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Abstract

Cox’s theorem states that, under certain assumptions, any mea-
sure of belief is isomorphic to a probability measure. This theorem,
although intended as a justification of the subjectivist interpretation
of probability theory, is sometimes presented as an argument for more
controversial theses. Of particular interest is the thesis that the only
coherent means of representing uncertainty is via the probability calcu-
lus. In this paper I examine the logical assumptions of Cox’s theorem
and I show how these impinge on the philosophical conclusions thought
to be supported by the theorem. I show that the more controversial
thesis is not supported by Cox’s theorem.
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1 Introduction

Paul Benacerraf [6] once warned that when philosophical conclusions are ar-
gued from formal mathematical results, one should look very carefully at the
assumptions of the arguments in question. For any such argument cannot
rest on the formal result alone; there must be some philosophical premise,
and this is often illicitly smuggled through the back door. Benacerraf is
not suggesting that one can never draw philosophical conclusions from for-
mal results, or that all such arguments are flawed—just that it is important
to identify the often suppressed philosophical premises and to assess their
plausibility. I think this is very good advice and with this advice in mind I
wish to examine the formal result known as Cox’s theorem. This theorem
states that, under the assumptions of the theorem, any measure of belief
is isomorphic to a probability measure [9, 10]. The theorem has been used
to support a variety of philosophical conclusions, ranging from a justifica-
tion of the Bayesian approach to probability, to a more radical thesis that
probability is the only coherent representation of uncertainty. In particular,
I will examine the logical underpinnings of the theorem—classical propo-
sitional calculus—and show that, in certain contexts at least, these logical
assumptions are hard to defend. This, in turn, undermines the more radical
philosophical theses that the theorem might be thought to support. I begin
by discussing a kind of uncertainty for which classical logic is inappropriate.

2 Belief and Non-Epistemic Uncertainty

Agents typically do not believe propositions to degree one or zero. Belief
comes in degrees. This is because there is typically uncertainty about the
truth value of the proposition in question. Good epistemic agent recognise
this and set about quantifying the extent of the uncertainty and/or their
degree of certainty. Providing the details of a representation of reasoning
carried out by human (or more commonly, ideal) agents operating under
uncertainty is often referred to as the project of delivering the logic of plau-
sible inference.1 It is usually assumed that uncertainty arises because of
incomplete information—it is simply an epistemic matter. I will argue that
this is not the case. Some uncertainty may remain even when the agent is
in possession of all the relevant data. This is bad news for classical logic
and classical probability theory.

There are two ways in which an agent can be uncertain about the state of
a system. The first is familiar. This is where there is uncertainty about some
underlying fact of the matter: System S is either in state σ or it is not, but

1I share Glenn Shafer’s [48] concerns about the use of the term ‘plausible’ here, but
this term is well entrenched in the literature, and since I can think of no better term, I’ll
continue to use it. I stress however, that I am using the term more broadly than is usual.
I include any formal account of belief and reasoning under uncertainty.
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agent A does not know which. A might be in possession of some probabilistic
information about the state of S—either numerical (“the probability that
S is in state σ is x”) or non-numerical (“it’s more likely that S is in state
σ than not”). Call this epistemic uncertainty . Now compare this with a
second, quite different kind of uncertainty; uncertainty where there is no
fact of the matter about whether system S′ is in state σ′ or not. Indeed,
here the uncertainty arises because there is no underlying fact of the matter.
Call this second kind of uncertainty non-epistemic uncertainty . The idea
here is that, for reasons I’ll discuss shortly, the system S′ is neither in state
σ′ nor not in state σ′—S′ is not in a determinate state with respect to σ′.
It follows that even an agent in possession of all the relevant data will be
uncertain as to the truth value of the proposition ‘S′ is in state σ′’. (Or,
equivalently, the agent will not know the answer to the question ‘Is S′ in
state σ′?’)

It follows that if there are any instances of non-epistemic uncertainty, an
agent could not be in possession of probabilistic information in such cases.
After all, what would it mean to say that the probability that system S′ is
in state σ′ is x when there is no fact of the matter about the state of S′?
Classical probability theory presupposes that there is an underlying fact of
the matter. To see this we need only consider one of the axioms of classical
probability theory:

Pr(Q ∨ ¬Q) = 1.

This implies that the proposition Q ∨ ¬Q is certain (because it is a logical
truth). This axiom of probability theory is the probabilistic analogue of the
logical principle of excluded middle. It would thus seem that in any domain
where excluded middle fails, (classical) probability theory is an inappropriate
tool for representing uncertainty.2

Now there are several candidates for such domains, none of which, ad-
mittedly, are entirely uncontroversial. To start with, consider fictional dis-
course. In a work of fiction such as H.G. Wells’ The Time Machine there
is nothing more to the story than what is written (and perhaps the logi-
cal and natural implications of what is written). There is no fact of the
matter about details not in the story. So, for example, in the 1960 movie
of the novel the time traveller sets off for the future taking with him three
books. What were the three books? Well that’s (quite deliberately) not
part of the story so (plausibly) there’s no fact of the matter about what
the three books were. It seems that classical logic—in particular excluded
middle—fails here. It is not true that either the time traveller took or did
not take Descartes’ meditations with him. Moreover, the probability of this
disjunction is not one (as standard probability theory insists). Indeed, it
seems quite misguided to talk of probabilities at all in such cases.3 I should

2See [7], [13] and [14] for more on this issue.
3Some might insist that the question about what the books were is meaningless, but
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add that this example is not as irrelevant to science as it might at first seem.
Science makes wide use of fictional entities (like incompressible fluids, and
Turing machines) and others that turn out to be fictional (like the planet
Vulcan, which was supposed to have an orbit inside Mercury’s). And it is
clear that there are true propositions about such fictions—‘the halting prob-
lem is unsolvable’, for instance. So it won’t do to dismiss fictional discourse
as a mere philosophical curiosity.4

Another example of a domain in which excluded middle might be thought
to fail is mathematics. Consider the status of Goldbach’s conjecture: all
even numbers greater than two can be written as the sum of two primes.
At present this conjecture has not been proven nor has its negation been
proven. Now let’s suppose that you are a constructivist about mathematics.
That is, you believe that ‘P is true’ is just to say that P has a constructively
respectable proof from some constructively respectable set of axioms. It is
well known that such constructivists embrace intuitionistic logic where both
double negation elimination and excluded middle fail [26]. But even non-
constructivists may accept that there are no-fact-of-the-matter propositions
in mathematics. Take, for example, an independent question of set theory
such as the continuum hypothesis. Neither this nor its negation is prov-
able from the standard ZFC axioms—it is provably independent of those
axioms. Many non-constructivists (for example, mathematical fictionalists
like Hartry Field [12]) also believe that at least some independent statements
are neither true nor false (and so it is not true that such an independent
statement or its negation holds).

A third example of where excluded middle might be thought to fail is
in domains where vague predicates are employed. Let’s suppose that we
wish to know how many young people there are in a crowd. We might be
uncertain about this because there are some borderline cases. Take, for
example, someone who is in their late 20s. Do we count such a person
as young or not? There seems no definitive way to answer this question.
The problem is that the word ‘young’ is vague (in the sense that it permits
borderline cases).5 There are a some well-known approaches to vagueness
according to which excluded middle holds—for example, Williamson’s [55]

this is very hard to sustain. There is nothing ungrammatical about the sentence and the
meaning is perfectly clear. On what grounds is the case for the sentence’s meaningless
to be based? I can think of none. Indeed, the reason that some are inclined to call
such questions meaningless is because they do understand the meaning, see what the
implications are, and only then deny that it has meaning.

4See [20, pp. 70–73], [21, chap. 7] and [40, pp. 128–131] for more on the logic and
semantics of non-denoting fictional terms. Fictional discourse also raises problems at
the level of predicate logic. In classical predicate logic all names refer—even names like
‘Vulcan’. Another deviation from classical logic motivated by such considerations is free
logic where “empty” names are permitted. See [17], [18], [35] and [43].

5It’s also context sensitive. But let’s put that aside; let’s assume that the context is
fixed. I should also mention that vagueness is rather widespread in both natural language
and in science so it is unreasonable to dismiss it as another philosophical curiosity. See
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epistemic account of vagueness, the supervaluational account ([15]; [51]) and
the paraconsistent approach ([4]; [28]; [29]). Still, rejecting excluded middle
remains a very plausible strategy.6

Indeed, those who would like to apply probability theory to domains
with vague predicates should take little comfort from the above excluded-
middle-preserving approaches. For example, on what is generally thought
to be the leading contender among these approaches—the supervaluational
account—probabilities are still out of place. Although P ∨¬P is a theorem,
if P is borderline, P is usually thought to be neither true nor false. In either
case, it seems to make little sense to speak of the probability of P being true
(when P is borderline). On the paraconsistent approach, excluded middle
is preserved at the expense of (one sense of) the law of non-contradiction.
That is, borderline statements (such as ‘a 28 year old is young’) are seen as
both true and false. That is, we have some true instances of P ∧¬P . Those
who find giving up excluded middle objectionable are unlikely to be happy
with this. Williamson’s epistemic approach (according to which there is an
unknowable fact of the matter concerning borderline cases) is the only option
that would seem palatable to defenders of the view that probability theory
is appropriate in such domains. The problem is that Williamson’s view is
deeply unintuitive and finds few supporters because of this. It would be
inappropriate to try to settle the matter of the correct account of vagueness
here; I simply mention vagueness as another very plausible source of non-
epistemic uncertainty.

It is worth pausing for a moment here to emphasise how vagueness gives
rise to uncertainty. Consider a scientific question such as ‘how many species
are there in a given eco-system?’ Obviously there will be epistemic uncer-
tainty associated with this question but let us suppose that an agent is in
possession of all the relevant data. It turns out that even in possession of all
the data, the answer to the question may remain out of reach because of the
vagueness of the scientific terms ‘eco-system’ and ‘species’. The boundary
of a eco-system will always admit borderline cases. Less obvious, perhaps,
is that the term ‘species’ is vague. Consider the possibility of a speciation
event occurring at the moment that the question is asked. Do we count the
species in question as one or two? It is also worth stressing that no further
information can be brought to light that will settle the matter. Perhaps we
must settle for upper and lower bounds as the answer to the question. In
the example of a speciation event taking place, we might give the interval
[n, n + 1] as our answer. So we see that vagueness can give rise to this
peculiar kind of uncertainty—an uncertainty that cannot be eliminated by
gathering further data.

[44] and [45] for some of the problems arising from vagueness in ecology and conservation
biology.

6See, for example, [19], [22], and [34] and [42] for some of the approaches that abandon
excluded middle.
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Now it might be argued that since the uncertainty in question here is
uncertainty about the truth value of a vague proposition, we can state the
problem classically in the meta-language. We can say that we do not know
whether P (for some vague proposition P ) is true. Let v be the valuation
function (which maps from the domain of discourse D to the truth value set
TV ), then the problem is that of determining whether v(P ) = a, where a is a
particular truth value in TV . But, so the argument goes, ‘v(P ) = a’ is either
true or false and so we have forged a link between non-epistemic uncertainty
at the object-language level and epistemic uncertainty at the meta-language
level. Indeed some do opt for a classical metalogic, but there is a case to be
made for non-classicality all the way up. A non-classical metalogic would
be called for, for instance, if there is higher-order vagueness. An adequate
discussion of this would take us too far afield; I mention it merely to make
the point that non-epistemic does not reduce to epistemic uncertainty in
any straight-forward fashion.7

So far I have argued that in domains where excluded middle fails, the
applicability of probability theory is highly questionable. The claim that
classical probability theory is the only coherent representation of uncertainty
suggests (among other things) that there are no domains about which we
reason with uncertainty, where excluded middle fails. On the face of it
at least, this is false: there are many such domains: there are fictional
domains, constructive domains and domains with vague predicates. Thus
any defender of classical logic needs to convince us that classical logic can,
despite appearances, cope with these problematic domains. This is a large (if
not impossible) task, for it involves, among other things, providing a classical
account of fictional discourse, a defence of certain philosophical views about
the philosophy of mathematics (perhaps defending platonism) and a defence
of something like Williamson’s epistemic approach to vagueness.8

Before I move on to a discussion of Cox’s theorem, let’s consider a cou-
ple of objections to my conclusion that probability theory is not appropriate
for non-epistemic uncertainty. The first objection comes from quantum me-
chanics. According to the Copenhagen interpretation of quantum mechanics,
there is no fact of the matter about the state of certain quantum systems
before a measurement is made. But quantum theory itself provides us with

7See [55] for a discussion of higher-order vagueness.
8Worse still, there would seem to be inconsistent domains about which we reason. I

have in mind here inconsistent mathematical theories (such as the early calculus and näıve
set theory) and inconsistent scientific theories (such as the conjunction of general relativity
and quantum mechanics). Classical logic and classical probability theory are inappropriate
in such domains since in classical logic everything follows from a contradiction and in
classical probability theory, all contradictions have probability zero and all conditional
probabilities conditional on a contradiction are undefined. Again if we reason about
such domains, as we surely do, then it’s clear that the classical theories are inadequate.
See [38] for some recent papers on inconsistency in science and [37] for an account of a
paraconsistent belief revision theory.
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probabilities about the state of the system in question (see [27]), so it seems
that we have a counterexample to the claim that we can’t use probability
theory unless there’s an underlying fact of the matter. The problem with this
objection, however, is that it confuses what the quantum mechanical proba-
bilities are about. The quantum mechanical probabilities are not about the
state of the quantum system in question before measurement ; rather, the
probabilities are usually construed to be about the state of the system were
it to be measured (or, if you prefer, they might be construed to be about the
measurements themselves—the probability of the measurement turning out
a particular way). Either way, the probabilities are not construed as being
about systems in indeterminate states.

The next objection concerns denotational failure. According to some
(e.g., Strawson [49]), when there is failure of denotation, there is no fact
of the matter about the truth of the offending sentence (i.e., the offend-
ing sentence is truth-valueless). Let’s, for the sake of argument, accept this
view. (Indeed, I’ve already entertained fictional discourse—which is one spe-
cial kind of denotational failure—as a source of non-epistemic uncertainty.)
Suppose you see a male colleague, whom rumour would have it was supposed
to be having marital problems, looking rather depressed and you speculate
that his wife has left him. You might even believe that this is the most likely
explanation for his depressed state. That is, you assign a subjective prob-
ability of greater than 0.5 to the truth of the proposition ‘My colleague’s
wife has left him’. Now, as it turns out, your colleague is not, nor has he
ever been, married. We thus have a case of denotational failure and so,
by hypothesis, the sentence in question does not take a truth value. But,
it still seems sensible to attribute a probability of truth to the sentence in
question.9 I agree that it seems sensible to entertain a probability of truth
for the sentence in question, but it’s not clear that it’s sensible to do this
on the view under consideration. After all, it also seems sensible to say that
the sentence in question is false (this was Russell’s [46] view), and on this
view it does make sense to talk of the probability of such sentences being
true. The issue is not whether it seems sensible to attribute truth-value
gaps to sentences that have non-referring terms and whether it seems sensi-
ble to speak in terms of probability about these same sentences; the issue is
whether the latter is sensible given a commitment to the former . That is, is
it sensible to say, for instance, that some sentence is neither true nor false
but it’s probably true? It would seem not, for this would commit one to a
kind of Moore’s paradox.10

Now if it still seems sensible, on the view under consideration (i.e., the
truth-value-gap view), to talk about the probability of truth for sentences
with non-referring terms, it’s because there’s an implicit assumption that

9I thank Daniel Nolan for raising this objection.
10This is the paradox of an agent asserting ‘P but I don’t believe it’.
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there’s no denotational failure. So, for example, the probability that your
colleague’s wife has left him is something like the probability that his wife
has left him, given that he’s married. If it turns out that he is not married,
the probability in question is the probability that his wife has left him, given
that he is both married and not married. This probability is undefined. So
even if it may seem sensible on this view to talk about the probability of
truth for sentences with non-referring terms, it isn’t.

3 Cox’s Theorem and its Assumptions

Thus far I’ve outlined two quite distinct sorts of uncertainty and argued that
only epistemic uncertainty is amenable to probabilistic treatment. Now I
turn to Cox’s theorem11 and how the lessons of the last section impact on
the philosophical significance of this theorem. Cox’s theorem can be stated
as follows:

Theorem 1 (Cox) Any measure of belief is isomorphic to a probability
measure.

The theorem is explicitly premised on the following assumptions: (i) be-
lief is a real-valued function (ii) an agent’s belief in ¬P is a function of
his/her belief in P and (iii) an agent’s belief in P ∧ Q is a function of the
agent’s belief in P given Q and the agent’s belief in Q.

There has been a great deal of discussion on the assumptions of Cox’s
theorem and alternatives to these assumptions ([7], [11], [23], [24], [48],
[52]), but there has been little if any discussion of the logical assumptions
(or alternatives to these), and yet these are crucial to understanding the
significance of the theorem. It is those logical assumptions I now wish to
examine.

The logical assumptions of the theorem are, of course, none other than
classical propositional logic, though very few state this explicitly and unam-
biguously. For example, Cox invokes “the algebra of symbolic logic” (italics
added). But even in Cox’s day there was more than one such logic. Jaynes
[30] tells us that the logic is “deductive logic”. But again ‘deductive logic’
is ambiguous between the many logics deserving of this title. Elsewhere
[31, p. 9] Jaynes suggests that the logic is “two-valued logic or Aristotelian
logic”, obviously thinking that classical (two-valued) propositional calculus
and Aristotelian logic are the same (which they are not). Others such as
van Horn [52] refer to ‘the propositional calculus’ (italics added), again as

11There are, in fact, a number of theorems along similar lines (e.g. [1], [2], [8], [16], [25],
[36], [39], [52]). Cox’s theorem [9, 10], however, is undoubtedly the most well known and
so I’ll be content to focus on it, although I’ll often use the phrase ‘Cox’s theorem’ to apply
to the more general class of results.
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though there were only one such logic.12 But what they all have in mind
is quite clearly classical propositional calculus. The problem is that none
of them calls the logic in question by name and so it is (at least initially)
unclear what logic they have in mind. Worse still, some suggest (e.g., by
the use of the definite article ‘the’) that there is only one choice here. Those
(like Jaynes [31]) who do point out that there are other logics to choose
from do not bother to defend the choice of classical logic in any systematic
fashion.13

Combine this unclarity about the logic in question (or the number of
candidate logics) with a very commonly held view that logic is domain in-
dependent.14 According to this view, the choice of logic does not depend
on the domain of application.15 So if we combine this commonly held view
about logic with the view that “logic” is classical propositional logic (or first-
order classical predicate calculus), then we are led to a view that classical
logic is all we need for deductive inferences on any domain. Again it is clear
that some commentators on Cox’s theorem hold such a view. Indeed, Van
Horn states this quite explicitly: “the propositional calculus is applicable to
any problem domain for which we can formulate useful propositions” (p. 11,
italics in original). Of course there is a sense in which Van Horn is right—
classical propositional logic is applicable to any domain, but that’s not the
issue. The issue is whether classical propositional logic can be applied to
any domain and get the right answers. It is clear that it cannot. One needs
only consider arguments involving modality to see the inadequacy of classi-
cal propositional logic.16 Van Horn, of course, is not alone in holding such
a view of logic, though I’ve never seen anyone suggest that classical propo-
sitional calculus is the universal logic—the usual candidates are classical

12Though in footnote 1 on p. 5 of [52] van Horn suggests that we may also consider
numerical identity statements. This suggests that full (classical) first-order logic is what
is needed.

13Jaynes does make some rather obscure comments by way of defence of classical propo-
sitional logic. For instance, in a section of his book [31, p. 23] called ‘Nitpicking’ Jaynes
raises the possibility of alternative logics and suggests that “[multiple-valued logics] can
have no useful content that is not already in two-valued logic; that is, that an n-valued
logic applied to one set of propositions is either equivalent to a two-valued logic applied to
an enlarged set, or else it contains internal inconsistencies.” It is not clear what he means
by this, and the appendix where the argument for this claim is supposed to be found is
of no help. In any case, Jaynes seems to be thinking of multi-valued logics as the only
non-classical logics. As we’ve already seen, there are others—for example, free logics.

14This widely held view found a powerful advocate in Tarski [50].
15In essence, this is a monist or one-size-fits-all view of logic, as opposed to a more

pluralist horses-for-courses view. See [5] and [41] for discussion on the monism–pluralism
debate.

16Consider the argument from ‘there is uncertainty’ to ‘possibly there is uncertainty’.
This argument is clearly valid and yet the validity cannot be demonstrated by classical
propositional calculus, because the only way to formalise this argument in this logic is as
P therefore Q which is invalid. To demonstrate the validity of such arguments, modal
logic is required. See [18] for a good introduction to modal logics and their applications.
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first-order logic or a extension of it such as S5 modal logic. But what I’m
arguing here is that no classical logic is up to this task. Classical logic simply
fails in some domains in which we routinely perform logical inferences.

Cox’s theorem, if it is to demonstrate the adequacy of probability theory
for plausible reasoning across all domains, it must be derivable from assump-
tions that are not domain specific. But as I’ve already argued, classical logic
is domain specific. Or at least, we’ve been offered no argument to the effect
that it is not. All we are typically given are rather casual acceptances of
classical propositional calculus as though there were no other, or, at least,
no other worthy of serious consideration. So what is delivered is not a logic
of plausible reasoning, simpliciter , instead we have a logic of plausible rea-
soning that is defensible only when there is no referential failure, vagueness
or the like. Now perhaps this is all some commentators have in mind—a
limited-scope logic of plausible reasoning. If this is the case, then this lim-
itation needs to be stressed. But it is clear that not all contributors to the
literature on Cox’s theorem have such a modest project in mind.17 Again
Van Horn states this point of view very clearly: “recall the purpose of this
enterprise: to construct a universal system or logic of plausible reasoning”
(p. 11, again emphasis in original). My point is simply that if the enterprise
is, as Van Horn suggests, that of constructing a universal system, it had
better not rest on classical logic. On the other hand, if the enterprise is the
more modest one suggested above, this needs to be made clear.

Now lets turn briefly to the question of whether the proof of the theorem
requires any of the contentious features of classical logic? What if, for in-
stance, the proof only relied on inferences and logical equivalences that are
not controversial in the context of the representation of belief—inferences
such as modus ponens and equivalences such as de Morgan laws? There
is no need to ponder such questions too long, for the standard proofs of
Cox-style results quite clearly rely on disputed logical principles. First, an
example from Cox’s original proof and then another example from a more
recent proof. In Cox’s proof that the belief in Q ∨ ¬Q is maximal, Cox
quite explicitly assumes the classical principle of double negation elimina-
tion: ¬¬Q ≡ Q. If we limit our attention to epistemic uncertainty and
exclude all forms of non-epistemic uncertainty, then the assumption seems
harmless. On the other hand, if we are interested in uncertainty in the
broadest sense (including constructive domains, vague domains and so on)
the assumption is highly controversial.18 For a more recent example I once
again turn to Van Horn [52] who also uses double negation elimination (in
the proof of Proposition 2 on page 11) and assumes, in the proof of Lemma 11
(on page. 20), that ¬B ≡ ((A ∨ ¬B) ∧ (¬A ∨ ¬B)). This last assumption is

17And I stress that this is a modest project, because vagueness is ubiquitous in both
scientific and everyday discourse. The limited-scope logic of plausible reasoning will thus
be rarely applicable outside pure mathematics.

18Indeed, intuitionists deny this principle.
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very closely related to excluded middle. With the usual classical assumptions
in place about the distribution of ∨ over ∧,19 it amounts to the assumption
that A ∧ ¬A is false, which under further (classical) assumptions is equiva-
lent to excluded middle. So at the end of the day, controversial features of
classical logic are assumed in the original proof of Cox’s theorem and these
assumptions remain in modern presentations.

The assumption of classical logic is particularly troublesome if Cox’s
theorem is to be wielded as a weapon against non-classical systems of belief
representation. And, I should add, that some commentators do put Cox’s
theorem to such a purpose. For example, Lindley [36] draws the following
conclusion (from a similar theorem): “The message is essentially that only
probabilistic descriptions of uncertainty are reasonable” (p. 1) and Jaynes
[31] suggests that “the mathematical rules of probability theory [...] are [...]
the unique consistent rules for conducting inference (i.e. plausible reasoning)
of any kind” (p. xxii).20 But Cox’s result is simply a representation theorem
demonstrating that if belief has the structure assumed for the proof of the
theorem, classical probability theory is a legitimate calculus for representing
degrees of belief. But as it stands it certainly does not legitimate only
classical probability theory as a means of representing belief, nor does it
prove that such a representation is adequate for all domains.

What are the alternatives then? What would these alternate belief theo-
ries look like? If we want a probability theory for non-epistemic uncertainty,
we may wish to base it on a logic in which excluded middle fails. This means
that propositions of the form P ∨ ¬P won’t automatically receive maximal
probability. There are a couple of ways of doing this. One approach would
be to allow tautologies to take probability assignments less than one. The
other approach is to underwrite the probability theory with a non-classical
logic. In this latter case, the tautologies of the non-classical logic will re-
ceive maximal probability—it’s just that classical tautologies such as P ∨¬P
won’t, in general, get assigned the maximal value.21 In some of the logics in
contention, there may be no tautologies (as is the case with Kleene’s three
valued system K3 and the most popular fuzzy logics [40]). If we use one of
these as the underlying logic, there won’t be any logical truths and so there
won’t be any propositions automatically assigned the maximal probability.
Some work has been carried out in these directions but there is much more
to do.

19Interestingly, distribution fails in quantum logics. So quantum logicians may contest
the logical equivalence that Van Horn relies on, but for slightly different reasons. See [3]
for an early presentation of quantum logic.

20Shafer [48] also notes (disapprovingly) this use of Cox’s theorem to rule against any-
thing other than standard probability theory.

21See [54] for a constructive probability theory.
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4 Conclusion

Let me finish by noting a few points of contact between this paper and Glen
Shafer’s recent discussion of Cox’s theorem in this journal [48]. Shafer notes
that Cox’s theorem relies not only on its stated, explicit assumptions, but
it also relies on implicit assumptions—such as the assumption that belief
should be represented by a real-valued function. I note one other implicit
(or at least undefended) assumption—the use of classical propositional logic.
Shafer’s work on belief functions [47] casts doubt over the plausibility of the
assumption that belief is adequately represented by a real-valued function.22

I’ve pointed out that work in logic in the latter part of the twentieth century
casts doubt over the plausibility of the assumption (used by Cox and others)
that classical logic is the appropriate logic to underwrite a formal theory of
plausible reasoning.

The connection between this paper and Shafer’s runs even deeper. Not
only are both papers questioning implicit assumptions of Cox’s theorem. It
turns out that our concerns may well be two sides of the one coin. Although
our starting points are apparently quite different—mine being logic, Shafer’s
being the representation of imprecise belief. It turns out that starting with
concerns such as mine (i.e., concerns about vagueness and other forms of
non-epistemic uncertainty), one very natural way of responding to these
issues is to give up the classical logical principle of excluded middle. This
in turn naturally leads to a non-classical belief theory that is very similar to
Shafer’s.23 In essence, we both reject the unrealistic precision assumed by
standard belief theory. Shafer rejects the assumption that belief functions
are real valued; I reject he logical assumption of excluded middle.

Another point of contact is that Shafer stresses that the assumptions of
Cox’s theorem need to be more than merely plausible, they need to be self
evident. He points out that both the explicit assumptions and the implicit
assumption that belief functions are real-valued fail in this regard. I concur
and I add one further assumption to this list of non-self-evident assumptions.
In the context of the representation of uncertainty classical logic is not self
evidently the appropriate logic. Indeed, I think it is demonstrably not the
appropriate logic, but even if you disagree with me on this stronger claim,
the fact remains that classical logic is not self evident. So those who would
employ Cox-style results for the purpose of providing a logic of plausible
inference, need to first mount a defence of classical logic.

The final point of contact between my discussion here and Shafer’s is
that we are both interested in widening the historical focus of the discussion
of Cox’s theorem. Shafer wants to draw to the attention of commentators

22And I find myself in full agreement with Shafer on this issue. See [32] and [53] and
for other approaches to abandoning the assumption that a single real number is adequate
for characterising belief.

23See [13] for details.
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on Cox’s theorem the earlier work (by continental probability theorists) on
the logical interpretation of probability—frequentism and subjectivism are
not, nor were they in 1946 (when Cox wrote his paper), the only games in
town. I wish to bring to the discussion the issue of the underlying logic—
classical logic is not, nor was it in 1946, the only game in town.24 I think
a lot is to be gained by considering these broader historical and, I might
add, interdisciplinary perspectives. Once one does this, one sees that Cox’s
theorem is an interesting representation theorem that has prompted some
fruitful and interesting debate, but ultimately the theorem rests on some
rather questionable assumptions about the structure of human belief.25
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