
Prior Distributions

There are three main ways of choosing a prior.

• Subjective

• Objective and informative

• Noninformative

Subjective

As mentioned previously, the prior may be de-

termined subjectively. In this case the prior ex-

presses the experimenter’s personal probability

that θ lies in (essentially) any given subset of

Θ.

See Chapter 3 of Berger, Statistical Decision

Theory and Bayesian Analysis for a discussion

of methods for subjectively choosing a prior.
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Objective and informative

The experimenter may have information or data

that can be used to help formulate a prior.

This could take at least two forms:

1. Historical data on the distribution of pa-

rameter values.

2. Data from experiments done prior to the

one being undertaken.

An example of 1 is as follows. A company

wants to estimate the proportion of all parts

produced on a particular day that are defec-

tive. They will take only a sample of the day’s

production to estimate this proportion.

From production records we have θ1, θ2, . . . , θN ,

which are (approximate) proportions of defec-

tive parts for a sequence of N days.
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One may fit a distribution to the observations

θ1, . . . , θN and use this as a prior. The usual

options are available for fitting the distribu-

tion: parametric methods, histograms, kernel

density estimates, etc.

Rather than having observations on the param-

eter itself, one may have previous data that

merely contains information about θ. In this

case we could use the previous posterior as

the prior for the upcoming experiment. This is

summarized in the following maxim:

“Today’s posterior is tomorrow’s prior.”
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Let’s look at the maxim a bit closer. Define

the following quantities:

• Y 1: the random vector whose value, y1,

has already been observed

• Y 2: the random vector we are to observe

in the next experiment

• π: the prior previous to the first experiment

(in which we obtained y1)

• f1(y1|θ): the distribution of Y 1 given θ

• f2(y2|θ): the distribution of Y 2 given θ

• f(y1, y2|θ): the joint distribution of Y 1 and

Y 2 given θ
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Two possible approaches for inferring θ having

observed both y1 and y2:

1. Use the posterior, π1(θ|y1), from experi-

ment 1 as the prior leading into experi-

ment 2 where we will observe a value of Y 2.

(This is literally what the maxim says.)

2. Treat (y1, y2) as one big set of data with

likelihood f and compute posterior

π(θ|y1, y2) ∝ f(y1, y2|θ)π(θ).

When do the two approaches coincide?
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In approach 1, the posterior after experiment

2 is

π2(θ|y2) ∝ π1(θ|y1)f2(y2|θ) ∝

f1(y1|θ)f2(y2|θ)π(θ).

In general, approaches 1 and 2 will give the

same posterior only when

f(y1, y2|θ) = f1(y1|θ)f2(y2|θ) ∀ θ,

which requires Y 1 and Y 2 to be statistically

independent.

So, in order for the maxim to be true in the

strictest sense, the data not yet observed should

be independent of those already observed.
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Noninformative priors

A noninformative prior is one that expresses

ignorance as to the value of θ. Other terms

for a noninformative prior are reference prior,

diffuse prior and vague prior.

In general, a noninformative prior is one which

is dominated by the likelihood function. In

other words, such a prior

• does not change much over the region in

which the likelihood is appreciable, and

• does not assume large values outside that

region.

A prior having the two properties above is said

to be locally uniform. Box and Tiao, Bayesian

Inference in Statistical Analysis give an excel-

lent account of locally uniform priors.
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The Jeffreys noninformative prior

Suppose that θ = (θ1, . . . , θp). The Fisher in-

formation matrix, I(θ), is the p×p matrix with
(i, j) element

−E

[
∂2 log f(Y |θ)

∂θi∂θj

]
.

The Jeffreys noninformative prior is

π(θ) ∝ det (I(θ))1/2 ,

where det(A) denotes the determinant of ma-

trix A.

The motivation for this prior is a certain invari-

ance argument. Consider a 1-1 transformation

of the parameter: φ = h(θ).

Now, if our prior for θ is π, then the corre-

sponding density of φ = h(θ) is

g(φ) = π(h−1(φ))|J(φ)|,
where J is the Jacobian of the transformation.
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Let MP be a method for finding a noninforma-

tive prior. Now, suppose MP is used to obtain

a prior π for θ. Jeffreys argued that if MP is

used to find a prior π∗ for φ = h(θ), then it

should be true that

π∗(φ) = g(φ) ∀ φ,

where g is defined at the bottom of the previ-

ous page.

The Jeffreys prior satisfies this property. Let’s

check this in the case p = 1. We have

π(θ) ∝
{
−E

[
∂2 log f(Y |θ)

∂θ2

]}1/2

and

g(φ) = π(h−1(φ))

∣∣∣∣∣
dh−1(φ)

dφ

∣∣∣∣∣ .
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The Fisher information when we use the pa-

rameterization φ = h(θ) is

−E

[
∂2 log f(Y |h−1(φ))

∂φ2

]
,

and so the Jeffreys prior for φ is proportional

to the square root of the last expression, which

is

−E

[
∂2 log f(Y |h−1(φ))

∂h−1(φ)2
· ∂h−1(φ)2

∂φ2

]
=

−
(

∂h−1(φ)

∂φ

)2

E

[
∂2 log f(Y |h−1(φ))

∂h−1(φ)2

]
.

But the last expression is proportional to g2(φ)

(as defined on the previous page), and hence

Jeffreys invariance property holds.

59



Example 7 Jeffreys prior for the binomial ex-

periment

We have

log f(y|θ) = log

(
n

y

)
+y log θ+(n−y) log(1−θ),

∂ log f(y|θ)
∂θ

=
y

θ
− (n− y)

(1− θ)
,

and

∂2 log f(y|θ)
∂θ2

= − y

θ2
− (n− y)

(1− θ)2
.

So,

−E

[
∂2 log f(Y |θ)

∂θ2

]
=

nθ

θ2
+

(n− nθ)

(1− θ)2

=
n

θ(1− θ)
.

So, the Jeffreys noninformative prior for θ is

proportional to [θ(1− θ)]−1/2, and hence must

be a Beta(1/2,1/2) density.
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Example 8 Jeffreys prior for normal random

sample

Let Y = (Y1, . . . , Yn), where Y1, . . . , Yn are i.i.d.

N(θ1, θ2
2). We have

f(y|θ) =

(
1√
2πθ2

)n

exp


− 1

2θ2
2

n∑

i=1

(yi − θ1)
2


 ,

and

log f(y|θ) = −n log(
√

2πθ2)−
1

2θ2
2

n∑

i=1

(yi− θ1)
2.

Now,

∂ log f(y|θ)

∂θ1
=

1

θ2
2

n∑

i=1

(yi − θ1),

∂ log f(y|θ)

∂θ2
= − n

θ2
+

1

θ3
2

n∑

i=1

(yi − θ1)
2,
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∂2 log f(y|θ)

∂θ2
1

= − n

θ2
2

,

∂2 log f(y|θ)

∂θ2
2

=
n

θ2
2

− 3

θ4
2

n∑

i=1

(yi − θ1)
2,

and

∂2 log f(y|θ)

∂θ1∂θ2
= − 2

θ3
2

n∑

i=1

(yi − θ1).

The Fisher information matrix is thus
[

n/θ2
2 0

0 2n/θ2
2

]
.

The determinant of this matrix is 2n2/θ4
2, and

hence the Jeffreys noninformative prior is such

that

π(θ1, θ2) ∝
1

θ2
2

I(−∞,∞)(θ1)I(0,∞)(θ2).
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The “prior” at the bottom of the previous page

is called improper since it is not integrable.

This is an example of the unfortunate fact that

Jeffreys noninformative prior is sometimes im-

proper.

Note that the form of Jeffreys prior in this case

implies that θ1 and θ2 are a priori independent

with

π1(θ1) = constant ∀ θ1

and

π2(θ2) =
1

θ2
2

I(0,∞)(θ2).

So, it is the prior for the location parameter θ1
that is improper. The prior for θ2 is proper.
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