selection� I try to start more slowly� I 
rst highlight terms that may
be unfamiliar� and then very brie�y sketch out standard Bayes parameter
estimation and likelihood ratios for two examples from �ray astrophysics�
With these in mind� one can see where �BE��� presents classic examples
of Bayesian hypothesis testing� plus both some intriguing new ideas on the
di�cult area of priors� and new developments in computer techniques� I
hope this might also brie�y give statisticians some of the �avor of of trying
to eke out inferences about physical conditions of objects in the distant
sky� and where Bayesian methods might be more practical� I close with a
few personal thoughts on moving towards the use of likelihood ratios�
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��� What is it�

Bayesian inference is a clear procedure for building measurement tools
�probabilities and their ratios� for� �� parameter estimation� �� model selec	
tion and hypothesis testing� �� robustness and sensitivity of results to model
choice� and prior information� and �� prediction� Many astrophysicists are
more familiar with sampling statistics� the probability of the data X � given
a model or hypothesis M and parameters �� p�Xj�MI� �or p�XjMI���
With Bayesian inference one works with the inverse� the probability of
a model or hypothesis M and parameters � given the data� p��jMX �
�or p�MjX ��� One gets from one �data�space� on the right � to the other
�parameter� or hypothesis�space� on the left� via Bayes�s Theorem�

p��jX I� �
p��jI�

p�XjI�
p�Xj�I�� or p�MjX I� �

p�MjI�

p�XjI�
p�XjMI�� �����

Here �I� represents prior measurements and information�p��jI� �or p�MjI��
is called the prior probability� p�Xj�I� the direct probability or sampling

statistic� p��jX I� �or p�MjX I�� is the posterior probability� and p�XjI�
serves as a normalization term�

The references cited by �BE��� give 
ne overviews and bibliographies� I
would like to highlight two� �JA��� contains a classic historical account from
the perspective of a physicist� Perhaps the earliest modern use of Bayesian
inference in astronomy is �BI����

��� How is it di�erent from what I�m used to doing�

Sampling statistics is based on the longterm �asymptotic� frequency of oc	
currence of a particular pattern of data� assuming the model is true� Many
astronomers use the recipes for likelihood ratios in �LM�����CA��� to gen	
erate con
dence intervals� which are based on the Central Limit Theorem
asymptotically holding� �Also� some astrophysicists might be more comfort	
able with the applied math term �inverse problems� �CB���� Or� they may
not have realized that �forward
tting�� using ��� is a maximumlikelihood
method that assumes a GaussNormal form for the sampling statistic�� By
contrast� Bayesian inference calculates the probability of the parameters
�or model� given any prior information� plus just the data one has�

The concept of priors� of assigning probability distributions to param	
eters before making inferences from the data� may also be new to astro	
physicists� �BE��� lists many standard options then spends some time dis	
cussing new �one	size	
ts	all� priors� usually they are �custombuilt�� I
want to highlight two distinctions� informative versus uninformative pri	
ors� and proper versus improper priors� When one has signi
cant prior
information �such as a previous background measurement� or knowledge
of atomic line strengths�� one can use an informative prior� Without such
knowledge� one uses an uninformative prior� In the latter case� a physicist
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or astronomer can often constrain the form of the prior from knowledge
of the geometry of the physical system� or physics theory� or invariance
arguments �see also �JA����� A proper prior is one that is normalized to
one� while an improper prior is a handy analytic form �such as a constant
or log distribution� that� when integrated over all parameter space� tends
to � and so is not normalizable� �BE��� notes that the latter can work
well for parameter estimation� but has drawbacks for model comparison
and hypothesis testing� This drives his �intrinsic Bayes factor� approach�

When working in parameterspace one can integrate over uninterest	
ing �or �nuisance�� parameters� or indeed over all parameters� This is
called marginalization� another potentially unfamiliar term� Note that �by
marginalizing over all parameter space� one can directly calculate and com	
pare the global probabilities of two hypotheses with di�ering numbers of
parameters� There is no need to add an extra factor for each degree of
freedom �e�g� in sampling statistics one might require the di�erence in ���
equivalent to �� log

�
p�Xj�I�

�
� to be more than ��� As �BE��� illustrates�

integrating over each extra dimension intrinsically takes this into account�

� Bene�ts � Objections

��� Bene�ts

It gives a clear mechanism to build a tool to get the best measure of distance
between two clearly stated hypotheses� It is always a su�cient statistic�
that is� it incorporates all the information about the hypotheses that is
available in the data� and it includes a mechanism to optimally incorporate
prior information� For example� �BH��� suggests an appealing but �ad hoc�
statistic for incorporating imaging information when searching for periodic
�	ray emission from a known radio pulsar� Each �	ray photon is weighted
by its angular distance from the source according to a telescope point
spread function� before the data are binned at the pulsar period into a
phase histogram� and a �� test for a �at lightcurve is performed� This
seems intuitive� but how does one know whether it incorporates all of the
information available in the data� and in one�s prior information�

One can tackle any problem where the hypotheses are clearly stated� For
example� many image processing applications have very large numbers of
parameters� comparable to the number of data points� This can be a numer	
ically intractable �inverse problem�� until one notices that with Bayesian
methods one has a prior that can act as a regularizer�

It is valid for moderate and small data sets �no asymptotics required�� The
familiar recipes used by astronomers to generate con
dence intervals are
based on the Central Limit Theorem �CA���� �LM���� Often this does not
strictly hold� For example there may be multiple peaks in the probability



 Alanna Connors

space� Or� the sample size may be very small and the measurement not
repeatable� �LO��� points out there was only one chance to measure neu	
trinos from SN ����A� there were roughly two dozen neutrinos� and ap	
proximately � parameters�

One can reduce dimension of problems by integrating over uninteresting
parameters� A common example� an interesting source energy spectrum
might have � ��� energy bins� low Poisson counts per channel� plus mea	
surements of the � ��� background rates in each bin� One does not subtract
the background rate from each energy channel in the source spectrum� but
instead marginalizes over the imperfectly known background rates �LO����
It also clears up what to do with the �number of trials� question� one
integrates over a range of trial parameters�

One can compare the likelihoods of non�nested models with di�erent num�
bers of parameters� �BE���� Also� by de
nition� one can handle uncertain�
ties in the model or in prior information� Examples include uncertainties
in stellar coronal models� or in energy response matrices�

��� Objections

Learning the language� retooling� �It�s not in Bevington�� No� it�s not� but
neither are most of the techniques discussed in these proceedings� Becom	
ing familiar with the language of priors� posteriors� marginalizations� and
credible regions requires a signi
cant e�ort�

Getting practical� reliable priors� This is an active area of research� as
�BE��� makes clear� One approach is to report one�s results in a form where
the e�ect of using di�erent priors is easy to calculate�

Computation time� �Rev� Thomas Bayes started his calculation in �����
and they�re just now 
nishing��  D� J� Forrest on the recent rise in interest
in Bayesian methods� Although marginalization is a Bayesian technique
of great power� it requires integrating over parameter space� Numerical
integration in high dimensions is one of the classic highCPU problems�
�BE��� touches on some new techniques� However� when the integration
can be done analytically� marginalizing can actually speed up a calculation
�LO����

No general �goodness of �t	 like ��� �That�s an objection��  standard
Bayesian response� Standard signi
cance tests use the tail of the distribu	
tion� �BE��� works through an example showing this is often not a very
good discriminator between two hypotheses� Instead a Bayesian analysis
speci
cally calculates the probability or likelihood of two �or more� hy	
potheses�
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� Simple example� Astrophysicists have it easier
than statisticians

��� Specifying the problem

Periodic Time Series Analysis� Suppose one is searching for �	ray emis	
sion from a known pulsar� with position� period� and all period derivatives
known from radio data� Given a set of �	ray data� what is the likelihood
that a periodic signal has been detected� This is a quick sketch� For more
details� �GL��� carefully treat a problem that is similar but has a di�erent
shape function�

Data� The data are in the form of timetagged events �point Poisson pro	
cess�� a list of photon arrival times with a �� window around the source
position� and standard data quality cuts on the other parameters �MU����
The two sets I show here are �� MeV and ���� COMPTEL data on the
wellknown �� ms Crab pulsar� It is a �� day observation� There are �����
photons in this �� MeV dataset �about � every �� seconds�� and ���� in
the ���� MeV data �about � every �� minutes�� There is known to be a
signi
cant �� ��� of the events� background component� For this example
we look for the total pulsed fraction of the source � background rate�

Null hypothesis�M�� The photon arrival times are completely random� and
can be described by a Poisson process with a constant rate ���t� � B�

Interesting hypothesis� M�� The photon arrival times are periodic� with a
shape described by ��t�� with � ��t� � � � when averaged over one cycle�
and total normalization described by B� ���t� � B��t��

Shape function for interesting hypothesis� Since this is a Poisson process�
it is convenient to describe the periodic shape by an exponentiated Fourier
series� or generalized von Mises distribution� For one component� ��t� �
exp

�
�� cos���t� � 	�

�
� with ��t� the pulsar phase from radio data� and 	

the unknown phase di�erence between the radio and gammaray energies�
The parameter � is known as the shape or concentration parameter� with
pulsed fraction f � tanh��� � The normalization condition � ��t� � � �
requires ��t� � exp

�
�� cos���t� � 	�

�

I����� where I� is the modi
ed

Bessel function of order zero�

��� Assigning probabilities

Priors� Knowing the physical meaning of the pulsed fraction f � ��� ��
and relative phase 	 � ��� ��� allows one to assign unambiguous properly
normalized prior probabilities� even when one has no previous measure	
ments� From symmetry� one argues that the prior for the phase 	 should
be p�	jI�d	 � d	
����� Likewise� the prior on the pulsed fraction can
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be given by p�f jI�df � df � The prior on B � ��� B�� is the only am	
biguous assignment� Should it be a uniform prior� p�BjI�dB � dB
B��
A loguniform prior� p�BjI�dB � dB
�B log�B���� However� whatever the
choice� all dependence on B will be exactly the same for the null and in	
teresting hypotheses� and so will cancel when a likelihood ratio is taken�
For this example� I chose the former� and let B� � � at the end of the
calculation�

Direct probability� For both null and interesting hypotheses� one uses the
Poisson probability� given a model rate ��t�� and detection of N photons
at times ftkg� in a total livetime TL� in �very small� time bins �t �GL����

p�ftkgj��t�� I� � exp
h
�

Z
TL

��t�dt
i NY
k��

��tk��t� �����

Turning the crank� For each hypothesis� one applies Bayes�s Theorem� inte	
grates analytically over the amplitude and phase parameters B and 	� and
then takes the ratio� �The normalization term p�XjI� cancels� and so is not
calculated�� This gives �f�� the log likelihood for parameter estimation�

�f� � log��

h
I���SN �
I����N

i
� �����

where SN is de
ned as SN � �
N

PN

k�� cos� ��tk� � sin� ��tk�� For � � ��
this is analogous to a frequentist Rayleigh statistic�

For hypothesis testing� one obtains the Bayes factor� or ratio of the total
probabilities of the interesting to null hypotheses�

L �

Z �

�

df
I���SN �

I����N
� f � tanh���� �����

��� Application to data
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Here we plot �f� for two di�erent datasets� Both are from a two week
CGROCOMPTEL observation of the Crab pulsar� The 
rst shows the �
� MeV band� where it was detected very signi
cantly �total pulsed fraction
f � ����� � ������ Bayes factor L � ������� The second shows the ����
MeV Crab data� The total pulsed fraction f � ������ ���� is suggestive�
but not a formally signi
cant detection �Bayes factor L � ������ � ���

� Adding a complication� astrophysicists need
help from statisticians

Joint imaging and timing analysis� With Bayesian inference� it is straight	
forward to add more information� Since these data were from an imaging
telescope� why not use the imaging response on the full dataset� rather than
just an angular window around the source� One should be able to derive a
likelihood ratio for joint imaging and timing analysis� and at once obtain
credible regions for both the source �ux and pulsed fraction� The data are
the same� save that a much wider angular window was used� There are
������ photons in this �� MeV dataset �about � every � seconds�� and
���� in the ���� MeV data �about � every � minutes�� The models are a
little more complicated� Let j be the index for the spatial imaging bins� �j
the shape of the background as a function of bin position� with

P
j �j � ��

Rj the instrument response �or pointspread function� in bin j� given the
known pulsar position� and A the source �ux �photons	cm��	s���� Note
that the shape of the instrument background �j and the response Rj are
both known a priori� The rate for the null hypothesis� M�� is still one com	
ponent� ��j�t� � B�j �t�� However� the rate for the interesting hypothesis�
M�� is now two �background � source�� ��j�t� � B�j�t� � ARj��t��

Assigning probabilities� One assigns the same priors for 	� f� and B one did
previously� but how does one assign a prior for A� There is no one unam	
biguous choice� and dependence on A will not cancel when the likelihood
ratio is taken� For this calculation� I used a uniform prior on A � ��� A���
with A � ��� photons	cm��	s��� Once the � are given� the direct proba	
bilities have the same form as before�

Turning the crank� This gives �f�� the log likelihood for parameter esti	
mation�

�f�A� � log��

h
p�AjI�

Z B�

�

dB
TL

N��

N  
�

exp
�
�TL

X
j

�
B�j � ARj

�
!Vj

� NY
k��

�
B�jk � ARjk��tk�

�i
� �����

and global Bayes factor L �
R �
�

df
RA�

�
dA ���	f�A
� where the integrations

over B� f and A are performed numerically�
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Application to data� The results ������� ������ and ������ posterior proba	
bility credible regions� are displayed for the same CGROCOMPTEL Crab
observations as before�
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The detections appear more signi
cant� For the �� MeV data� one 
nds
a source �ux A � ��������������� photons	cm��	s��� a source pulsed
fraction f � ���������� and a global Bayes factor L � ������ � For the ��
�� MeV data� one 
nds a source �ux A � ���� ����� ���� ���� photons	
cm��	s��� a source pulsed fraction f � ���� � ����� and a global Bayes
factor L � ���� � However� without a prior for A with an unambiguous
normalization� it is hard to interpret the total likelihood of the hypothesis
that there is a pulsed �	ray source� A di�erent choice of prior and A� would
have given about the same parameter constraints� but di�erent global Bayes
factors� This was the problem addressed by J� Berger�s �intrinsic Bayes
factor� method�

� Future thoughts

For the future� Clearly thoughtful priors are an active area of concern for
the future� For many problems� an astrophysicist may be able to use phys	
ical knowledge of a system to assign reasonable� proper priors� for others�
the choice may be ambiguous� so much remains to be worked out� We are
aided by both increases in computation speed� and by new numerical inte	
gration techniques such as MCMC� This allows a greater �exibility in the
kinds of problems one can tackle in a reasonable amount of time�

Personal thoughts� I often 
nd that� once having derived a Bayesian likeli	
hood ratio� I later see a relation to a standard maximumlikelihood statistic�
I 
nd the Bayes prescription clearer� especially when exploring the problem�
�TA��� coined term �likelihoodist� to describe those basing their inference
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on the shape of a likelihood� Bayesian or otherwise� Astronomers are clever
people� and come up with many ingenious� intuitive� and speedy adhoc
statistics� I am coming to consider these as methods of data exploration
and visualization� but for the 
nal calculations of probabilities and uncer	
tainties� I encourage astrophysicists to make more use of a �likelihoodist�
perspective�
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