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Abstract

Cox�s well�known theorem justifying the use of probability is shown not to hold in

�nite domains� The counterexample also suggests that Cox�s assumptions are insu�cient

to prove the result even in in�nite domains� The same counterexample is used to disprove

a result of Fine on comparative conditional probability�

�� Introduction

One of the best�known and seemingly most compelling justi�cations of the use of probability
is given by Cox ������� Suppose we have a function Bel that associates a real number with
each pair �U� V � of subsets of a domainW such that U �	 �� We write Bel�V jU� rather than
Bel�U� V �
 since we think of Bel�V jU� as the credibility or likelihood of V given U �� Cox
further assumes that Bel�V jU� is a function of Bel�V jU� �where V denotes the complement
of V in W �
 that is
 there is a function S such that

A�� Bel�V jU� 	 S�Bel�V jU�� if U �	 �


and that Bel�V � V �jU� is a function of Bel�V �jV � U� and Bel�V jU�
 that is
 there is a
function F such that

A�� Bel�V � V �jU� 	 F �Bel�V �jV � U��Bel�V jU�� if V � U �	 ��

Notice that if Bel is a probability function
 then we can take S�x� 	 ��x and F �x� y� 	
xy� Cox makes much weaker assumptions� he assumes that F is twice di�erentiable
 with a
continuous second derivative
 and that S is twice di�erentiable� Under these assumptions

he shows that Bel is isomorphic to a probability distribution in the sense that there is a
continuous one�to�one onto function g � IR� IR such that g�Bel is a probability distribution
on W 
 and

g�Bel�V jU��� g�Bel�U�� 	 g�Bel�V � U�� if U �	 �
 ���

where Bel�U� is an abbreviation for Bel�U jW ��

Not surprisingly
 Coxs result has attracted a great deal of interest
 particularly in the
maximum entropy community and
 more recently
 in the AI community� For example

�� Cox writes V jU rather than Bel�V jU�� and takes U and V to be propositions in some language rather
than events� i�e�� subsets of a given set� This di�erence is minor�there are well�known mappings from
propositions to events� and vice versa� I use events here since they are more standard in the probability
literature�
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� Cheeseman ������ has called it the �strongest argument for use of standard �Bayesian�
probability theory�� Similar sentiments are expressed by Jaynes �����
 p� ���� indeed

Coxs Theorem is one of the cornerstones of Jaynes recent book �������

� Horvitz
 Heckerman
 and Langlotz ������ used it as a basis for comparison of proba�
bility and other nonprobabilistic approaches to reasoning about uncertainty�

� Heckerman ������ used it as a basis for providing an axiomatization for belief update�

The main contribution of this paper is to show �by means of an explicit counterexample�
that Coxs result does not hold in �nite domains
 even under strong assumptions on S and
F �stronger than those made by Cox and those made in all papers proving variants of Coxs
results�� Since �nite domains are arguably those of most interest in AI applications
 this
suggests that arguments for using probability based on Coxs result�and other justi�cations
similar in spirit�must be taken with a grain of salt
 and their proofs carefully reviewed�
Moreover
 the counterexample suggests that Coxs assumptions are insu�cient to prove the
result even in in�nite domains�
It is known that some assumptions regarding F and S must be made to prove Coxs

result� Dubois and Prade ������ give an example of a function Bel
 de�ned on a �nite
domain
 that is not isomorphic to a probability distribution� For this choice of Bel
 we can
take F �x� y� 	 min�x� y� and S�x� 	 � � x� Since min is not twice di�erentiable
 Coxs
assumptions block the Dubois�Prade example�
Other authors have made di�erent assumptions� Acz�el �����
 Section � �Theorem ���

does not make any assumptions about F 
 but he does make two other assumptions
 each
of which block the Dubois�Prade example� The �rst is that the Bel�V jU� takes on every
value in some range �e�E�
 with e � E� In the Dubois�Prade example
 the domain is �nite

so this certainly cannot hold� The second is that if V and V � are disjoint
 then there is a
continuous function G � IR � IR
 strictly increasing in each argument
 such that

A�� Bel�V � V �jU� 	 G�Bel�V jU��Bel�V �jU���

With these assumptions
 he gives a proof much in the spirit of that of Cox to show that Bel
is essentially a probability distribution� Dubois and Prade point out that
 in their example

there is no function G satisfying A� �even if we drop the requirement that G be continuous
and strictly increasing in each argument��

Reichenbach ������ earlier proved a result similar to Acz�els
 under somewhat stronger
assumptions� In particular
 he assumed A�
 with G being ��
Other variants of Coxs result have also been considered in the literature� For example


Heckerman ������ and Horvitz
 Heckerman
 and Langlotz ������ assume that F is contin�
uous and strictly increasing in each argument and S is continuous and strictly decreasing�
Since min is not strictly continuous in each argument
 it fails this restriction too�� Aleliunas
������ gives yet another collection of assumptions and claims that they su�ce to guarantee
that Bel is essentially a probability distribution�

�� In fact� Acz	el allows there to be a di�erent function GU for each set U on the right�hand side of the
conditional� However� the Dubois�Prade example does not even satisfy this weaker condition�


� Actually� the restriction that F be strictly increasing in each argument is a little too strong� If e � Bel����
then it can be shown that F �e� x� � F �x� e� � e for all x� so that F is not strictly increasing if one of its
arguments is e�

��



A Counterexample to Theorems of Cox and Fine

The �rst to observe potential problems with Coxs result is Paris ������� As he puts
it
 �Coxs proof is not
 perhaps
 as rigorous as some pedants might prefer and when an
attempt is made to �ll in all the details some of the attractiveness of the original is lost��
Paris provides a rigorous proof of the result
 assuming that the range of Bel is contained
in ��� �� and using assumptions similar to those of Horvitz
 Heckerman
 and Langlotz� In
particular
 he assumes that F is continuous and strictly increasing in ��� �� and that S is
decreasing� However
 he makes use of one additional assumption that
 as he himself says

is not very appealing�

A�� For all � 	 �� �� � 	 � and � � �
 there are sets U� 
 U 
 U� 
 U� such that U� �	 �

and each of jBel�U�jU��� �j
 jBel�U�jU�� �j
 and jBel�UjU��� �j is less than ��

Notice that this assumption forces the range of Bel to be dense in ��� ��� This means that

in particular
 the domain W on which Bel is de�ned cannot be �nite�

Is this assumption really necessary� Paris suggests that Acz�el needs something like it�
�This issue is discussed in further detail below�� The counterexample of this paper gives
further evidence� It shows that Coxs result fails in �nite domains
 even if we assume that
the range of Bel is in ��� ��
 S�x� 	 ��x �so that
 in particular
 S is twice di�erentiable and
monotonically decreasing�
 G�x� y� 	 x � y
 and F is in�nitely di�erentiable and strictly
increasing on ��� ��� We can further assume that F is commutative
 F ��� x� 	 F �x� �� 	 �

and that F �x� �� 	 F ��� x� 	 x� The example emphasizes the point that the applicability
of Coxs result is far narrower than was previously believed� It remains an open question
as to whether there is an appropriate strengthening of the assumptions that does give us
Coxs result in �nite settings� There is further discussion of this issue in Section ��

In fact
 the example shows even more� In the course of his proof
 Cox claims to show
that F must be an associative function
 that is
 that F �x� F �y� z�� 	 F �F �x� y�� z�� For the
Bel of the counterexample
 there can be no associative function F satisfying A�� It is this
observation that is the key to showing that there is no probability distribution isomorphic
to Bel�

What is going on here� Actually
 Coxs proof just shows that F �x� F �y� z�� 	 F �F �x� y�� z�
only for those triples �x� y� z� such that
 for some sets U�
 U
 U�
 and U�
 we have
x 	 Bel�U�jU� � U � U��
 y 	 Bel�U�jU � U��
 and z 	 Bel�UjU��� If the set of such
triples �x� y� z� is dense in ��� ���
 then we conclude by continuity that F is associative� The
content of A� is precisely that the set of such triples is dense in ��� ���� Of course
 if W
is �nite
 we cannot have density� As my counterexample shows
 we do not in general have
associativity in �nite domains� Moreover
 this lack of associativity can result in the failure
of Coxs theorem�

A similar problem seems to exist in Acz�els proof �as already observed by Paris ��������
While Acz�els proof does not involve showing that F is associative
 it does involve showing
that G is associative� Again
 it is not hard to show that G is associative for appropriate
triples
 just as is the case for F � But it seems that Acz�el also needs an assumption that
guarantees that the appropriate set of triples is dense
 and it is not clear that his assumptions

��
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do in fact guarantee this�� As shown in Section �
 the problem also arises in Reichenbachs
proof�
The counterexample to Coxs theorem
 with slight modi�cations
 can also be used to

show that another well�known result in the literature is not completely correct� In his sem�
inal book on probability and qualitative probability ������
 Fine considers a non�numeric
notion of comparative �conditional� probability
 which allows us to say �U given V is at least
as probable as U � given V ��
 denoted U jV � U �jV �� Conditions on � are given that are
claimed to force the existence of �among other things� a function Bel such that U jV � U �jV �

i� Bel�U jV � � Bel�U �jV �� and an associative function F satisfying A�� �This is Theorem
� of Chapter II in �Fine
 ������� However
 the Bel de�ned in my counterexample to Coxs
theorem can be used to give a counterexample to this result as well�
Interestingly
 this is not the �rst time a similar error has been noted in the use of

functional equations� Falmagne ������ gives another example �in a case involving a utility
model of choice behavior� and mentions that he knows �of at least two similar examples in
the psychological literature��
The remainder of this paper is organized as follows� In the next section there is a more

detailed discussion of the problem in Coxs proof� The counterexample to Coxs theorem is
given in Section �� The following section shows that it is also a counterexample to Fines
theorem� Section � concludes with some discussion
 particularly of assumptions under which
Coxs theorem might hold�

�� The Problem With Cox�s Proof

To understand the problems with Coxs proof
 I actually consider Reichenbachs proof

which is similar in spirit Coxs proof �it is actually even closer to Acz�els proof�
 but uses
some additional assumptions
 which makes it easier to explain in detail� Acz�el
 Cox
 and
Reichenbach all make critical use of functional equations in their proof
 and they make the
same �seemingly unjusti�ed� leap at corresponding points in their proofs�
In the notation of this paper
 Reichenbach �����
 pp� ������ assumes ��� that the range

of Bel�j� is a subset of ��� ��
 ��� Bel�V jU� 	 � if U � V 
 ��� that if V and V � are disjoint

then Bel�V �V �jU� 	 Bel�V jU��Bel�V �jU� �thus
 he assumes that A� holds
 with G being
��
 and ��� that A� holds with a function F that is di�erentiable� �He remarks that the
result holds even without assumption ���
 although the proof is more complicated� Acz�el in
fact does not make an assumption like �����
Reichenbachs proof proceeds as follows� Replacing V � in A� by V� � V
 where V� and

V are disjoint
 we get that

Bel�V � �V� � V�jU� 	 F �Bel�V� � VjV � U��Bel�V jU��� ���

Using the fact that G is �
 we immediately get

Bel�V � �V� � V�jU� 	 Bel�V � V�jU� � Bel�V � VjU� ���

�� I should stress that my counterexample is not a counterexample to Acz	els theorem� since he explicitly
assumes that the range of Bel is in�nite� However� it does point out potential problems with his proof�
and certainly shows that his argument does not apply to �nite domains� Acz	el is in fact aware of the
problems with his proof �private communication� ������ He later proved results in a similar spirit with
the aid of a requirement of nonatomicity �Acz	el � Daroczy� ����� pp� ����� which is in fact a stronger
requirement than A�� and thus also requires the domain to be in�nite�

�	
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and
F �Bel�V� � VjV � U��Bel�V jU��
	 F �Bel�V�jV � U� � Bel�VjV � U��Bel�V jU��

���

Moreover
 by A�
 we also have
 for i 	 �� �


Bel�V � VijU� 	 F �Bel�V � VijV � U��Bel�V jU��� ���

Putting together ���
 ���
 ���
 and ���
 we get that

F �Bel�V � V�jV � U��Bel�V jU�� � F �Bel�V � VjV � U��Bel�V jU��
	 F �Bel�V � V�jV � U� � Bel�V � VjV � U��Bel�V jU���

���

Taking x 	 Bel�V �V�jV �U�
 y 	 Bel�V � VjV �U�
 and z 	 Bel�V jU� in ���
 we get
the functional equation

F �x� z� � F �y� z� 	 F �x� y� z�� ���

Suppose that we assume �as Reichenbach implicitly does� that this functional equation
holds for all �x� y� z� � P 	 f�x� y� z� � ��� ��� � x�y 	 �g� The rest of the proof now follows
easily� First
 taking x 	 � in ���
 it follows that

F ��� z� � F �y� z� 	 F �y� z��

from which we get that
F ��� z� 	 ��

Next
 �x z and let gz�x� 	 F �x� z�� Since F is
 by assumption
 di�erentiable
 from ��� we
have that

g�z�x� 	 lim
y��

�F �x� y� z�� F �x� z��y� 	 lim
y��

F �y� z��y�

It thus follows that g�z�x� is a constant
 independent of x� Since the constant may depend
on z
 there is some function h such that g�z�x� 	 h�z�� Using the fact that F ��� z� 	 �

elementary calculus tells us that

gz�x� 	 F �x� z� 	 h�z�x�

Using the assumption that for all U� V 
 we have Bel�V jU� 	 � if U � V 
 we get that

Bel�V jU� 	 Bel�V � V jU� 	 F �Bel�V jV � U��Bel�V jU�� 	 F ���Bel�V jU���

Thus
 we have that
F ��� z� 	 h�z� 	 z�

We conclude that F �x� z� 	 xz�
Note
 however
 that this conclusion depends in a crucial way on the assumption that

the functional equation ��� holds for all �x� y� z� � P �
 In fact
 all that we can conclude
from ��� is that it holds for all �x� y� z� such that there exist U 
 V 
 V�
 and V
 with V� and
V disjoint
 such that x 	 Bel�V � V�jV � U�
 y 	 Bel�V � VjV � U�
 and z 	 Bel�V jU��

�� Actually� using the continuity of F � it su�ces that the functional equation holds for a set of triples which
is dense in P �

�
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Let us say that a triple that satis�es this condition is R�constrained �since it must satisfy
certain constraints imposed by the F and G functions� the R here is for Reichenbach
 to
distinguish this notion from a similar one de�ned in the next section�� As I mentioned
earlier
 Acz�el also assumes that Bel�V jU� takes on all values in �e�E�
 where e 	 Bel��jU�
and E 	 Bel�U jU�� �In Reichenbachs formulation
 e 	 � and E 	 ��� There are two ways
to interpret this assumption� The weak interpretation is that for each x � ��� ��
 there exist
U� V such that Bel�V jU� 	 x� The strong interpretation is that for each U and x
 there
exists V such that Bel�V jU� 	 x� It is not clear which interpretation is intended by Acz�el�
Neither one obviously su�ces to prove that every triple in P is R�constrained
 although it
does seem plausible that it might follow from the second assumption�

In any case
 neither Acz�el nor Reichenbach see a need to check that Equation ��� holds
throughout P � �Nor does Cox for his analogous functional equation
 nor do the authors of
more recent and polished presentations of Coxs result
 such as Jaynes ������ and Tribus
�������� However
 it turns out to be quite necessary to do this� Moreover
 it is clear that if
W is �nite
 there are only �nitely tuples in P that are R�constrained
 and it is not the case
that all of P is� As we shall see in the next section
 this observation has serious consequences
as far as all these proofs are concerned�

�� The Counterexample to Cox�s Theorem

The goal of this section is to prove

Theorem ���� There is a function Bel�� a �nite domain W � and functions S� F � and G
satisfying A�� A�� and A� respectively such that

� Bel��V jU� � ��� �� for U �	 ��

� S�x� 	 �� x �so that S is strictly decreasing and in�nitely di�erentiable��

� G�x� y� 	 x � y �so that G is strictly increasing in each argument and is in�nitely

di�erentiable��

� F is in�nitely di�erentiable� nondecreasing in each argument in ��� ��� and strictly in�
creasing in each argument in ��� ��	 Moreover� F is commutative� F �x� �� 	 F ��� x� 	
�� and F �x� �� 	 F ��� x� 	 x	

However� there is no one�to�one onto function g � ��� ��� ��� �� satisfying ���	

Note that the hypotheses on Bel�
 S
 G
 and F are at least as strong as those made in all
the other variants of Coxs result
 while the assumptions on g are weaker than those made
in the variants� For example
 there is no requirement that g be continuous or increasing
nor that g � Bel� is a probability distribution �although Paris and Acz�el both prove that

under their assumptions
 g can be taken to satisfy all these requirements�� This serves to
make the counterexample quite strong�

��
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The proof of Theorem ��� is constructive� Consider a domain W with �� points�
w�� ���� w�� We associate with each point w �W a weight f�w�
 as follows�

f�w�� 	 � f�w�� 	 �� ��
�

f�w� 	 � f�w
� 	 �� ��
�

f�w�� 	 � f�w�� 	 �� ��
�

f�w�� 	 �� ��
	 f�w��� 	 �� ��

�	

f�w	� 	 �� ��
	 f�w��� 	 �� ��

�	

f�w�� 	 �� ��
	 f�w�� 	 ��� ��

�	

For a subset U of W 
 we de�ne f�U� 	
P

w�U f�w�� Thus
 we can de�ne a probability
distribution Pr on W by taking Pr�U� 	 f�U��f�W ��
Let f � be identical to f 
 except that f ��w��� 	 �� � 	� � ���	 and f ��w��� 	 �� �

	� � ���	
 where 	 is de�ned below� Again
 we extend f � to subsets of W by de�ning
f ��U� 	

P
w�U f ��w�� Let W � 	 fw��� w��� w�g� If U �	 �
 de�ne

Bel��V jU� 	

�
f ��V � U��f�U� if W � � U
f�V � U��f�U� otherwise�

Bel� is clearly very close to Pr� If U �	 �
 then it is easy to see that jBel��V jU��Pr�V jU�j 	
jf ��V � U�� f�V � U�j�f�U� 	 	� We choose 	 � � so that

if Pr�V jU� � Pr�V �jU ��
 then Bel��V jU� � Bel��V
�jU ��� ���

Since the range of Pr is �nite
 all su�ciently small 	 satisfy ����
The exact choice of weights above is not particularly important� One thing that is

important though is the following collection of equalities�

Pr�w�jfw�� wg� 	 Pr�w��jfw��� w��g� 	 ���
Pr�fw�� wgjfw�� w� w�g� 	 Pr�w�jfw�� w
g� 	 ����
Pr�fw�� w
gjfw�� w
� w�g� 	 Pr�fw�� w	gjfw�� w	� w�g� 	 �����
Pr�w�jfw�� w
� w�g� 	 Pr�fw��� w��gjfw��� w��� w�g� 	 ����
Pr�w�jfw�� w� w�g� 	 Pr�w�jfw�� w	g� 	 �����

���

It is easy to check that exactly the same equalities hold if we replace Pr by Bel��
We show that Bel� satis�es the requirements of Theorem ��� by a sequence of lemmas�

The �rst lemma is the key to showing that Bel� cannot be isomorphic to a probability func�
tion� It uses the fact �proved in Lemma ���� that if Bel� were isomorphic to a probability
function
 then there would have to be a function F satisfying A� that is associative� Al�
though
 as is shown in Lemma ���
 the function F satisfying A� can be taken to be in�nitely
di�erentiable and increasing in each argument
 the equalities in ��� su�ce to guarantee that
it cannot be taken to be associative
 that is
 we do not in general have

F �x� F �y� z�� 	 F �F �x� y�� z��

Indeed
 there is no associative function F satisfying A�
 even if we drop the requirements
that F be di�erentiable or increasing�

��
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Lemma ���� For Bel� as de�ned above� there is no associative function F satisfying A�	

Proof� Suppose there were such a function F � From ���
 we must have that

F ������ ������
	 F �Bel��w�jfw�� w
g��Bel��fw�� w
gjfw�� w
� w�g��
	 Bel��w�jfw�� w
� w�g� 	 ����

and that
F ����� �����

	 F �Bel��w�jfw�� wg��Bel��fw�� wgjfw�� w� w�g��
	 Bel��w�jfw�� w� w�g� 	 �����

It follows that
F ����� F ������ ������� 	 F ����� �����

and that
F �F ����� ������ ������ 	 F ������ �������

Thus
 if F were associative
 we would have

F ����� ����� 	 F ������ �������

On the other hand
 from ��� again
 we see that

F ����� �����
	 F �Bel��w��jfw��� w��g��Bel��fw��� w��gjfw��� w��� w�g��
	 Bel��w��jfw��� w��� w�g� 	 ��� 	�����

while
F ������ ������

	 F �Bel��w�jfw�� w	g��Bel��fw�� w	gjfw�� w	� w�g��
	 Bel��w�jfw�� w	� w�g� 	 �����

It follows that F cannot be associative� ut

To understand how Lemma ��� relates to our discussion in Section � of the problems
with Reichenbachs proof
 we say �x� y� z� is a constrained triple if there exist sets U� 
 U 

U� 
 U� with U� �	 � such that x 	 Bel��U�jU��
 y 	 Bel��U�jU�
 and z 	 Bel��UjU���
It is easy to see that A� forces F to be associative on constrained triples
 since if w 	
Bel��U�jU�� and w� 	 Bel��U�jU�
 by A�
 we have F �x� F �y� z�� 	 F �x�w� 	 Bel��U�jU��
and F �F �x� y�� z� 	 F �w�� z� 	 Bel��U�� U��� A� says that the set of constrained triples is
dense in ��� ����
We similarly de�ne �x� y� to be a constrained pair if there exist sets U� 
 U 
 U�

with U �	 � such that x 	 Bel��U�jU� and y 	 Bel��UjU��� We say that �U�� U� U��
corresponds to the constrained pair �x� y�� �Note that there may be more than one triple
of sets corresponding to a constrained pair�� If �U�� U� U�� corresponds to the constrained
pair �x� y� and F satis�es A�
 then we must have F �x� y� 	 Bel��U�jU��� Note that both
����� ����� and ������ ������ are constrained pairs
 although the triple ����� ����� ������
is not constrained� It is this fact that we use in Lemma ����
The next lemma shows that Bel� cannot be isomorphic to a probability function�

�
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Lemma ���� For Bel� as de�ned above� there is no one�to�one onto function g � ��� �� �
��� �� satisfying ���	

Proof� Suppose there were such a function g� First note that g�Bel��U�� �	 � if U �	 �� For
if g�Bel��U�� 	 �
 then it follows from ��� that for all V � U 
 we have

g�Bel��V �� 	 g�Bel��V jU��� g�Bel��U�� 	 g�Bel��V jU��� � 	 ��

Thus
 g�Bel��V �� 	 g�Bel��U�� for all subsets V of U � Since the de�nition of Bel� guarantees
that Bel��V � �	 Bel��U� if V is a strict subset of U 
 this contradicts the assumption that g
is one�to�one� Thus
 g�Bel��U�� �	 � if U �	 �� It now follows from ��� that if U �	 �
 then

g�Bel��V jU�� 	 g�Bel��V � U���g�Bel��U��� ����

Now de�ne F �x� y� 	 g���g�x�� g�y��� We show that F de�ned in this way satis�es A�
and is associative� This will give us a contradiction to Lemma ����
To see that F satis�es A�
 notice that
 by applying the observation above repeatedly
 if

V � U �	 �
 we get

F �Bel��V
�jV � U��Bel��V jU��

	 g����g�Bel��V
�jV � U��� g�Bel��V jU��

	 g����g�Bel��V
� � V � U���g�Bel��V � U���� �g�Bel��V � U���g�Bel��U����

	 g���g�Bel��V
� � V � U���g�Bel��U���

	 g���g�Bel��V
� � V jU���

	 Bel��V
� � V jU��

Thus
 F satis�es A��
To see that F is associative
 note that

F �F �x� y�� z� 	 g���g�g���g�x� � g�y��� � g�z��
	 g���g�x� � g�y�� g�z��
	 g���g�x� � g�g���g�y� � g�z����
	 F �x� F �y� z���

This gives us the desired contradiction to Lemma ���� It follows that Bel� cannot be
isomorphic to a probability function� ut

Despite the fact that Bel� is not isomorphic to a probability function
 functions S
 F 
 and
G can be de�ned that satisfy A�
 A�
 and A�
 respectively
 and all the other requirements
stated in Theorem ���� The argument for S and G is easy� all the work goes into proving
that an appropriate F exists�

Lemma ��� � There exists an in�nitely di�erentiable� strictly decreasing function S �
��� �� � ��� �� such that Bel��V jU� 	 S�Bel��V jU�� for all sets U� V � W with U �	 �	
In fact� we can take S�x� 	 �� x	

Proof� This is immediate from the observation that Bel��V jU� 	 ��Bel��V jU� for U� V �
W � ut

��
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Lemma ���� There exists an in�nitely di�erentiable function G � ��� �� � ��� ��� increasing
in each argument� such that if U� V� V � �W � V �V � 	 �� and U �	 �� then Bel��V �V

�jU� 	
G�Bel��V jU��Bel��V

�� U��	 In fact� we can take G�x� y� 	 x� y	

Proof� This is immediate from the de�nition of Bel�� ut

Thus
 all that remains is to show that an appropriate F exists� The key step is provided
by the following lemma
 which essentially shows that there is a well de�ned F that is
increasing�

Lemma ���� If U � U� �	 � and V � V� �	 �� then

�a� if Bel��V�jV �V�� 	 Bel��U�jU �U�� and Bel��VjV�� 	 Bel��UjU��� then Bel��V� �
VjV�� 	 Bel��U� � UjU���

�b� if Bel��V�jV�V�� � Bel��U�jU�U��� Bel��VjV�� 	 Bel��UjU��� Bel��U�jU�U�� �
�� and Bel��UjU�� � �� then Bel��V� � VjV�� � Bel��U� � UjU���

�c� if Bel��V�jV�V�� 	 Bel��U�jU�U��� Bel��VjV�� � Bel��UjU��� Bel��U�jU�U�� �
�� and Bel��UjU�� � �� then Bel��V� � VjV�� � Bel��U� � UjU���

Proof� First observe that if Bel��V�jV � V�� 	 Bel��U�jU � U�� and Bel��VjV�� 	
Bel��UjU��
 then from ���
 it follows that Pr�V�jV�V�� 	 Pr�U�jU�U�� and Pr�VjV�� 	
Pr�UjU��� If we have either Pr�V�jV�V�� � Pr�U�jU�U�� or Pr�VjV�� � Pr�UjU��
 then
we have either Pr�V� � VjV�� � Pr�U� � UjU�� or Pr�U�jU � U�� 	 � or Pr�UjU�� 	 ��
It follows that either Bel��V� � VjV�� � Bel��U� � UjU�� �this uses ��� again� or that
Bel��V� � VjV�� 	 Bel��U� � UjU�� 	 �� In either case
 the lemma holds�
Thus
 it remains to deal with the case that Pr�V�jV � V�� 	 Pr�U�jU � U�� and

Pr�VjV�� 	 Pr�UjU��
 and hence Pr�V� � VjV�� 	 Pr�U� � UjU��� The details of this
analysis are left to the appendix� ut

Lemma ���� There exists a function F � ��� �� � ��� �� satisfying all the assumptions of

Theorem �	� �with respect to Bel��	

Proof� De�ne a partial function F � on ��� �� whose domain D consists of all constrained
pairs� For a constrained pair
 we de�ne F � in the unique way required to satisfy A��
A priori
 F � may not be well de�ned� it is possible that there exist triples �U�� U� U��
and �V�� V� V�� that both correspond to �x� y� �i�e�
 x 	 Bel��U�jU� 	 Bel��V�jV� and
y 	 Bel��UjU�� 	 Bel��VjV��� such that Bel��U�jU�� �	 Bel��V�jV��� If this were the case

then F ��x� y� would not be well de�ned� However
 Lemma ��� says that this cannot happen�
Moreover
 Lemma ��� assures us that F � is increasing on D
 and strictly increasing as long
as one of its arguments is not �� Indeed
 if there is a triple �U�� U� U�� corresponding to
�x� y� such that fw��� w��� w�g �� U�
 then we must have F

��x� y� 	 xy�
The domain D of F � is �nite� Let D� be the commutative closure of D
 so that D�

consists of D and all pairs �y� x� such that �x� y� is in D� Extend F � to a commutative
function F �� on D� by de�ning F ���y� x� 	 F ��x� y� if �x� y� � D� F �� is well de�ned because

as can easily be veri�ed
 if �x� y� and �y� x� are both in D
 one of x or y must be �
 and

��
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F ��x� �� 	 F ���� x� 	 x� Clearly F �� is commutative� It is also increasing� For suppose
�x� y�� �x�� y�� � D�
 x 	 x�
 and y 	 y�� If both �x� y� and �x�� y�� are in D
 we must have
F ���x� y� 	 F ���x�� y��
 since F � is increasing� Similarly
 if both �y� x� and �y�� x�� are in D

we must have F ���x� y� 	 F ��y� x� 	 F ��y�� x�� 	 F ���x�� y��� Finally
 if �x� y� and �y�� x�� are
in D
 a straightforward check over all possible elements in D shows that this can happen
only if the triples �U�� U� U�� and �V�� V� V�� corresponding to �x� y� and �y

�� x�� are such
that fw��� w��� w�g is not a subset of either U� or V�� It follows that F

��x� y� 	 xy and
F ��y�� x�� 	 x�y�
 so again we get that F �� is increasing� A similar argument shows that F ��

is strictly increasing as long as one of its arguments is not ��

It is straightforward to extend F �� to a commutative
 in�nitely di�erentiable
 and in�
creasing function F de�ned on all of ��� ��
 which is strictly increasing on ��� ��
 and satis�es
F �x� �� 	 F ��� x� 	 x and F �x� �� 	 F ��� x� 	 �� We proceed as follows� We �rst extend
F �� so that it is de�ned for all pairs �x� y� � ��� �� such that x � y so that it has the required
properties� If x � y
 we then de�ne so that F �x� y� 	 F �y� x�� Since F �� is commutative

this de�nition agrees with F ���x� y� for x � y� Clearly F is commutative and in�nitely
di�erentiable� To see that F is increasing
 suppose that x 	 x� and y 	 y�� Just as in the
case of F ��
 it is immediate that F is increasing if both x � y and x� � y� or both x � y and
x� � y�� Otherwise
 suppose x � y and y� � x�� Then we have y 	 x 	 x� 	 y�� Since F is
increasing on f�x� y� � x � yg
 we have F �x� y� 	 F �x�� y� 	 F �x�� x�� 	 F �y�� x�� 	 F �x�� y���
A similar argument shows that F is strictly increasing unless one its arguments is �� Finally

F clearly satis�es A�
 since �by construction� F � does
 and A� puts constraints only on the
domain of F �� ut

Theorem ��� now follows from Lemmas ���
 ���
 ���
 and ����

�� The Counterexample to Fine�s Theorem

Fine is interested in what he calls comparative conditional probability� Thus
 rather than
associating a real number with each �conditional object� V jU 
 he puts an ordering � on
such objects� As usual
 V jU � V �jU � is taken to be an abbreviation for V jU � V �jU � and
not�V �jU � � V jU��
Fine is interested in when such an ordering is induced by a real�valued belief function

with reasonable properties� He says that a real�valued function P on such objects agrees
with � if P �V jU� � P �V �jU �� i� V jU � V �jU �� Fine then considers a number of axioms
that � might satisfy� For our purposes
 the most relevant are the ones Fine denotes QCC�

QCC�
 QCC�
 and QCC��

QCC� just says that � is a linear order�

QCC�� V jU � V �jU � or V �jU � � V jU �

QCC� says that � is transitive�

QCC�� If V�jU� � VjU and VjU � V�jU�
 then V�jU� � V�jU��

QCC� is a technical condition involving notions of order topology� The relevant de�ni�
tions are omitted here �see �Fine
 ����� for details�
 since QCC�
 as Fine observes
 holds
vacuously in �nite domains �the only ones of interest here��
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QCC�� The set fV jUg has a countable basis in the order topology induced by ��

Finally
 QCC� essentially says that � is increasing
 in the sense of Lemma ����

QCC��

�a� If V�jV � V� � U�jU � U� and VjV� � UjU� then V� � VjV� � U� � UjU��

�b� If V�jV � V� � UjU� and VjV� � U�jU � U� then V� � VjV� � U� � UjU��

�c� If V�jV � V� � U�jU � U�
 VjV� � UjU�
 and VjV� � �jW 
 then V� � VjV� �
U� � UjU��

Fine then claims the following theorem�

Fine	s Theorem� �Fine
 ����
 Chapter II
 Theorem �� If � satis�es QCC�� QCC�� QCC
�

then there exists some agreeing function P 	 There exists a function F of two variables such

that

�	 P �V � V �jU� 	 F �P �V �jV � U�� P �V jU����

�	 F �x� y� 	 F �y� x��

�	 F �x� y� is increasing in x for y � P ��jW ��

�	 F �x� F �y� z�� 	 F �F �x� y�� z��


	 F �P �W jU�� y� 	 y�

�	 F �P ��jU�� y� 	 P ��jU�	

i� � also satis�es QCC	

The only relevant clauses for our purposes are Clause ���
 which is just A�
 and Clause
���
 which says that F is associative� As Lemma ��� shows
 there is no associative function
satisfying A� for Bel�� As I now show
 this means that Fines theorem does not quite hold
either�
Before doing so
 let me brie�y touch on a subtle issue regarding the domain of �� In

the counterexample of the previous section
 Bel��V jU� is de�ned as long as U �	 �� Fine
does not assume that the � relation is necessarily de�ned on all objects V jU such that
U� V � W and U �	 �� He assumes that there is an algebra F of subsets of W �that is
 a
set of subsets closed under �nite intersections and complementation� and a subset F � of F
closed under �nite intersections and not containing the empty set such that � is de�ned on
conditional objects V jU such that V � F and U � F �� Since F � is closed under intersection
and does not contain the empty set
 F � cannot contain disjoint sets� If W is �nite
 then
the only way a collection F � can meet Fines restriction is if there is some nonempty set U�

such that all elements in F � contain U�� This restriction is clearly too strong to the extent
that comparative conditional probability is intended to generalize probability� If Pr is a
probability function
 then it certainly makes sense to compare Pr�V jU� and Pr�V �jU �� even

�� Fine assumes that P �V � V �jU� � F �P �V jU�� P �V �jV � U��� I have reordered the arguments here for
consistency with Coxs theorem�
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if U and U � are disjoint sets� Fine �private communication
 ����� suggested that it might
be better to constrain QCC� so that we do not condition on events U that are equivalent to
� �where U is equivalent to � if � � U and U � ��� Since the only event equivalent to � in
the counterexample of the previous section is � itself
 this means that the counterexample
can be used without change� This is what is done in the proof below� I show below how to
modify the counterexample so that it satis�es Fines original restrictions�

Theorem ���� There exists an ordering � satisfying QCC�� QCC�� QCC
� and QCC�

such that for every function P agreeing with �� there is no associative function F of two

variables such that P �V � V ��jU� 	 F �P �V �jV � U�� P �V jU��	

Proof� Let W and Bel� be as in the counterexample in the previous section� De�ne �
so that Bel� agrees with �� Thus
 V jU � V �jU � i� Bel��V jU� � Bel��V

�jU ��� Clearly
� satis�es QCC� and QCC�� As was mentioned earlier
 since W is �nite
 � vacuously
satis�es QCC�� Lemma ��� shows that � satis�es parts �a� and �c� of QCC�� To show that
� also satis�es part �b� of QCC�
 we must prove that if Bel��V�jV�V�� � Bel��UjU�� and
Bel��VjV�� � Bel��U�jU � U��
 then Bel��V� � VjV�� � Bel��U� � UjU��� The proof of
this is almost identical to that of Lemma ���� we simply exchange the roles of Pr�VjV�� and
Pr�V�jV�V�� in that proof� I leave the details to the reader� Lemma ��� shows that there is
no associative function F satisfying A� for Bel�� All that was used in the proof was the fact
that Bel� satis�ed the inequalities of ���� But these equalities must hold for any function
agreeing with �� Thus
 exactly the same proof shows that if P is any function agreeing with
�
 then there is no associative function F satisfying P �V �V �jU� 	 F �P �V �jV �U�� P �V jU���
ut

I conclude this section by brie�y sketching how the counterexample can be modi�ed so
that it satis�es Fines original restriction� Rede�ne W by adding one more element w��
Rede�ne f and f � so that f�w�� 	 f ��w�� 	 ��

�
� in addition
 rede�ne f and f � on w�
 w�

w�
 and w�
 so as to decrease their weight by ��

�

 the weight of w�� Thus


� f�w�� 	 f ��w�� 	 �� ��
�



� f�w�� 	 f ��w�� 	 �� ��
� � ���



� f�w�� 	 f ��w�� 	 �� ��
	 � ���

 and

� f�w�� 	 f ��w�� 	 ��� ��
�	 � ���
�

Finally
 rede�ne W � to be fw�� w��� w��� w�g� The de�nition of Bel� in terms of f 
 f
�
 and

W � remains the same� With these rede�nitions
 the proofs of the previous section go through
essentially unchanged� In particular
 the equalities in ��� now hold if we add w� to every set�
Let F � consist of all subsets of W containing w�� Notice that F

� is closed under intersection
and does not contain the empty set� The lack of associativity in Lemma ��� can now be
demonstrated by conditioning on sets in F �� As a consequence
 we get a counterexample to
Fines theorem even when restricting to conditional objects that satisfy his restriction�
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�� Discussion

Let me summarize the status of various results in the light of the counterexample of this
paper�

� Coxs theorem as originally stated does not hold in �nite domains� Moreover
 even
in in�nite domains
 the counterexample and the discussion in Section � suggest that
more assumptions are required for its correctness� In particular
 the claim in his proof
that F is associative does not follow�

� Although the counterexample given here is not a counterexample to Acz�els theo�
rem
 his assumptions do not seem strong enough to guarantee that the function G is
associative
 as he claims it is�

� The variants of Coxs theorem stated by Heckerman ������
 Horvitz
 Heckerman
 and
Langlotz ������
 and Aleliunas ������ all succumb to the counterexample�

� The claim that the function F must be associative in Fines theorem is incorrect�
Fine has an analogous result �Fine
 ����
 Chapter II
 Theorem �� for unconditional
comparative probability involving a function G as in Acz�els theorem� This function
too is claimed to be associative
 and again
 this does not seem to follow �although my
counterexample does not apply to that theorem��

Of course
 the interesting question now is what it would take to recover Coxs theo�
rem� Pariss assumption A� su�ces
 as does the stronger assumption of nonatomicity �see
Footnote ��� As we have observed
 A� forces the domain of Bel to be in�nite
 as does the
assumption that the range of Bel is all of ��� ��� We can always extend a domain to an
in�nite�indeed
 uncountable�domain by assuming that we have an in�nite collection of
independent fair coins
 and that we can talk about outcomes of coin tosses as well as the
original events in the domain� �This type of �extendibility� assumption is fairly standard�
for example
 it is made by Savage ������ in quite a di�erent context�� In such an extended
domain
 it seems reasonable to also assume that Bel varies uniformly between � �certain
falsehood� and � �certain truth�� If we also assume A� �or something like it�
 we can then
recover Coxs theorem� Notice
 however
 that this viewpoint disallows a notion of belief
that takes on only �nitely many gradations�

Another possibility is to observe that we are not interested in just one domain in isola�
tion� Rather
 what we are interested in is a notion of belief Bel that applies uniformly to all
domains� Thus
 even if �U� V � and �U �� V �� are pairs of subsets of di�erent �perhaps even
disjoint� domains
 if Bel�V jU� and Bel�V �jU �� are both ���
 then we would expect this to
denote the same relative strength of belief� In this setting
 an analogue of A� seems more
reasonable� That is
 we can assume that for all � 	 �� �� � 	 � and � � �
 there is some
domain W and subsets U�
 U
 U�
 and U� of W such that the conclusion of A� holds� If
we further assume that the functions F 
 G
 and S are also uniform across domains �that is

that A�
 A�
 and A� hold for the same choice of F 
 G
 and S in every domain�
 then we
can again recover Coxs theorem��

�� This point was independently observed by Je� Paris �private communication� ������
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The idea of having a notion of uncertainty that applies uniformly in all domains seems
implicit in some discussion in that Jaynes recent book on probability theory ������� Jaynes
focuses almost exclusively on �nite domains�	 As he says �In principle
 every problem must
start with such �nite set probabilities� extensions to in�nite sets is permitted only when
this is the result of a well�de�ned and well�behaved limiting process from a �nite set�� To
make sense of this limiting process
 it seems that Jaynes must be assuming that the same
notion of uncertainty applies in all domains� Moreover
 one can make arguments appealing
to continuity that when we consider such limiting processes
 we can always �nd subsets U�

U
 U�
 and U� in some su�ciently rich �but �nite� extension of the original domain such
that A� holds�
While this seems like perhaps the most reasonable additional assumptions required to

get Coxs result
 it does require us to consider many domains at once� Moreover
 it does
not allow a notion of belief that has only �nitely many gradations
 let alone a notion of
belief that allows some events to be considered incomparable in likelihood��

Suppose we really are interested in one particular �nite domain
 and we do not want
to extend it or consider all other possible domains� What assumptions do we then need
to get Coxs theorem� The counterexample given here could be circumvented by requiring
that F be associative on all tuples �rather than just on the constrained triples�� However
 if
we really are interested in a single domain
 the motivation for making requirements on the
behavior of F on belief values that do not arise is not so clear� Moreover
 it is far from clear
that assuming that F is associative su�ces to prove the theorem� For example
 Coxs proof
makes use of various functional equations involving F and S
 analogous to the equation ���
that appears in Section �� These functional equations are easily seen to hold for certain
tuples� However
 as we saw in Section �
 the proof really requires that they hold for all
tuples� Just assuming that F is associative does not appear to su�ce to guarantee that the
functional equations involving S hold for all tuples� Further assumptions appear necessary�
Nir Friedman �private communication� has conjectured that the following condition


which says that essentially all beliefs are distinct
 su�ces�

� if � � U � V 
 � � U � � V �
 and �U� V � �	 �U �� V ��
 then Bel�U jV � �	 Bel�U �jV ���

Even if this condition su�ces
 note that it precludes
 for example
 a uniform probability
distribution
 and thus again seems unduly restrictive�
Another possibly interesting line of research is that of characterizing the functions that

satisfy Coxs assumptions� As the example given here shows
 the class of such functions
includes functions that are not isomorphic to any probability function� I conjecture that in
fact it includes only functions that are in some sense �close� to a function isomorphic to a
probability distribution
 although it is not clear exactly how �close� should be de�ned �nor
how interesting this class really is in practice��
So what does all this say regarding the use of probability� Not much� Although I

have tried to argue here that Coxs justi�cation of probability is not quite as strong as

�� Actually� Jaynes assigns probability to propositions� not sets� but� as noted earlier� there is essentially
no di�erence between the two�

�� Interestingly� Jaynes ������ Appendix A� admits that having plausibility values be elements of a partially�
ordered lattice may be a reasonable alternative to traditional probability theory� Nir Friedman and I
������ ����� ����� have recently developed such a theory and shown that it provides a useful basis for
thinking about default reasoning and belief revision�
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previously believed
 and the assumptions underlying the variants of it need clari�cation

I am not trying to suggest that probability should be abandoned� There are many other
justi�cations for its use�
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Appendix A� Proof of Lemma ���

Recall that all that remains in the proof of Lemma ��� is to deal with the case that Pr�V�jV�
V�� 	 Pr�U�jU�U�� and Pr�VjV�� 	 Pr�UjU��
 and hence Pr�V��VjV�� 	 Pr�U��UjU���

Before proceeding with the proof
 it is useful to collect some general facts about Pr� A set
U is said to be standard if U is a subset of one of fw�� w� w�g
 fw�� w
� w�g
 fw�� w	� w�g
 or
fw��� w��� w�g� A real number a is said to be relevant if there exists some standard U and
some arbitrary V such that a 	 Pr�V jU�� Notice that even if U �	 � is nonstandard
 then

taking U � to be the standard subset of U which has the greatest weight
 then jPr�V jU� �
Pr�V jU ��j � ����� �This is the reason that the weights are multiplied by factors such as
���
 ��	
 and ���	�� Thus
 for any subsets V and U of W 
 we have that Pr�V jU� is close to
a relevant number �where �close� means �within �������

Call a triple �U� V� V �� of subsets of W good if Bel��V
� � V jU� 	 Bel��V

�jV � U� �
Bel��V jU�� Clearly if both �U�� U� U�� and �V�� V� V�� are good
 then the lemma holds�
Notice that if �U� V� V �� is not good
 then U 
 fw��� w��� w�g and f�V �fw��� w��� w�g� �	
f ��V � fw��� w��� w��g�
 which means that V � fw��� w��� w�g must contain one of w�� and
w��
 but not both
 and thus must be one of fw��g
 fw��g
 fw��� w�g
 or fw��� w�g�

Thus
 we may as well assume that at least one of �U�� U� U�� or �V�� V� V�� is not good�
In that case
 I claim that one of the following must hold�

� Bel��V� � VjV�� 	 Bel�V�jV � V�� 	 Bel��U�jU � U�� 	 Bel��U� � UjU�� 	 �

� U� � U � U� 	 U � U� and V� � V � V� 	 V � V�

� f�U�� 	 f�V�� and f�U� � U� 	 f�V� � V�

In the �rst case
 we have already seen that the lemma holds� In the second case
 we have
Bel��V� � VjV�� 	 Bel��VjV��
 Bel��U� � UjU�� 	 Bel��UjU��
 and Bel��V�jV � V�� 	
Bel��U�jU �U�� 	 �
 so the lemma is easily seen to hold� Finally
 in the third case
 notice
that since Pr�U � U�jU�� 	 Pr�V � V�jV��
 we must also have that f�U� � U � U�� 	
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f�V��V�V��� Moreover
 it is easy to see that all these equalities must hold if f is replaced
by f �� Again
 the lemma immediately follows�
To prove the claim
 for de�niteness
 assume that �U�� U� U�� is not good �an identical

argument works if �V�� V� V�� is not good�� From the characterization above of triples that
are not good
 it follows that f�U� � U� 	 a � ���	 � b and f�U�� 	 �� � ��

�	 � c
 where
a � f�� �� ��� ��g �depending on U �fw��� w��� w�g�
 and both b� c � ��� ��

	� Clearly
 the
relevant number closest to Pr�UjU�� is a���� Since Pr�VjV�� 	 Pr�UjU�� by assumption

Pr�VjV�� is also close to a���� Thus
 we must have that f�V� � V� 	 a � ��k � b� and
f�V�� 	 �����

k�c�
 where k � f�� �� �� ��g� In fact
 it is easy to see that k is either � or ��

since there are no relevant numbers of the form a��� �for a � f�� �� ��� ��g� that are close
to Pr�V jU� if U � fw�� w� w�� w�� w
� w�g� In addition
 if k 	 ��
 then b�� c� � �� � ��	

while if k 	 �
 then b�� c� � ��� ���� By standard arithmetic manipulation
 we have that

���	�ac� � ��b�� � ��k���b � ac� � �bc� � b�c� 	 ��

If k 	 �
 then it is easy to see that we must have

ac� � ��b� 	 �
 ��b� ac 	 � and bc� � b�c 	 �
 ����

while if k 	 ��
 then we must have

���b � b�� � a�c� � c� 	 � and bc� � b�c 	 �� ����

Now comes a case analysis� First suppose that k 	 �� Then we must have b� 	 c� 	 �

since if c� �	 �
 then from ���� we have that b��c� 	 a���
 and it is easy to see that there
do not exist sets T� and T such that f�T�� 	 b�
 f�T� 	 c�
 and b��c� 	 a���
 with
b�� c� 	 �� � ���� Thus
 it follows that Pr�UjU�� 	 Pr�VjV�� 	 a���� Moreover
 we must
have V� 	 fw�� w	� w�g and V�V� either fw�g or fw	� w�g
 depending on a� It follows that
Pr�V�jV � V�� must be one of f�� ���� �g� Since Pr�U�jU � U�� 	 Pr�V�jV � V��
 we must
have that Pr�U�jU�U�� � f�� ���� �g� Since U�U� contains exactly one of w�� and w��
 it
is easy to see that Pr�U�jU�U�� cannot be ���� If Pr�U�jU�U�� 	 Pr�V�jV�V�� 	 �
 then
U��U�U� 	 V��V�V� 	 �
 and we must have Bel��U��UjU�� 	 Bel��V��VjV�� 	 �

so the claim follows� On the other hand
 if Pr�U�jU � U�� 	 Pr�V�jV � V�� 	 �
 then
U� � U � U� 	 U � U� and V� � V � V� 	 V � V�
 and the claim again follows�
Now suppose k 	 ��� If c 	 c�
 then by ����
 we must have that b 	 b�� It immediately

follows that f�U�� 	 f�V�� and f�U� � U� 	 f�V� � V�
 so the claim holds� Thus
 we can
suppose c �	 c�� Suppose that c �	 � �an identical argument works if c �	 ��� Then there
exists some x �	 � such that c 	 xc�� Since bc�� b�c 	 �
 it follows that b 	 xb�� Substituting
xb� for b and xc� for c in ����
 we get that ��� x�b����� x�c� 	 a���
 from which it follows
that b��c� 	 a���� Moreover
 we also get that either b 	 c 	 � or b�c 	 a���� It is easy to
check that a must be either � or ��� If b�c 	 a���
 then we must have b 	 b� and c 	 c��
As we have seen
 this su�ces to prove the claim� Thus
 we can assume that b 	 c 	 �� But
this means that U� 	 fw��� w��� w�g
 and that U� � U is either fw��g or fw��� w�g� It
follows that the only possibilities for Pr�U�jU � U�� are �
 ���
 ���
 or �� It is easy to see
that Pr�V�jV �V�� cannot be ��� or ���
 while the cases where it is either � or � are easily
taken care of
 as above�
This completes the proof of the claim and of the lemma� ut

��
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