
MULTIPLE FACTOR ANALYSIS
BY L. L. THURSTONE

The University of Chicago

The two-factor problem of Spearman consists in the
analysis of a table of intercorrelations for the discovery of
some general factor that is common to all of the variables in
the table. Spearman differentiates three types of factors,
namely, a general factor which is common to all of the vari-
ables, group factors which are common to some of the vari-
ables but not to all of them, and specific factors that are
peculiar to single variables alone. In practice, the Spearman
two-factor methods meet with the difficulty that group factors
are frequently encountered. The two-factor methods are
not applicable to situations that involve group factors except
in indirect ways. This is a serious limitation on Spearman's
technique since many important psychological problems in-
volve a complex of variables that are known from the nature
of the problem to contain group factors. The present mul-
tiple factor methods in no way contradict the Spearman two-
factor methods which are very ingenious and powerful in the
situations to which they apply. The present multiple factor
method may be thought of as supplementary to the Spearman
two-factor method in that we do not have any restrictions as
to the number of general factors or the number of group
factors.

It is the purpose of this paper to describe a more generally
applicable method of factor analysis which has no restrictions
as regards group factors and which does not restrict the
number of general factors that are operative in producing
the intercorrelations. Our first question concerns the number
of general, independent, and uncorrelated factors that are
operative in producing a given table of intercorrelations for
any number of variables. In our terminology general factors
will include what Spearman calls general and group factors.
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This question can be answered by methods that will here be
described and which are applicable to any table of intercorre-
lations. We may consider three examples to illustrate the
nature of this first problem. If we have a table of intercorre-
lations for a battery of motor tests it is of considerable psycho-
logical interest to know how many independent motor abilities
it is necessary to postulate in order to account for the whole
table of intercorrelations. If this turns out to be three, then
our next task would be to hunt about for the nature of these
three motor abilities. If we have a table of intercorrelations
of the interests of eighteen professions it would be of con-
siderable importance to know how many independent interest
factors it is necessary to postulate in order to account for the
whole table of intercorrelations. This refers to the tables
published by E. K. Strong. We have applied our methods
to his data and we have found that his table of intercorrela-
tions can be accounted for by postulating four general interest
factors which turn out to be (1) interest in science, (2) interest
in language, (3) interest in people, and (4) interest in business.
Again, Professor Moore l has prepared a table of intercorre-
lations of 48 psychotic symptoms on the basis of his work
with about four hundred patients with various psychoses. A
general factor analysis of the type here discussed would
enable us to know how many general factors or mental
disease entities it is necessary to postulate in order to account
for the whole table of correlations of psychotic symptoms.
If this should turn out to be five, for example, then we should
be justified to look for five fundamentally different psychoses.

Our next problem is to assign a weight or loading of each
of the general factors to each of the variables. For example,
in the table of interest-correlations above referred to we should
assign four loadings, one for each of the four general factors,
to each of the eighteen professions. It then turns out that
Engineering, for example, has a high loading of interest in
science, a rather low loading of interest in language. The
profession of law has just the reverse loadings, namely low

1 T. V. Moore, The empirical determination of certain syndromes and underlying
praecoz and manic depressive psychoses, Amer. J. Psychiat., 1930, 9, 719-738.
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for science and high for language. The ministry is loaded
high for interest in people and in language but low for science.
Finally, we should want to be able to assign to each individual
subject a quantitative rating in the form of a standard score
for each of the general factors or abilities that have been
isolated.

Let there be n factors. In this explanation n will be as-
sumed to be three. It can be any number.

Let there be N individuals in a group, all of whom have
taken w tests.

Let a, b, c, d, etc., represent the tests.
Let the three factors be represented by numerals I, 2, 3.

Sa = standard score of one individual in test a.
Sb = standard score of one individual in test b,
Se = standard score of one individual in test c.

Sa = — — the usual definition of a standard score.

The standard score Sa of an individual in test a depends
on (1) his rating in each of the three abilities or factors 1, 2, 3,
and (2) the weight or loading of each of these abilities in
test a. For example, if test a calls for much of ability No. 1
and very little of abilities 2 and 3, and if one subject has a
low rating in ability No. I and average or high ratings on the
other two abilities, then this subject may be expected to do
poorly on test a. The loadings of the three general factors
in each test and for each subject may be represented by the
following notation.

Let
Xi = standard score of an individual in ability No. 1.
*2 = standard score of an individual in ability No. 2.
Xs = standard score of an individual in ability No. 3.

and let
«! — loading of ability No. 1 in test a,
a% = loading of ability No. 2 in test a,
a» — loading of ability No. 3 in test a.
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Then we shall assume that the standard score of each in-
dividual subject is a sum of the products of his standard score
in each ability and the loading of the ability in each test.
This assumption leads to the following fundamental equations.

Sa = Ol*l + «2*2 + «3*J (i)
and

Sb = byXi + biX2 + #3*3.
Strictly speaking, we should add to each of these two ex-
pressions a term to account for those additional general
factors, beyond three, which are here ignored, and also a
term to account for the specific factor, peculiar to the par-
ticular test. However, our object is to ascertain how many
general and independent factors it is necessary to postulate
in order to account for a whole table of intercorrelations and
we shall therefore intentionally ignore these additional
specific factors as well as those minor group factors which
may not appreciably affect the correlations.

We want to express the correlation between tests a and b
in terms of the standard scores in the three abilities and the
loadings of the three abilities in each of the two tests. For
this purpose we shall need the product SaSb. Then

SoS6 = aibiXi2 + a-ibixi* + aabzx^ -f- cross products.

The correlation r^ can be expressed simply as

2Sa-Sb
r"b = N '

because So and S& are both standard scores so that the stand-
ard deviations of the given scores are all unity. Then

~if-
in which the cross products vanish because Xi, #2, x3 are uncor-
related. But

_N N N

since xi, #», xt are all standard scores in the three abilities.
Therefore

r^ = axbi + a2bt + azb%. (2)
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This is one of the fundamental equations. Here the corre-
lation between two tests is expressed in terms of the loadings
of the three abilities in the two tests. By analogy we may
write equation (2) for any pair of tests, as

rac = aic1 -\- a2c2 + a3c3
and so on.

Another fundamental equation can be derived as follows:

Sa = aiXi + a2x2 + #3*3.
Squaring,

(So)
2 = fii2#i2 + a2

ix2
2 + 032*32 + cross products.

Summing and dividing by N

The cross products vanish because Xi, x2, #3 are uncorrelated
by definition. But

and

Hence

and similarly

Z*,2
N

a T

N
A 1 i

by analogy for

h2 + b2-

-a* - I

by definition.

2 + a3
a

every (

= !>

Dther test, as

= i.

(3)

Equa t ions (3) come abou t because #1, x2, x3 and Sa, St, are
s tandard scores.

Still another fundamental equat ion t h a t we shall need can
be derived as follows:

roa = fli2 + a2
2 + a3

2 = 1.
r^ — a\b\ + a2b% + a3b3

+ a2c2 + a3c3

+ a2d2 + a3d3

(4)
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In the summation equation 2&i = sum of all loadings of the
first factor in all of the tests of the set. The notation k
refers to each of the tests in succession, i.e., k takes values
from 1 tow when there are w tests in the series. But this
summation equation may be written for each one of the tests
as follows

2rofc =
Sri,* =

in which

2r*t = sum of all intertest correlations in the whole table.
Since the full table is symmetrical it follows that
each intertest correlation enters twice in this sum.
Also, the full table of intercorrelations includes the
correlation of each test with itself and this is here
regarded as unity.

2&i = sum of all loadings of factor No. 1 in all tests.
2£2 = sum of all loadings of factor No. 2 in all tests.
2&s = sum of all loadings of factor No. 3 in all tests.

Note that equation (3) is the equation of a sphere and
that tfi, a2, a% are the three coordinates of a point on the sur-
face of the sphere. The space order of the sphere is equal to
the number of postulated general factors. If five factors
were postulated we should have a five-dimensional sphere,
and so on.

Also note that each test is here really a point on the surface
of a sphere. Hence, if there are three factors essentially
operative in producing the intercorrelations, then it should
be possible to locate each test as a point on the surface of a
ball.

Note also that each correlation is the cosine of the central
angle subtended by the two points a and b. Hence, if three
factors are operative, then each test would be represented
by a point on the surface of the ball, and the points would be
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so allocated that the cosine of each central angle is equal to
the intercorrelation between the respective pair of tests.
This will be shown in more detail later.

Our problem is to ascertain the coordinates ai, a^, a3 for test
fl, the coordinates b\, bz, b3 for test b, and so on for each of the
w tests in the whole series. Then, if our determinations are
correct, it should be possible to calculate the correlation coef-
ficients by equations (2). These calculated coefficients should
agree with the observed correlations within reasonable
experimental error.

If we had all of the tests allocated to as many points on
the surface of a ball we could not determine the coordinates
for any of these points without first deciding where our coor-
dinate axes are to be drawn. The location of these axes is
arbitrary and not at all given by the intercorrelations because
the latter are merely the cosines of the angular separations
between all pairs of points on the surface of the ball.

One simple plan would be to draw the axis OX through
one of the tests which might be more or less arbitrarily chosen,
such as a. Then if this #-axis represents the first factor, it
follows of course that the xyz coordinates of point a are
(+ 1, o, o) and hence that

fli = + 1, a2 = o, as - o.

The y-axis must of course be at right angles to the #-axis but
it could be drawn through the origin in any direction in the
plane at right angles to the #-axis.

We might now revolve the sphere around the #-axis until
any arbitrarily selected second test b lies in the #y-plane.
Then it is clear that the z-coordinate of point b must be zero
so that b3 in equation (3) vanishes. Therefore equation (3)
becomes

£i2 + b^ = 1
and

«i = 1.

The correlation between a and b is

Tab
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but since a\ = 1, a% = o, a% = o, b% — o, this reduces to

But
fab

= c o s <$>

Fie. 1. This diagram shows the relation between the correlation coefficient and
the central angle between the two tests or points. Let two points which represent
any two tests be designated a and b'. Let the *-axis, representing the first general
factor, pass through the point a. Then its coordinates are (1, o, o). Therefore
tfi •= I while ax and a, are both zero. Revolve the sphere about the x-axis so that the
point b' is in the horizontal xy-plane at b. Then the z-coordinate of the point b is
evidently zero while bi1 + V *= 1. Let the angle aob be designated ij>. Then, dearly,
cos 0 = bi since the radius of the sphere is unity. The correlation between tests a
and b can be written as follows.

rat, = aibi + ajbi + aj>i.

Since 0j and at are both zero, the second and third terms vanish and since fli = 1,
it follows that r«» = bi. The angle aob is equal to the angle aob'. Hence the corre-
lation coefficient is equal to the cosine of the central angle between the points that
represent the two tests.

and hence the correlation between tests a and b is the cosine
of the central angle between them. Since the sphere can be
revolved in a similar manner for any pair of tests we see that
the correlation coefficient for any pair of tests is the cosine
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of the central angle between them. This is true for any
number of factors that may be postulated and hence for any
space order.

Our problem can now be restated as follows. We have
a table of intercorrelations which are cosines of central angles
between pairs of points. Every test is represented by a
point on the surface of a sphere. Since all of the correlation
coefficients are subject to experimental errors, we cannot trust
the accuracy of any one of them. Our problem is to find the
best fitting allocations of the points on the surface of the
sphere. The least square methods are here altogether too
unwieldy. They are out of the question, undoubtedly. We
shall therefore apply an adaptation of the principles of curve
fitting by the method of averages. Just as in the method of
averages we deal with summations of partial sets of observa-
tions, so we shall here deal with summations for partial sets
of tests or points. In fact, we shall define the #-axis so that
it passes through the origin and through the center of gravity
of a partial set of points. The y-axis will be so determined
that the #y-plane contains the x-axis and the center of gravity
of a second set of points. This procedure can be continued
for any number of dimensions or factors. The number of
dimensions of the sphere is the same as the number of general
factors that are postulated. This procedure will now be
described in more detail.

In locating the coordinate axes there are several criteria
and several quantitative tests that may be applied. These
criteria will be considered in a separate paper, and we shall
here describe only one such criterion by which the axes may
be located. Assume that you have before you the sphere
with a point designated on its surface for each test or variable
in the correlation table. Our first problem is to locate the
#-axis through this sphere. The projection of a point on
this axis will be the loading of the first factor in that test.
Suppose that we arbitrarily pass the #-axis through test a.
Then this test will have loading of unity for the first factor
and zero for all of the other factors. The projection of test
b on this axis will then be the loading of the first factor in
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test b. In dealing with actual data we shall always have a
residual composed of minor general factors that are ignored
and specific factors peculiar to each test or variable. For
this reason we want to account for as much as possible of the
correlations in terms of the smallest possible number of general
independent factors. We therefore want to pass the #-axis
through this sphere so as to maximize the projections of all
the points on it.

We first find that one test which has the highest average
correlation with all the other tests, disregarding sign. We
disregard sign because it does not matter here whether the
projection is positive or negative. The sign is arbitrary and
either projection serves to determine the correlation. The
sum of each column in the correlation table, disregarding sign,
is recorded. Let the test with the highest sum be designated
test a and let the sum be designated 2|ro*|. This test is
evidently more nearly like the rest of the tests in the series
than any other single test. The average distance from it to
all the other tests is, in general, smaller than the corresponding
average separation of each other test from all the rest. We
have found now the most representative single test in the
battery. Of course we could now simply pass the #-axis
through this test and thereby make sure that we have nearly
maximized the projections of all the tests on this axis. But
we do not want to define any of the axes by any single test
or variable. We therefore make a list of all the tests that
correlate positively with test a. These tests will all lie in a
hemisphere with test a at its pole. This is clear because all
positive correlations correspond to angles less than 90 degrees,
and all correlations that are negative correspond to angles
greater than 90 degrees. We can now be fairly sure, but not
absolutely so, that this partial group of tests have something
in common that is a conspicuous and important general factor
in the whole set of tests. We shall define the #-axis so that
it passes through the center of the sphere, of course, and also
through the center of gravity of all the tests in the hemi-
sphere with a at its pole.

Let us designate all the tests which correlate positively



416 L. L. THVRSTONE

with test a by the general notation s. The notation s refers
then to each of the tests in this partial group, taken in suc-
cession. The correlation of test a with each of the tests in
this sub-group s may then be written as

ra. = aiS! + .a2s2 + azsz. (6)

Summing, we have

Sr0, = flxZjx + a2Sj2 + flaS-fs, (7)

in which SJI is the sum of the projections of the points in the
set s on the first axis, 2J 2 is the sum of the projections of the
points in this set on the second or y-axis, Sjj is the sum of the
projections on the third or a-axis.

The center of gravity of the points in the set s is a point
inside the sphere and since we have taken a set of tests in a
single hemisphere we are certain that this center of gravity will
not lie at or near the center of the sphere. If that should
happen our subsequent determinations would be very inac-
curate. The coordinates of the center of gravity of the set
of points s will evidently be

£ £ £
N.' N.' N.

with reference to the three axes that are still to be chosen.
Now let us pass the first axis, the #-axis, through the center
of gravity of the set of points s. But if this center of gravity
lies on the #-axis, then it is clear that the y- and z-coordinates
must be zero so that

S J 2 = SJ-3 = o.

The correlation between the test a and any one of the other
tests in the set s can then be simplified because the last two
terms in equation (7) vanish. The expression for this cor-
relation becomes then

.2r.f = «I2JI (8)

or, rewriting this explicitly for the loading «j, we have
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By analogy with equation (5) we can write the following
corresponding equation for the set s,

(2.T,)2 + (2/2)2 + (SJS)2 = 2r.. (10)

in which 2r,, is the sum of all the correlation coefficients in
the full table of the s tests, including self correlations taken
as unity, and recording each coefficient twice in the table
since it is symmetrical. But since 2J 2 and 2J 8 are zero by
the location of our #-axis, we have the simpler relation

(2J , ) 2 = 2r., (11)

or

and from this we know the loading of the first general factor
in each test as follows:

V277.'
2f6,

It should be noted that these relations are valid even though
the test b, for example, is not a member of the particular set
of points s. Hence the above simple relation enables us to
determine the loading of the first general factor in each of the
w tests.

We now want to determine the loading of the second
general factor in each of the tests. Imagine again the sphere
with the w points allocated to its surface. We have now
passed the *-axis through this sphere. The y-axis must of
course be at right angles to the #-axis because we assume that
the general factors are uncorrelated. The angle between the
first and second axes must therefore be 90 degrees. If we
revolve the sphere about the #-axis with test a somewhere in
the vicinity of the pole, it is clear that the y-axis which shall
represent the second general factor will pierce the surface of
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the sphere somewhere in the equator. We shall now select
a pivot test for the second factor which shall serve the same
function in locating the second factor that test a served in
locating the first factor. This second test will clearly lie in
an equatorial band and it will have a low correlation with
test a. We therefore tabulate separately all the tests that
have a low correlation with test a. In doing so we must
decide how wide an equatorial band is to be included. The
band should be wide enough to include all tests that are
essentially different from test a, but the band should not be
so wide as to include those tests which are heavily loaded
with the first factor which is already represented by the #-axis.
The width of the equatorial band selected will depend also
in part on the number of tests in the whole series of intercor-
relations. Let us decide to use an equatorial band not
wider than 30 degrees on either side of the equator. An angle
of this size has a cosine of .50 so we make a list of all tests
that correlate less than .50, either positive or negative, with
test a.2

In order to find the most representative test in the
equatorial band, we inspect again the summations S|rafc|,
2|r&t|, S|refcj, ••• S|rwi | , disregarding sign. We find the
test b in this list which has the highest sum of its correlations
with the other tests. In the equatorial band this test is the
most representative of all the tests in the whole series w.
By selecting this one as our second pivot test we will, in
general, but not necessarily, maximize the projections of all
the tests on the second axis. Let this second pivot test, so
selected, be test b.

We now tabulate, as before, all those tests in the whole
series w which correlate positively with test b. Let this
second sub-group of tests be designated by the notation t.
We have now a set of tests t which lie in a hemisphere with
test b as its pole. Consider the center of gravity of this set
of points t. It will be a point inside the sphere but it will

1 In case all the intercorrelations in the initial table are positive it is clear that all
the points lie in one quadrant or octant of the surface and hence the selection of the
subgroups s, t, u, must be adapted to the distribution of the initial coefficients as to
positive and negative values.
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certainly not coincide with the center of the sphere. That
is to be avoided in the interest of accuracy of subsequent
determinations. Now we shall locate the y-axis so that the
Ary-plane contains the #-axis and also the center of gravity
of the set of points t. By so doing we make the z-coordinate
of the center of gravity of the set t vanish. By this procedure
in locating the successive axes we reduce the number of un-
knowns so that the loadings may be readily determined.

The correlation between test a and any one of the tests in
the set / may be written

rat = aih + a-ih + a3t3. (13)

Summing for all the tests in the set I, as before, we have

2rot = a{2h + «22/2 + a3~Stz. (14)

Here the values of 2*i, 2*2, 2/3, are the sums of the projections
of the points in the set t on each of the three coordinate axes.

The coordinates for the center of gravity of the set of
points t are evidently

2*i 2^2 2^3

Nt' Nt* Nt'

but the z-coordinate vanishes by so locating the y-axis that
the *y-plane contains the center of gravity for the set of
points t. Therefore

2*3 = o
and hence

(15)

Since all the ^-coordinates are now known, so is also 2ft for
the set t. Therefore we can solve for a2 in the above equation
in the form

The summation 2£2 is known from the relation

2r» =S(2*02 + (2*,)*, (17)

which can be written by analogy with equation (5). This
equation enables us to determine the loadings of the second
factor in all of the tests.
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The loadings of the second factor in the remaining tests
are determined by equations analogous to (16), namely

" t o , (16)

When the loadings of the first two factors in each of the
tests have been determined it would be possible to determine
the loading of the third factor from the relations

Cl2 + Cj + C3
2 = I,

and so on provided that we were certain that three factors
were sufficient to determine the correlation coefficients.
However, we must assume that in any ordinary situation
there are residuals composed of additional general factors of
minor importance, perhaps, and specific factors peculiar to
each of the tests. On this account we shall not make use
of the above equation for determining the loadings of the
third factor. These loadings will be determined in a manner
similar to that used for the previous loadings.

We make a list of all the tests that correlate between
+ .50 and — .50 with both tests a and b. In this manner we
shall be sure that we have a list of tests represented by points
which are in the general vicinity of a right angle from both
a and b. We now leave the restricted three dimensional
sphere and proceed by analogy into higher dimensions. We
select that one test in this list which has the highest sum Sr tt,
disregarding sign. Let this test be test c. This will be the
pivot test for the sub-group of tests which are to be used for
determining the third general factor.

After having found the pivot test for the third general
factor we list all of the tests that have positive correlations
with test c. Let this sub-group be designated u. These
will all lie in a hemisphere with test c at its pole. We shall
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so locate the third axis or factor that the center of gravity of
the set of points u has finite values for the first three coordi-
nates, and so that the higher numbered coordinates of this
center of gravity will vanish. This is merely carrying out
the same procedure as before. The correlation between test
a and any one of the tests in set u will then be

Tau —

Summing we have

This equation can be solved for a3 since all the other values
are known. The values of 2wi and 2«2 are known because
we have the loadings of the first and second factors in each of
the tests and we have listed the tests that belong in the set u.
The summation 2rou is known directly from the given corre-
lation coefficients. The value of ~Zu3 can be obtained from
the equation

2ruu = (2«i)2 + (2«2)
2 + (2M3)

2, (19)

which is written by analogy with equation (5). Hence

2rou - (2O)

In the same manner we may extend the procedure to any
number of factors that may be necessary to account for a
given table of intercorrelations. However, it is not advisable
to carry this procedure so far as to determine the correlations
within the errors of measurement because in that case the
last factors are likely to be merely the loadings that are
necessary to adjust for chance errors. Our purpose is to
discover only those principal factors that are truly operative
in producing the correlation coefficients. Hence this pro-
cedure should be carried out far enough to lock the coefficients
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with discrepancies somewhat greater than the chance errors
in the given coefficients.

Finally, when the loadings have been determined for each
test, one should calculate all of the coefficients by equations
(2). These can then be compared with the given experi-
mental coefficients. The discrepancies d — re — rc in which
rc = calculated r, and r« = experimental or observed r,
should then be calculated. A frequency distribution of
these discrepancies will indicate fairly well how closely the
factors account for the given coefficients. In no case should
one expect the standard deviation of this distribution to be
the same as the average standard error of the given coef-
ficients. The standard deviation of the discrepancies will be
the larger because it may be generally assumed that the
limited number of general factors that are postulated do not
include the minor group factors and specific factors that
together will make the residuals greater than those expected
by chance errors alone.

In order to facilitate the application of the procedure we
shall list here the successive steps together with the funda-
mental equations that are necessary in solving for the succes-
sive values.

The following outline has been extended to include four factors
in order to illustrate the method.
(1) Prepare a full table of intercorrelations for the tv tests.

Assume that all self correlations are unity and record
them so. The full table will be symmetrical in that
every coefficient will occur in two cells. Thus the
coefficient r^ will occur in column a opposite b and
also in column b opposite a. Record the sums S|ro*|,
2|fi,*|, S|rCfcl, etc., for all columns, disregarding sign.
The subscript k refers to each of the tv tests in the
whole series taken in succession.

(2) Find that test a which has the highest sum for its column,
namely 2|rojfc|.

(3) Make a list of all the tests that correlate positively with
test a. This is done by listing all tests with positive
correlations in column a. Let this sub-group of tests
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be designated s. The sum 2r,, is the algebraic sum of
all the coefficients in a full table of the tests in group s.
Then

(4) V7^

(5)
V2rs.

V277.

The loading of the first factor in every test is now
determined.

(S«) Determine the algebraic sum 2JI from the list of first
factor loadings and see that it agrees with the value
found in step 4.

(6) Make a list of all tests that correlate with test a within
the range ± .50. These tests are in general different
from test a. Select that test b in this list which has
the highest sum in its column, namely 2|rfct|, disre-
garding sign.

(7) Now make a list of all the tests that correlate positively
with test b and let this sub-group be designated t.

(8) Determine (2*i). This can be done since we know the
first factor loading in each test and we have a list of
the tests in group t. Also determine Zrtt for the sub-
group I.

(9) Determine

(10) Determine

a2 =

b2 =

2*2
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(ioa) Determine the sum 2/2 from the list of second factor
loadings and make sure that it agrees with value
found in step 9.

(11) Make a list of all tests that correlate low, say within the
range ± .50, with both tests a and b. If there are no
such tests, then you need no additional general factors
and this procedure need not be carried any further.
Select that one test c in this restricted list that has the
highest sum 2 [ rcJt |, disregarding sign.

(12) Make a list of all tests that correlate positively with test
c and let this sub-group be designated u.

(13) Determine 2«i and 2«2. This can be done since we
have the first and second factor loadings for each test
and we have a list of all tests in the sub-group u. Also
determine 2ruu which is the algebraic sum of all
coefficients in the full table for group u.

(14) Determine

2«3 = V2ruu - (2wi)2 - (2«2)
2.

(15) Determine

= 2 r"u ~

bs = ——

(15a) Determine the sum 2«8 from the list of third factor
loadings and make sure that it agrees with the value
found in step 14.

(16) Make a list of all tests that correlate low, say within the
range ± .50, with the tests a, b, and c. If there are no
such tests, then you need no additional factors. If
there are several such tests, continue as follows.
Select that one test d in this restricted list that has the
highest sum 2|r,j*|, disregarding sign.

(17) Make a list of all tests that correlate positively with test
d and let this sub-group be designated v.
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(18) Determine 2^ , Xv2, and 2P3. This can be done since
we have the first, second, and third factor loadings in
each of the w tests and we have a list of the tests in
sub-group v. Also determine the algebraic sum 2/w

(19) Determine

(20) Determine

It is evident that this procedure can be extended in cycles
of five steps for each new factor. Thus a new factor is started
in steps 1, 6, 11, 16, 21, and new factors would appear in
steps 26, 31, 36, and so on, if the process were continued.
The process should be continued until no new tests appear
in the lists prepared in each of the steps just enumerated.

In this manner one can make some rational estimate of
the number of factors that will be needed to account for any
given table of coefficients. Note that this estimate can be
made by preparing the lists of tests called for in steps 6, 11,
16, 21, 26, 31, and so on until the list vanishes, before any
calculations are started. The number of factors can thus be
estimated merely by inspection of the coefficients and without
any calculating whatever. This enables one to lay out in
advance the data sheets for a postulated number of general
and independent factors.

As stated at the outset there are several other criteria that
may be applied in selecting the general factors or coordinate
axes which are of importance in special cases where unusual
clustering of the tests or variables may be suspected. Some
special methods of locating the coordinate axes will be con-
sidered in a separate paper.

We have described a method of multiple factor analysis
28
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by which it is possible to ascertain how many general, inde-
pendent, and uncorrelated factors it is necessary to postulate
in order to account for a whole table of intercorrelations.
The method is free from any limitations about group factors.
Objective methods have been described for locating the general
factors and it is probable that, except in unusual distributions
of the tests, these methods will prove adequate.

After the factor loadings have been determined for all of
the tests or variables, it is of considerable interest to describe
or name the general factors that have been isolated. This
can be done best by noting which tests or variables have a
relatively high positive loading with the first factor and which
have a low or negative loading with this factor. By this
inspection it is possible to name the first factor although the
statistical procedures do not of course concern these matters
of describing or naming the factors. In a similar manner one
might inspect the second factor loadings to ascertain which
tests have positive loadings and which have negative loadings
with this factor. A name might then be found for this factor
and so on.

Finally, it may be of interest to assign the standard score
in each of the factors to each of the individual subjects. If
each factor represents an ability of some kind, then it would
be of interest to be able to assign to each person a standard
score in each of the factors or abilities that have been isolated.
In the following list of equations the only unknown factors
are x%, x2, x3, and #4. These standard scores in the four
abilities for any one person may be determined by solving the
following observation equations for the four unknown
standard scores by the method of least squares or by the
method of averages. This procedure is laborious but it is at
least possible to solve the problem of individual standard
scores in the several independent abilities.

Sa - dxx-i + a2x2 + a3x%

Sb - h\Xi + hxt
S« = C1X1 + C2X2

Sw = WXXi - f W2X2 -f" WiXi 4-
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It is probable that these methods of multiple factor anal-
ysis will be useful in discovering how many factors underlie a
given table of correlation coefficients and in discovering their
general nature. Several applications of the method to dif-
ferent types of correlation problems are under way and these
will be reported in subsequent papers.

[MS. received March 9, 1931]


