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Abstract

The problem of objective evaluation of learning algorithms is
analyzed under the principles of coherence and covariance. The
theory of Bayesian information geometry satisfies these principles
and encompasses most of the commonly used learning criteria.
Implications to learning theory are discussed.

1. Introduction

One fundamental problem in the study of learning algo-
rithms is to find a scheme to compare them. Thousands
of different learning algorithms are in use today. Some
are simply variants with different parameter settings, others
come from distinct assumptions claimed to be incompatible
with each other. This poses obvious problems for an un-
fortunate user who has to choose one algorithm to suit his
need from this “embarrassment of abundance”. If he uses an
“adaptive algorithm” to automatically sieve through many
algorithms and choose the optimal one, the whole proce-
dure is still another algorithm. Is it guaranteed to be better?
Can we improve our result indefinitely by combining algo-
rithms and investing in more computing resources? Most
would agree that there must be an upper limit if our data are
limited. But which factors will determine such a limit? Fur-
thermore, if we put in more computing resources how will
the result improve? Indeed, some may think that quite the
opposite will happen, as it is often noticed that an over-sized
neural network trained for too long is bound to “overfit” the
noise in the data and give poorer results.

These questions are also important to a researcher as
they determine whether a particular avenue of “improving”
a learning rule is worthwhile to pursue. In this paper we
shall outline the recent development of a branch of the-
oretical statistics called Bayesian information geometry,
which appears to be capable of answering most of these
question for most algorithms. The emphasis here is not on
the statistical theory itself but rather on its implications to
learning theory.
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2. Fundamental principles of evaluation

Before embarking upon a road to find a general scheme
capable of evaluating learning algorithms, we first need to
set forth some criteria for admissible schemes. In this paper
we adopt a statistical language in which a learning algo-
rithm is simply an estimator, ie. a mapping from sample
(aka data set) to estimates (aka weights). More details will
be given later. It appears that a minimum requirement for
an “objective evaluation” of estimators must include the fol-
lowing two principles:

Coherence Optimality of estimator is evaluated on its be-
havior on all samples.

Covariance Optimality is independent of the naming of ei-
ther the samples or the data generators.

The coherence principle essentially says that our scheme
should be able to compare rules which are based on other
rules. Consider this example. Suppose a learning algorithm
A says that if the data is a then estimate the weight as w�.
However once we actually observed a, we might be tempted
to say that “since I now have new information (data a) I can
make a better choice, and it is better to use rule B which
would give w� as estimate”. The coherence principle says
that in this situation our overall behavior is equivalent to a
rule C which should still be compared with A and B under
the same scheme.

The covariance principle may look trivial to some while
quite unacceptable to others. For example, one may have a
linear least square problem which will be rather intractable
if subject to an arbitrary nonlinear transformation. Others
may consider it the most treasured property of neural net-
works to be used as black-boxes. The covariance principle
simply says that if we consider a particular parameterization
as important, we should explicitly single it out; Likewise, if
we allow different parameterizations we should keep track
of the transform so that the new optimal solution translates
back to the optimal solution in the original problem. For in-
tuitive illustration recall the transformation of the equation
of a circle from Cartesian to polar coordinates.

Obviously these two principles already weed out most
of the criteria often used to compare learning rules, but is



there anything left? Remarkably the answer is yes, and it
appears that this answer, Bayesian information geometry,
may be able to encompass most of the other criteria often
used. That is, those criteria may not be coherent and covari-
ant, but under special conditions usually implicitly assumed
they correspond to special formulations in Bayesian infor-
mation geometry.

3. Mathematical background

Some formal notations are unavoidable but we try to
keep them to minimum.

A learning rule maps some sample (training data) z � Z
to some parameter (weight) w � W . The sample is as-
sumed to be taken from a true distribution p � P , where
P is the space of all probability distributions over the sam-
ple space Z. In a neural network with input x and output y
the whole data set of x's and y's is z. The parameter w of
a trained network represents an estimate q � P ��jw�. The
set Q � P of all the possible estimates is the computa-
tional model. So a learning rule � is an estimator mapping
samples to estimates: q � ��z�.

In Bayesian information geometry we need to specify
two things before using an estimator: a prior P �p� which
is a distribution over the space of all the true distributions,
and an information deviationD�p� q� which measures how
much information is lost if we have arrived at an estimate
q while the true distribution is p. The prior is also called a
statistical model. Once these are specified, we then evalu-
ate the estimator � and estimate q � ��z� by the posterior
average deviation
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P �p� z�D�p� ��z��� (1)
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By minimizing them the optimal estimators and optimal
estimates are defined. It is well known in Bayesian deci-
sion theory that an estimator is optimal iff it gives optimal
estimates for all the data. Therefore the coherence principle
is satisfied.

In the above formulation it is also obvious that every-
thing is invariant to parameterization since we have not used
any parameterization at all. But we still need to specify
D�p� q� in a covariant way while retaining the meaning of
“information deviation”. For this purpose we adopt the fol-
lowing �-deviation where � � ��� ��,
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The deviations D� and D� are defined as limits as � � �
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In fact, this definition is also applicable to finite measures,
ie., things like probability distributions except that they may
integrate to a finite number other than unity. The set of finite
measures will be denoted eP and will be used extensively. It
is out of space here to explain the statistical rationale behind
these definitions, but the properties and results to be given
shortly will hopefully at least lend some intuitive support.
Interested readers may consult [1, 6, 7, 5, 3].

The following simple properties are obvious and they re-
semble properties of squared distance:

D��p� q� � �� (5)
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D� is known as the Kullback-Leibler deviation or the
cross entropy and D��� is known as Hellinger distance.
Let Pyjx be a statistical transform (Markov morphism or
kernel) transforming a family of measures fpx� qx� � � � g to
fpy� qy� � � � g. Then D��px� qx� � D��py� qy�; the equality
holds if and only if Pyjx is sufficient [4]. This means that
D� captures all the information and nothing else.

Information deviation enables us to treat the set of finite
measures as a well behaved space rather than simply a point
set, similarly to the way functions may be considered as
forming Banach spaces with the help of norms.

4. Ideal estimate, error decomposition, and
projection

In order to describe the kind of results obtainable from
information geometry we need several further concepts.
First, we need to accept that things like p� may be regarded
as elements of a Banach space (complete normed linear
space) consisting of the �th power of finite measures [2].
For illustration, let the sample space Z be the ordinary real
line R, and let dz be the Lebesgue measure on Z. Sup-
pose we use density function f � p�dz (corresponding
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to p � f dz) then p� corresponds to f � � L����dz�, the
space of �����th power Lebesgue integrable functions. (For
� � ��� we get the Hilbert space L��dz�.) However, we
must keep in mind that properties of p� are essentially inde-
pendent of carrier measures such as dz.

Next, we define �-straightness. A curve pt in eP is call a
�-geodesic if p�t is a straight line (in the Banach space). The
concepts such as �-flat manifold, �-convex set are likewise
defined.

Now if we have a distribution P �p� over P (it is not a
member of P but a distribution of members in P), we can
define the �-average of p as

a��p� �

� �
p�
����

� � � ��� ��
exp hlog pi � � � ��

(12)

where h�i denote expectation under the distribution P �p�.
Intuitively, p is a random member of P while a��p� is a
fixed member of eP . Note that a��p� may not be a member
of P which is not �-convex, just as the average of points on
a sphere may be somewhere in the interior of the ball.

Let P �p� be a prior over eP, z � Z, and denote the ex-
pectation under the posterior P �pjz� as h�iz . The �-average
over the posterior is called the �-ideal estimate based on z.

Theorem 4.1 (Error decomposition) Let bp be the �-ideal
estimate based on z � Z. Then �q � eP �

hD��p� q�iz � hD��p� bp�iz �D��bp� q�� (13)

where the generalized posterior variance is given by
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We may obtain some intuitive appreciation of (12)–(14)
by comparing them with following familiar formulas, not-
ing that there are now a family of deviations indexed by
� � 	�� �� instead of one single distance.

bx � hxi � (15)�kx� ak�� � �kx� bxk��� kbx� ak�� (16)�kx� bxk�� � �kxk��� kbxk�� (17)

Now the ideal estimate is essentially a point estimate
out of the posterior, albeit in the space eP , while the posterior
is a distribution of the true distributions, how good is this
estimate? Under some mild conditions it can be shown that
the ideal estimates are sufficient statistics of the posterior,
ie. from which one can in principle reconstruct the whole

posterior without the data. In other words, if we choose our
estimate bp by minimizing the posterior mean information
deviation then it will extract all the available information.
This justifies calling D� as information deviation and the
error decomposition theorem justifies calling bp as ideal es-
timate. There are reasons to believe that no other definition
of information deviation will support the concept of ideal
estimate.

As may be expected, in general the ideal estimate is diffi-
cult to compute and represent, as it usually lies in an infinite
dimensional space. In certain cases it is exactly the empir-
ical distribution. So what can we do with a model, such as
a neural network, which is usually finite dimensional?

Theorem 4.2 (Projection) Let Q � eP , and let bp be the
�-ideal estimate. Then the �-optimal estimate bq � Q is
obtained by minimizingD��bp� q� for q � Q. Furthermore, if
Q is a submanifold, any (local) �-optimal estimate bq � Q is
a �-projection of bp onto Q, ie. the �-geodesic connecting bp
and bq is orthogonal to any curve inQ which passes point bq.

The resemblance of this theorem to minimizing a squared
distance on a linear model is obvious.

All the above discussions assume the prior to be unre-
lated to the model. Now we consider a special case, as is
usually done in Bayesian methods, where the prior is con-
strained in a finite dimensional model.

Theorem 4.3 (Asymptotic Error) Suppose the prior P �p�
is a smooth measure on a smooth finite dimensional sub-
manifold Q � eP. Let m � dimQ. Then for most sam-
ples z � Z of large size n, the posterior mean deviation is
hD��p� bq�iz 	 m��n.

This provides a universal learning curve for finite dimen-
sional models. Although this is only a very special result
in Bayesian information geometry, it nevertheless summa-
rizes most of the results of learning curves in the literature.
Numerous special instances may be found under various
conditions, most of which boil down to the assumption of
smooth priors on smooth manifolds (with smooth coordi-
nates). Some of these results are given in the form of ac-
cumulated error being of the order �

�
m logn due to the factP

n ��n 	 logn.

5. Implications to Learning Theory

In essence the problem studied is a Bayesian decision
problem in which the sole objective is to extract and retain
information, but it also impacts upon other learning prob-
lems: Optimal decisions under other criteria may be based
on the ideal estimate alone because it is sufficient.

It may be noticed that we have used the word “statisti-
cal model” and “computational model” in the text, meaning
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the prior P �p� and the model Q, respectively. Their roles
are quite distinct and it is not required that the prior be con-
centrated in Q. With this setting the relation between es-
timation and approximation becomes immediately clear.
The problem of robustness is also easily formalized: If the
prior is spilled out of the model, how bad the optimal esti-
mate within the model may be?

We are now in a position to resolve a notorious contro-
versy about model selection: Should we choose a larger or
smaller model? The answer depends on which model is
under consideration. A “smaller” statistical model means
a more concentrated prior and sharper results. We should
not make it sharper than we have knowledge to, but we
should always strive at this direction. On the other hand, a
smaller computational model gives us less room to represent
our knowledge so leads to poorer results. If computational
model cannot contain the statistical model (usual situation),
there will be an approximation error. If we have a compu-
tational model containing the convex hull of the support of
the prior the best result is simply the ideal estimate.

So how do we explain the overfitting encountered in
practice? The answer lies in the way priors are usually
incorporated into algorithms. In most learning algorithm
there are some “fiddle factors”, such as learning rate, which
are chosen by trial and error from many “typical” problems.
In other words, they are chosen to fit a prior distribution of
problems. However, since the statistical and computational
models are usually not distinguished clearly, these factors
also depend on the model size in a non-trivial way, such
that choosing large model has the effect of choosing an al-
gorithm with less prior knowledge. In infinite dimensional
space (such as curve fitting) with finite data, if the prior
is weak, even the ideal estimate will be poor, hence come
the overfitting. In fact, a Gaussian measure with a “spheri-
cal covariance in the space L�” is exactly the white noise,
a sample of which cannot be fixed by any finite amount
of data. On the other hand, once the prior preference of
smoothness is fixed a larger Q always leads to better re-
sults. Details are given in [8] where it is also shown how to
represent the prior knowledge that “a function is somewhat
smooth” by specific Gaussian random fields.

This theory can also be reconciled with those theories
without priors. On the one hand, many non-Bayesian meth-
ods are simply not optimal [9]. On the other hand, many
good non-Bayesian algorithms are special cases of the ideal
estimators with implicitly specified priors. For example,
with the 0-uniform prior, the 1-ideal estimate corresponds
to the empirical distribution, while the 1-optimal estimate
on any model is the maximum likelihood estimate [7].

We have used the results on linear Gaussian models as an
analogy to illustrate our general results, but in fact the for-
mer is also a special case of the latter: The (0,1)-dual geom-
etry reduces to Euclidean (Hilbert) geometry with the inner

product defined by the inverse of the covariance. This en-
compasses all the quadratic approximation theories (least
mean squares) in function spaces, with or without regular-
isation [3].

Some Bayesians may insist that the whole posterior in-
stead of an estimate be used. Clearly the sufficiency of the
ideal estimate reduces the force of whatever its supporting
arguments. Furthermore, usually these methods actually
use a Monte Carlo simulated posterior. That is, whenever
a prediction is called for, it is made by a sampled weight
value. This is exactly equivalent to sampling from the pos-
terior marginal distribution, ie. the 1-ideal estimate.

In summary, if we have limited data but infinite comput-
ing power, the best thing is to figure out the ideal estimate;
If our computing power is restricted by a certain model, the
best thing is to approximate a projection of the ideal esti-
mate. Of course, in practice we are still faced with the prob-
lem of achieving this while minimizing computational cost.
The promise of Bayesian information geometry is that all
these are now technical problems with clearly stated goals
and without the usual philosophical controversies.
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