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Abstract

Quantitative science requires the assessment of uncertainty, and
this means that measurements and inferences should be described as
probability distributions. This is done by building data into a prob-
abilistic likelihood function which produces a posterior “answer” by
modulating a prior “question”.

Probability calculus is the only way of doing this consistently, so
that data can be included gradually or all at once while the answer
remains the same. But probability calculus is only a language: it does
not restrict the questions one can ask by setting one’s prior. We discuss
how to set sensible priors, in particular for a large problem like image
reconstruction.

We also introduce practical modern algorithms (Gibbs sampling,
Metropolis algorithm, genetic algorithms, and simulated annealing)
for computing probabilistic inference.
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1 THE PROBLEM

The deepening technology of science is systematically making us deal with
uncertainty by taking the limitations of our measurements into account.
This paper describes modern techniques for doing this.

Before even performing an observation, any experimenter is faced with
equipment (such as an electron microscope). This equipment is designed to
let the experimenter investigate some unknown features of observed samples.
In electron microscopy, these unknowns X = {X1, X2, . . .} might represent
the locations and strengths of the atomic columns in a thin crystal. Regret-
tably, equipment seldom measures X directly or fully. Instead, it produces
data D = {D1, D2, . . .} which depend on X in some complicated way that
might depend on awkward effects such as lens aberrations. Also, repeated
observations even on the same sample usually give different data, due to
noise.

Our first requirement is to understand the behaviour of the equipment,
so that we can model the passage

X → D (1)

from unknown X to data D. Only then can we try to interpret a particu-
lar dataset D in terms of the unknown sample parameters X. Ideally, the
data should be extracted as early as possible in the measuring process, to
avoid any subsequent loss of information within the equipment. In prac-
tice, though, considerable internal processing is often carried out. This is
harmless as long as the information relevant to X is preserved. For exam-
ple, averaging several independent measurements of the same quantity is
harmless. So is a Fourier transform, which is invertible without loss. If we
write the equipment response in functional form as D = R(X), we might
hope to invert via X = R−1(D). Usually, though, the dataset will be in-
complete: a range of different X would give the same data. This means that
the passage from X to D is many-to-one, so that R−1 does not exist and
the interpretation of the data in terms of X will not be unique.

1.1 Filters

Commonly, data are passed through some filter or other processing sys-
tem R∗ that is designed to behave as an approximate inverse of R. Then
X∗ = R∗(D) is presented as “the result”. One of the simplest filters is
least squares, in which the result X∗ is chosen to make the corresponding
simulated or “mock” data R(X∗) as close as possible to the actual data D,
in the sense of least squares

X∗ minimises
∑

(Rk(X)−Dk)2 (2)
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Weighted least squares includes weighting factors in the summation. Unfor-
tunately, these attempts to follow the data as closely as possible interpret
noise as signal. The consequent amplification of the effects of noise tends to
have a catastrophic implication for the quality of least squares results.

More usefully, the data processing can be set up as an optimisation, in
which some quality functional S(X) is maximised subject to some plausible
figure-of-merit fit to the data: these techniques are called “regularisation”
(Tikhonov, 1963; Titterington, 1985a,b). The commonest functional is the
sum of squares, S(X) = −

∑
X2
i . Allied to a square-law fit to the data,

this functional yields a Wiener filter for calculating X∗. Another functional,
particularly useful when X is the intensity of some distributed quantity,
is the entropy (Gull & Daniell, 1979; Shore & Johnson, 1980, Livesey &
Skilling, 1985), based on S(X) = −

∑
Xi logXi. Quite apart from the

sometimes arbitrary choice of functional, regularisation requires setting a
balance between the importance of quality S and of fitting the data. Various
techniques, such as cross-validation (Stone, 1974), are proposed, but none is
entirely convincing. The basic trouble is that any single “result” will almost
certainly be wrong in detail. Its quality and reliability may be adequate for
limited purposes, yet it will be possible to glean more from the data.

2 PROBABILITY

In quantitative treatment, we should acknowledge the uncertainty intro-
duced by noise. Even with fixed inputs X, the corresponding data would
vary according to some probability distribution

Pr(D|X) = likelihood function (3)

where “|” means “conditional upon”, or “supposing” for short. Usually, we
suppose that noise is additive, so that

D = R(X)± σ (4)

Often, additive noise is taken to be Gaussian, in which case we have the
explicit formula

Pr(D|X) = Z−1 exp(−χ2/2) (5)

where
χ2(X) =

∑
k

(Rk(X)−Dk)2/σ2
k (6)

is the usual chisquared misfit between mock data and actual data, scaled
into a probability by the standard deviations σ, and where Z =

∏
(2πσ2

k)
1
2

is the overall normalisation.
The likelihood function is the formal specification of the behaviour of

the observing equipment, usually given as a responsivity R allied to noise
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σ. It is needed for a sufficient range of inputs X to cover all admissible
interpretations of data D that we may observe. Ideally, it would be as-
signed by repeated direct measurements over the (huge) range of allowable
inputs. In practice, R is usually assigned from a theoretical description of
the equipment’s performance, appropriately calibrated by reference to a re-
alistically small number of known inputs. Sometimes, the equipment cannot
be reliably described in full, in which case the description may include some
ad hoc extra factors X ′. We absorb these into the set of unknown inputs
X. One fairly common case is the one of poorly known noise level, where
an appropriate scaling factor needs to be used in the likelihood function as
an extra unknown. An unpredictable contrast level might be another such
parameter. The presence of such factors in the data certainly degrades the
quality of inferences that might otherwise be made. However, omitting them
from the analysis is even more damaging because that tends to give results
with systematic errors and spuriously high supposed accuracy.

Once we have the likelihood function, we know what the data mean, so
can realistically aim to infer the inputs X. Such inference will be uncertain,
so we can at best aim for the posterior (i.e. after the data) probability
distribution

Pr(X|D) = inference (7)

This involves inverting the assigned likelihood Pr(D|X). But, as we see
below, inversion requires us to assign a prior probability distribution

Pr(X) = prior (8)

The prior represents our guess, or pre-conception, about the range of un-
known values that mught be present, before we use the data. It is an in-
teresting philosophical fact that we need this preliminary hypothesis about
what we are observing before we can make sense of our observations: the
Universe does not give us absolute results. Prior information can be very
relevant, and is always necessary.

2.1 Bayes’ theorem

We now use the ordinary rules of probability calculus. The joint probability

Pr(X,D) = Pr(X) Pr(D|X) = Pr(D) Pr(X|D) (9)

is the essential distribution from which all else follows. It is summed (inte-
grated) to obtain the prior predictive value

Pr(D) =
∑
X

Pr(X) Pr(D|X) = evidence (10)
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which is a single number having dimension [D−1]. Dividing by this, we reach
“Bayes’ Theorem” for the inference

Pr(X|D) = Pr(X) Pr(D|X)/Pr(D) ∝ Pr(X) Pr(D|X) (11)
inference ∝ prior× likelihood

(Experts in probability will recognise that we have omitted the background
information I on which all these probabilities should be conditioned.) In
short:

1. Ask a question by setting a prior Pr(X).

2. Describe your equipment by its likelihood function Pr(D|X).

3. Acquire your particular data D.

4. Optionally, calculate the evidence Pr(D) as a measure of the quality
of your question.

5. Evaluate your answer as the posterior inference Pr(X|D).

Probability calculus is unique: it is the only calculus within which un-
certainties about propositions are manipulated consistently with the logical
(TRUE/FALSE) status of the propositions. In particular, any posterior in-
ference can be used as a prior when analysing extra data, so that the order
in which one uses the data is immaterial (as it should be). Kolmogorov
(1950) is widely quoted as the author of the axiomatic basis of probabil-
ity calculus, but it was R.T. Cox (1946, 1961) who showed that no other
calculus is admissible. The only freedom is to take some monotonic func-
tion instead, such as 100 Pr(•) (percentage) or Pr(•)/(1− Pr(•)) (odds), but
such changes are merely cosmetic. It follows that other methods are either
equivalent to probability calculus (in which case they are unnecessary), or
are wrong. Thus in fuzzy sets, an assignment of fuzzy membership is equiv-
alent to assigning a probability of membership, so is harmless. However,
insofar as the various rules of fuzzy logic (Zadeh, 1965; Klir & Folger, 1988)
diverge from probability calculus, logical error enters and practical power is
lost. In particular, a fuzzy deduction from part of the data would not give
a consistent starting point for using the remainder of the data.

Interestingly, probability calculus never instructs us to maximise or op-
timise any unknown parameter. Instead, the rules instruct us to sum or
integrate over unknown quantities, so that their effect is averaged over all
plausible values. If we think of the inference Pr(X|D) as defining the shape
of a mountain, then our task is to find and explore the summit area of rea-
sonably plausible X, not just to locate the single highest point of maximum
probability. After all, it is easy to envisage asymmetrical probability distri-
butions in which the highest point is a narrow peak far from the bulk of the
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distribution. Maximisation may be convenient because only one value need
be considered thereafter, and it may also be fairly harmless if the parameter
in question is quite closely constrained – but it is always an approximation
to be handled with care. Direct use of probability calculus is often called the
“Bayesian” method. If the analysis includes some maximisation or similar
approximation, the methodology is called “empirical Bayesian”.

3 PRIOR PROBABILITIES

The language of probability calculus is defined, but there is no restriction
on the questions one can ask by posing a suitable prior. This freedom, nev-
ertheless, can be objectively assessed through the evidence value. Different
priors will induce different evidence values Pr(D) (strictly, Pr(D| prior and
other assumptions)). An inappropriate prior shows up through a relatively
low evidence value. The art of setting a prior is to allow sufficient flexibil-
ity to cover all the inputs X that one might plausibly need in order to fit
the data reasonably, without widening the field so much that the particular
data D will become intrinsically implausible. In other words, ask a question
appropriate to your data.

In practice, the choice of prior is often guided by symmetry considera-
tions, intrinsically equivalent X being assigned the same prior values. The
standard introductory problem has an ordinary cubical “fair” die that is
thrown so that any of its faces (X = 1, 2, . . . , 6) may fall upwards. There
are only 6 states, so the prior just consists of 6 numbers Pr(X1), . . . ,Pr(X6).
These numbers sum to 1 because it is supposed to be certain that one of the
results actually occurs. The natural assignment Pr(X1) = . . . = Pr(X6) = 1

6
is justified by the symmetry of the problem. Other than marking, there is
no physical difference between the faces, so our pre-conception about the
states is invariant with respect to interchange. Unless we use the obvious
uniform assignment, this invariance would be broken.

A less precise example concerns the temperature of water under stan-
dard conditions. Here the temperature X can take any value between 0◦ and
100◦C. Although there is no justifying symmetry between different temper-
atures, it might still be reasonable to take a uniform flat prior Pr(X) = 1

100
in 0 ≤ X ≤ 100. Yet this is guided by convention as much as by phys-
ical reality. If we were more used to thinking of temperature in terms of
absolute coolness, X ′ = 1/(X + 273.16), then we would more naturally set
Pr(X ′) constant within 1/373.16 ≤ X ′ ≤ 1/273.16. Transforming back to
the Celsius scale by Pr(X)dX = Pr(X ′)dX ′, we would find that Pr(X) was
no longer constant. This example warns that a flat prior is not necessarily
“correct”. Indeed, depending on circumstances, we might well expect some
temperatures to be more likely than others: if so, we are entitled to encode
this into our prior. Jaynes (1968) persuasively develops a similar example.
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Another example concerns the brightness X of a light source. Here X
must be positive, and physics defines a natural scale (that of power output,
in which brightnesses are additive). But there is no obviously useful upper
limit to X. Loosely, one might try to assign a flat prior, Pr(X) constant in
0 ≤ X < ∞, and hope to avoid the awkward corollary that normalisation
requires the constant to be zero. After all, as soon as one measures realistic
data about X, the posterior “answer” Pr(X|D) should become well-behaved.
However, the prior predictive evidence number, Pr(D), will still be zero,
reflecting the fact that X has initially zero probability of lying in any finite
range. So there is no real escape from assigning a properly normalised prior,
appropriate to the situation. Here, we cannot set a proper prior until we
assign at least the overall expected magnitude of X. Anybody who tried to
use the improper flat prior would lose by an infinite factor in the objective
comparison with the evidence of a competitor who acknowledged a vague
idea of the range of brightnesses being considered. We have to ask a sensible
question before we can get a sensible answer.

The Principle of Maximum Entropy (Cox, 1961; Jaynes, 1978) is a so-
phisticated extension of a symmetry argument, applicable where some av-
erage property or properties of X are to be controlled. According to the
principle, Pr(X) may be assigned by maximising its entropy subject to any
“ensemble average” constraints that may be available:

Maximise S = −
∫

Pr(X) log Pr(X) dX subject to∫
ck(X) Pr(X) dX = Ck, k = 1, 2, . . . (12)

For example, suppose that the light sources we were considering above might
have some average brightness B. This general guidance can be captured as
an average constraint

∫
X Pr(X)dX = B which (together with normalisa-

tion) yields the prior Pr(X) = B−1 exp(−X/B). Many other forms might
have been suggested (Cauchy, Gaussian,. . .), but maximum entropy gives an
objective reason for preferring the exponential form.

3.1 Image reconstruction

Image reconstruction is a more difficult example, in which there is a separate
brightness Xi for each pixel i of the image. There may well be correlations,
whereby neighbouring pixels are expected to have similar brightnesses so
that the image is expected to be locally smooth: Ripley (1988) explores
such possibilities. On the other hand, if the image may have sharply local-
isable sources, it can be better to ignore correlations and treat each pixel
as independent, by writing Pr(X) =

∏
p(Xi) where p(•) is the prior we

need to assign to the brightness of a single pixel. It is tempting to assign
an expected average brightness b to a pixel, and appeal to the principle of
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maximum entropy to write p(x) ∝ exp(−x/b). An even simpler suggestion
is to let p(x) be constant up to some assigned maximum brightness. But
these prescriptions fail.

In passing to image reconstruction, we have reached a problem in which
there may well be more unknowns (pixel values) than there are reliable
data. Indeed, we wish to able to use a very large number of arbitrarily
small pixels so that the reconstruction is not visibly blocked. This means
that the reconstruction problem is heavily under-constrained. The data can
constrain at best a minority of the unknowns, so most of the reconstruction
must be controlled by the prior. The choice of prior is no longer just an
esoteric detail: it can dominate the results. If we used the exponential prior
exp(−x/b) on individual independent pixels, we would find that the overall
brightness on a macroscopic domain of N pixels would converge around Nb,
with a plausible degree of variability that collapsed towards zero (relatively
as O(N−1/2)) as the pixel size was reduced and N thereby increased. In
other words, simply by deciding to compute with smaller pixels, we would
become increasingly convinced that the macroscopic brightness pattern was
just flat and uniform. It’s a consequence of the law of large numbers, that
can only be evaded by ensuring that only a limited number of pixels have
appreciable brightness.

It is possible to set priors that make sense, in that macroscopic structure
can appear regardless of subsidiary pixellation. Such a prior is called a
“process” (Kingman, 1993). The prior p(x|h) must depend not only on
the brightness x but also on the pixel size h in such a way that subsidiary
pixellation is immaterial. The process most commonly suggested is the
Gamma process, essentially p(x|h) ∝ x−1+he−x) (e.g. Sibisi & Skilling,
1997). If the pixel size is allowed to shrink, this prior concentrates on small
brightnesses x in just such a way that only a limited number of pixels have
appreciable brightness. Typical brightness patterns are “atomic”. Of course,
this does not mean that any mean reconstruction, averaged over all plausible
brightness patterns according to the posterior Pr(X|D) would be sharp and
atomic. To the contrary, the mean reconstruction will be only as sharp as
the data demand.

Another process, which is completely atomic and hence easier to com-
pute, has

p(x|a) = (1− h)δ(x) + h exp(−x), (h small) (13)

after scaling h and x to take out their dimensional units A and B. Most
small pixels have zero brightness because of the Dirac delta function. The
others have brightnesses distributed exponentially as exp(−x/B), that being
the natural maximum entropy form. Pixels with finite brightness appear
randomly with probability h/A in small size h, so that they have a Poisson
distribution in location. Because the brightness is entirely contained in
a finite set of “point mass” delta functions, this form is being called the
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“massive inference” prior.

4 EXAMPLE

To illustrate the use of probability theory, let the unknown X be simply the
temperature of a liquid, which might be water or ethanol.

1. Ask a question by setting a prior Pr(X). Suppose that the liquid is
water. As before, this assumption naturally leads to the prior Pr(X) =
0.01 in 0 ≤ X ≤ 100, zero otherwise.

2. Describe your equipment by its likelihood function Pr(D|X). The
equipment is a thermometer whose readings D may differ from the
temperature X by up to 5◦C. Hence the likelihood is Pr(D|X) =
0.1 in X − 5 ≤ D ≤ X + 5, zero otherwise. Realistic equipment
more commonly gives roughly Gaussian errors, but we take a uni-
form distribution for introductory simplicity. Note the normalisation∫

Pr(D|X)dD = 1 common to all probabilities.

3. Acquire your particular data D. The thermometer records D = −3◦C.

4. Optionally, calculate the evidence from equation 10: Pr(D) = 0.002
(◦C)−1 is a measure of the quality of your question. Technically, we
should write the evidence as Pr(D|water) because we have assumed
that the liquid is water.

5. Evaluate your answer as the posterior inference from equation 11:
Pr(X|D) = 0.5 in 0 ≤ X ≤ 2, zero otherwise. This answer is sen-
sible, because X is known from the prior to be greater than 0, and
from the data to be less than 2. Technically, we should write the
inference as Pr(X|D,water).

Now suppose instead that the liquid is ethanol, for which the prior
range is −80 ≤ X ≤ 80◦C. Repeating the analysis yields a larger evi-
dence Pr(D|ethanol) = 0.00625, with a different inference Pr(X|D) = 0.1 in
−8 ≤ X ≤ 2, zero otherwise. Clearly the thermometer reading (−3 ± 5)◦C
suggests ethanol rather than water, but the Bayesian analysis quantifies the
relative preference. Indeed an evidence value Pr(D|assumptions) is nothing
more than a likelihood value Pr(D|•) for the current assumptions. If we
wish to compare different assumptions (such as water versus ethanol), we
just assign prior probabilities to these assumptions and repeat the proba-
bilistic analysis at this higher level. The same calculus still applies.
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5 COMPUTATION

The logical necessity of using Bayes’ Theorem for inference is inescapable,
yet until quite recently probability calculus has not been widely used for
large problems. This is partly because of a primitive desire for absolute
results, leading to a reluctance to acknowledge the role of the prior. It is
also because the probability approach forces us to contemplate exploration
of all reasonably plausible X. Yet whenever X has more than a very few
components, full exploration of the huge space of Pr(X|D) is wildly imprac-
tical: the apparently exponential cost of introducing more components is
sometimes called “the curse of dimensionality”.

5.1 Markov chain Monte Carlo

The trick is to use Monte Carlo methods (Hammersley & Handscomb, 1964).
Suppose that several (n) samples X(1), X(2), . . . , X(n) can be found, drawn
independently from the posterior Pr(X|D). Surprisingly, this extremely
impoverished selection from the huge space is often sufficient. In practice, we
are nearly always primarily interested in simple numerical properties f(X)
such as an average separation between components, or a mean intensity
ratio, or perhaps an individual component like X5. The n samples give us n
independent estimates f(X(1)), f(X(2)), . . . , f(X(n)) of this property. These
n numbers allow us to estimate the basic statistics of f , such as its mean µ
and standard deviation σ uncertainty. The mean

〈f〉 = n−1
n∑
i=1

f(X(i)) (14)

estimates µ with an uncertainty of about σ/
√
n (assuming Gaussian statis-

tics), while the variance

var(f) = 〈(f − 〈f〉)2〉 (15)

estimates σ2. Although Monte Carlo results only converge very slowly, as
O(n−1/2), to their precise asymptotic limits, the major estimates soon settle
down to within their error bars to high probability. For example, with n = 16
independent samples, the mean 〈f〉 estimates µ with standard deviation
around σ/4, so that only once in about 15000 trials should the estimate be
in error by more than σ. This is adequate, because if µ represents a quantity
that is (by definition) uncertain by σ, it need not be calculated to any greater
precision. Non-Gaussian statistics generally give rather slower convergence,
and error bars are estimated less accurately than primary quantities, but it
remains true that Monte Carlo methods can give the inferences we seek. The
computations are ambitious, but feasible. There is an inherent limitation of
Monte Carlo methods, in that full certainty is never achieved no matter how
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many samples are computed. The probability of serious algorithm error,
though, decreases exponentially with the number of samples, so that the
calculation can be made more reliable than the data being used.

Computing a random sample X from a complicated joint distribution

π(X) ≡ Pr(X,D) ∝ Pr(X|D) (16)

is usually impossible to do directly. The plausible X will be too small a frac-
tion of the possible X to find by immediate exploration. Instead, algorithms
operate incrementally, holding a single sample and evolving it “randomly”
(with a pseudo-random generator) so that its probability distribution ap-
proaches the desired π(X). A sequence in which the next state depends
partly on the current state is a Markov chain, so such algorithms are called
Markov chain Monte Carlo (MCMC) methods (Hastings, 1970; Gelfand &
Smith, 1990). As a formal detail, any MCMC algorithm should be capable
of reaching all states (or at least those within the support of π): all recom-
mended algorithms can do this. Smith (1991), Smith & Roberts (1993) and
Besag & Green (1993) are good sources.

There is an analogy with statistical mechanics, where a physical system
evolves under essentially random influences towards a thermal equilibrium
described by

π(X) ∝ exp(−λE(X)) (17)

where E is energy and λ is reciprocal temperature, conventionally set to 1.
If π is thought of as a mountain to be climbed, then E is a corresponding
basin to fall into. The algorithm will start with some state X(0) which
will usually be highly atypical of π: likewise a physical system may be
released far from equilibrium. The physical system will relax, and similarly
the algorithm’s state will lose memory of any special initial conditions and
“burn in” towards equilibrium. Thereafter, the physical system will have
reached thermal equilibrium and will ergodically explore the states available
to it according to the distribution π. The algorithm will also explore its
distribution so that each sample X is an unbiassed, random sample from
π(X).

MCMC algorithms all have a common structure. A state X induces a
potential successor Y through some pseudo-random transition scheme

X → Y according to the probability T (Y |X) ≡ Pr(Y |X) (18)

that defines the algorithm being used. Had the system been in state Y to
start with, it would be able to move to other states, in particular reverting
to X with

Y → X according to the same probability law T (X|Y ) (19)
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Taken together, these transitions would favour an equilibrium in which X
and Y appear with relative frequency

Pr(Y )
Pr(X)

=
T (Y |X)
T (X|Y )

(20)

because the numbers of forward and backward transitions then balance. Ac-
tually, we seek a procedure in which Pr(X) mimics the desired distribution
π(X), so we want Pr(Y )/Pr(X) = π(Y )/π(X) and the suggested transition
scheme T may not have that property.

To correct the algorithm, transitions are performed only with an an
appropriate acceptance probability α(Y |X), chosen to ensure that

Pr(Y )
Pr(X)

=
T (Y |X)α(Y |X)
T (X|Y )α(X|Y )

=
π(Y )
π(X)

(21)

The acceptance probabilities should be as large as possible, to avoid the
waste of computing potential transitions that are rejected. However, no
probability can exceed 1. Hence we set

α(Y |X) = min
(
1,

T (X|Y )π(Y )
T (Y |X)π(X)

)
(22)

which has the desired effect with minimal waste. All transitions, between
any X and Y , relax towards the desired equilibrium: this property is known
as “detailed balance”.

5.2 Gibbs sampling

Gibbs sampling, named by its authors Geman & Geman (1984) after the
physicist J.W. Gibbs, can be the easiest to implement. In its basic form,
it changes just one component of X, say the ith component Xi, at a time.
All other components preserve their values (Yj = Xj for j 6= i) but the ith
component is chosen by re-sampling from the marginal distribution

T (Yi|X) = Pr(Yi|X1, . . . , Xi−1, Xi+1, . . .)
∝ π(X1, . . . , Xi−1, Yi, Xi+1, . . .) = π(Y ) (23)

With this algorithm, the acceptance probability is always 1, so transitions
are never rejected. The component i can either cycle round (i = 1, 2, 3, . . . ,
1, 2, 3, . . .) or be selected at random. Gibbs sampling pre-supposes that the
marginal distribution has some accessible algebraic form to sample from. If
this has to be approximated, perhaps by interpolating between several po-
tential values of Yi, then the acceptance probability should be re-introduced
to correct any resulting imbalance.

Gibbs sampling yields a particularly slow algorithm if there is strong
coupling between components of X. For example, suppose the sum X1 +X2
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is tightly constrained through an accurate measurement. The initialising
guess X(0) will usually be highly atypical of the desired distribution, so that
X1 and X2 will be far from equilibrium. In the first Gibbs step, X2 will
keep X1 oppositely far from equilibrium, then X1 will keep X2 away, and
so on for many steps. Generally, Gibbs algorithms are slow whenever the
“mountain” π(X) is high, and has sharp ridges that are not conveniently
aligned with the coordinate axes.

5.3 Metropolis algorithm

The random-walk Metropolis algorithm (Metropolis et al., 1953) avoids the
Gibbs dependence on a particular coordinate system, and is also easy to
implement. Here X is incremented by a random vector of arbitrary direction
and some scale s (usually Gaussian in each coordinate):

Yi = Xi + ri, ri ∈ N (0, s2) (24)

This transition scheme is symmetric, T (Y |X) = T (X|Y ), so that the accep-
tance probability simplifies to

α(Y |X) = min(1, π(Y )/π(X)) (25)

If s is given too small a value, nearly every step will be accepted (because Y
will be close to X), but the random walk will need many small steps before
samples become effectively independent. On the other hand, if s is given too
large a value, then most potential transitions will damage the probability
value (π(Y ) � π(X)) and thereby be rejected. Some compromise value
should be used, perhaps aiming for an acceptance probability α ∼ 1

3 .
Generally, Metropolis algorithms are most efficient when the step size

allows the probability ratios to be O(1). In terms of the energy analogy,
∆E ∼ 1. Yet the energy loss involved in reaching the floor of the basin
may be much greater than 1, especially in large problems with many data.
To fit 1000 data each accurate to 1% (=e−4.6) involves an energy change
of 4600. Hence thousands of Metropolis steps seem to be needed for the
burn-in alone, even before the energy basin is explored.

5.4 Genetic algorithms

Genetic algorithms (Davis, 1991) treat two or more samples XA, XB, . . . as
a single algorithm state. Potential transitions include exchanges of one or
more coordinate values between the samples, as for example

{XA = (a, b, c), XB = (d, e, f)} → {Y A = (d, b, c), Y B = (a, e, f)}
(26)

where the first (or any other) coordinate(s) out of three are exchanged.
Genetic algorithms tend to be recommended for problems in which the un-
knowns Xi are discrete rather than continuous, and in which there may be
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distinct and separated summits of plausible results. Once again, though,
the algorithm is slow if the probability factors are large, because substantial
steps are then usually rejected.

5.5 Convergence

Gibbs, Metropolis, and genetic algorithms are the common generic forms
of MCMC. Yet any particular problem may have its own particular struc-
ture that might be used to design a transition scheme that allowed larger
steps, and was hence faster. In the example above where the sum of two
components, X1 + X2, was measured accurately, a transition with X1 and
X2 changing equally and oppositely might well be advantageous. MCMC
algorithms can also be mixed by alternating steps from different procedures,
so that if one procedure becomes inefficient another might be able to cir-
cumvent the problem. Unfortunately, there is as yet no useful theory on
how best to design an efficient MCMC algorithm: it’s a matter for heuristic
ingenuity (Gelman et al., 1995). The essential requirements are that the
overall procedure is capable of reaching all relevant states X, that detailed
balance is achieved by appropriate rejection, and that “enough” steps are
taken.

The algorithm should be continued past burn-in until some reasonable
number of independent samples ought to have been obtained. Because a
state retains memory of its predecessors, many intervening steps may be
needed before samples become effectively independent. Progress has been
made (Roberts, 1992), but unfortunately there are as yet no generally useful
formal estimates of convergence times. Thus, in practice, MCMC algorithms
are continued until the spread of samples appears to have converged, accord-
ing to some ad hoc criterion. One such criterion is that the log-likelihood
log Pr(D|X) fit to the data no longer appears to drift. But apparent con-
vergence might be spurious. The danger is that if an algorithm is not given
sufficient time, it may appear to have converged, but to the wrong result
and quite likely with apparently high but spurious precision. Some authors
(Gelman & Rubin, 1992a,b) recommend that MCMC results be confirmed
by running the algorithm with several different starting positions X(0), and
checking that the desired inferences f(X) are consistent: if not, the compu-
tation time was too short. Such checking can reveal failure, though consis-
tency does not formally guarantee convergence.

5.6 Simulated annealing

In nearly all large problems, the π mountain is high, as well as having an
awkward shape. Equivalently, the energy basin is deep. In these circum-
stances, MCMC algorithms tend to be slow because they tend to use O(1)
energy changes. Simulated annealing (Kirkpatrick et al., 1983; Aarts &
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Kost, 1989) is a general way of ameliorating this. Instead of working di-
rectly with π (or the energy E at unit temperature), work at some higher
temperature using λ < 1. The correct distribution π is replaced by πλ. The
idea is that this flattens the mountain, so that the algorithm can reach the
higher parts more quickly. Final exploration needs λ to have its correct
value of 1, but the burn-in time spent reaching the summit area can be
much reduced by bringing λ up to 1 gradually, according to some “cooling
strategy”.

Technically, it is better to keep the prior intact and anneal the likelihood
function alone, giving

πλ(X) ≡ Pr(X) Pr(D|X)λ, 0 ≤ λ ≤ 1 (27)

Flattening the prior as well leads to the distribution πλ, which would be
impossible to sample from if its integral became divergent. Flattening just
the likelihood corresponds to bringing the data in gradually, from absence
(λ = 0) to full effect (λ = 1). It also suggests using a random sample
from the prior itself as a natural starting sample X(0), since this is correctly
unbiassed at the start when λ = 0.

At every stage the distribution πλ is integrable, and can be used to define

〈log Pr(D|X)〉λ =
∫

log Pr(D|X)πλ(X) dX∫
πλ(X) dX

(28)

Just like any other function f(X), this average is estimated by summing over
samples obtained at reciprocal temperature λ. These samples may already
have found a use in trying to check convergence at λ, but there is another
unexpected use from the identity

Pr(D) =
∫

Pr(X) Pr(D|X) dX = exp
∫ 1

0
〈log Pr(D|X)〉λ dλ = evidence

(29)
Simulated annealing thus allows the Bayesian analysis to be completed by
calculating the prior predictive “evidence” number that enables comparison
with other analyses of the same data using different assumptions.

5.7 Multi-modality

Suppose the π-mountain has not just one but two separated summits (or
even more), corresponding to an ambiguity between distinctly different re-
sults X. Fourier data with unknown phases, as in electron diffraction and
X-ray crystallography, are particularly prone to such ambiguity. Without
simulated annealing, a sample started at the base of the mountain will tend
to move uphill, so that the chance of ultimately finding it around a spe-
cific summit will be roughly given by the size of that summit’s footprint
(equivalently, the size of the energy basin of attraction).
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With simulated annealing, the mountain is initially flat and the samples
are constrained by the prior alone. As the temperature falls, the mountain
grows and the samples become effectively confined to the higher parts. Be-
low some separation temperature, samples become largely confined above
the pass between the summits. Beyond separation, there is the technical
possibility of tunnelling between summits if the transition scheme allows,
but in practice the chance of tunnelling tends to switch off exponentially.
At separation, the chance that a sample is located around a specific sum-
mit is, therefore, roughly determined by the size of that summit above the
separation contour at the height of the pass. Even this is not the right
answer.

Actually, we want the sampling density to reflect π itself, with the chance
that a sample is located around a specific summit being the evidence integral
over that summit – a product of height π and volume ∆X in which either
factor could dominate. Unless the MCMC algorithm allows communication
between the summits, the only recourse seems to be to use the evidence
integrals accumulated along runs from different starting points in order to
assess the relative importance of the different summits. This may be tedious,
and is not usually attempted, but the formalism allows it.

6 CONCLUSIONS

Probability calculus is a major unifying principle in the description of un-
certainty. It is the only consistent calculus, and requires us to cast all uncer-
tainty into the standard form of a probability distribution. In data analysis,
this uncertainty includes our original uncertainty about the unknown param-
eter(s) X that we seek. We have to cast this as a prior “question” Pr(X).
In small problems where X is a simple parameter such as a temperature,
details of the prior may well influence the posterior “answer” Pr(X|data)
only slightly. In large problems such as image reconstruction, an incorrectly
chosen prior can be disastrous. The principle remains, that one should try
to ask a question appropriate to one’s data, but application of the principle
can require care.

Full probabilistic analysis is an ideal that is not always attained in prac-
tice. For a start, it may be too difficult to model the behaviour of the
equipment accurately, even with the aid of auxiliary unknown variables.
One may then be forced to use some figure of merit (FOM) instead of the
desired likelihood function. Much of the power of probability calculus is
thereby lost, but computations might still produce a useful result.

Markov chain Monte Carlo (MCMC) algorithms form the basis of prac-
tical computation of probability distributions in several or many unknowns.
MCMC results are given as a sequence of at least several typical samples
X(1), X(2), . . . drawn from the posterior distribution. If a single X is required
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as “the” result, then the mean 〈X〉, obtained by averaging the samples, is
usually recommended. The single most probable X, obtained by maximising
the posterior, can easily be atypical of the distribution as a whole, so that
its properties f(X) are prone to bias. The mean is generally more robust
and useful than the maximum.

The basic MCMC methods are easy to program and implement. No
complicated gradient or maximisation procedure is involved – just the local
evaluation of prior and likelihood probability values. The lack of a formal
convergence criterion is usually just a technical quibble that can be amelio-
rated by running the algorithm for longer, or from different starting points,
and checking the major results for consistency. Finally, the simulated an-
nealing variant of MCMC is capable of calculating the prior predictive “ev-
idence” value, should that be required.
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