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Abstract

The �evidence� procedure for setting hyperparameters is essentially the same as the
techniques of ML�II and generalized maximumlikelihood� Unlike those older techniques
however� the evidence procedure has been justi�ed �and used� as an approximation to
the hierarchical Bayesian calculation� We use several examples to explore the validity of
this justi�cation� Then we derive upper and �often large� lower bounds on the di�erence
between the evidence procedure	s answer and the hierarchical Bayesian answer� for many
di�erent quantities� We also touch on subjects like the close relationship between the
evidence procedure and maximum likelihood� and the self�consistency of deriving priors
by ��rst�principles� arguments that don	t set the values of hyperparameters�

���� any inference must be based on strict adherence to the laws of probability theory�
because any deviation automatically leads to inconsistency��
� S� Gull� in ���

��Some have	 estimated alpha from the data and then proceeded as if alpha is known�
It is better to use the standard methods of Bayesian statistics and integrate out alpha��
� B� D� Ripley� in �
��

� Introduction

In many statistics problems one has one or more �hyperparameters� �sometimes called
�nuisance parameters�	 which occur in the distributions of interest but may not be of






�

direct interest themselves� Examples are a choice of model� a noise level� a regularization
constant in a regression problem� and ��� in maxent image reconstruction�

How to deal with a hyperparameter A full Bayesian approach is to marginalize out the
hyperparameter� �This is �hierarchical Bayes� � see �
� ���	 A non�Bayesian approach might
set the hyperparameter to a single value� and use that value throughout the subsequent
analysis� For example� one might choose the hyperparameter via maximum likelihood �
choose the hyperparameter � such that the conditional probability P �D j �	 �or alterna�
tively P �� j D		 is maximized� where D is one�s data� Recently it has been claimed that
this kind of non�Bayesian approach is a good approximation to the full Bayesian approach
whenever P �� j D	 is peaked as a function of � ��� 

�� In the context of this claim� setting
� to the value maximizing P �� j D	 is known as �the evidence procedure� ��� 

� 
�� 
���

Even though the evidence procedure has become popular amongst some Bayesians�
the validity of its claim to approximate the Bayesian approach has never been thoroughly
discussed� Consequently the accuracy of the procedure as such an approximation is rarely
checked or reported� Perhaps even more remarkably� for some applications the full Bayesian
answer is easier to calculate and apply �
�� ��� ��� Yet many researchers jump straight to the
approximation of the evidence procedure� without checking if the exact answer is tractable�
or if not� if perhaps some approximation other than the evidence procedure is preferable�

In the �rst part of this paper we state the evidence procedure� giving both an intuitive
argument that it is a good approximation and an intuitive argument that it is not� We then
explore the validity of the procedure in a simple gaussians example� In this example the
procedure fails miserably for certain objects of interest� but works for others� We end with a
formal discussion giving lower and upper bounds on the approximation error incurred with
the evidence procedure� The bounds concern error in evaluating the posterior at a point� in
evaluating the full posterior �both supremum norm and Ln norm error	� in estimating the
predictive distribution� and in estimating expectation values� This discussion demonstrates
explicitly that the naive justi�cations for the evidence procedure found in the literature
are inadequate� It also has implications for the self�consistency of any ��rst�principles�
argument for a prior that does not �x all hyperparameters in that prior�

A recurring theme throughout the paper is that for many quantities of interest� the evi�
dence procedure becomes more accurate as the object of interest becomes more dominated
by the likelihood distribution� In other words� for those quantities the procedure is most
accurate when the prior is irrelevant� so that there is no need for Bayesian analysis�

We emphasize that here we only analyze how well the evidence procedure approximates
the full Bayesian answer� We are not concerned with whether the procedure meets non�
Bayesian desiderata� �E�g�� desiderata like requiring that one�s answer doesn�t change when
additional irrelevant information is introduced� or like the desiderata in section ��� of �

�
that actually argue for the use of maximum likelihood in all contexts� not just those related
to hyperparameters�	 Nor do we make any claims concerning how one should use the
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posterior �e�g�� take its mean vs� take its mode	� an issue properly addressed by decision
theory� Moreover� we make no claims about how well the procedure works in practice�
�A procedure�s being non�Bayesian does not mean it works poorly in practice�	 Studies
empirically comparing the evidence procedure to other methods for setting hyperparameters
have given mixed results ��� �� 
�� 
�� 
�� 
�� 
�� 
�� ���� However in evidence�s defense
we note that MacKay has recently won a prediction competition �
�� by using the evidence
procedure� albeit in conjunction with some new techniques like stacking ��� and the use of
di�erent regularization hyperparameters for di�erent parts of the space�

� What is the evidence procedure�

To illustrate the evidence procedure� consider the case where the hyperparameter param�
eterizes the prior distribution over the hypothesis space of vectors f � �To distinguish it
from the generic hyperparameter �� this kind of hyperparameter is indicated by ��	 Some
examples are the MaxEnt and Gaussian distributions� P �f j �	 � exp��S�f		�Zs��	� and

P �f j �	 � �N�� e��j
�f j

�

� respectively�
Write the posterior distribution as

P �f j D	 �



P �D	

Z
P ��� f�D	 d�� �
	

Multiply and divide the integrand in �
	 by P �� j D	�

P �f j D	 �

Z
P ��� f�D	

P �� j D	
P �� j D	 d� �

Z
P �f j ��D	 P �� j D	 d�� ��	

When P �� j D	 is sharply peaked about �ev it�s natural to treat it as a delta function
about �ev and collapse the last integral in ��	� The idea of collapsing Bayesian integrals
this way is old� going back at least as far as ���� It forms the conventional justi�cation for
the view that the evidence procedure is an approximation to the full Bayesian approach�
the evidence procedure says that

P �f j D	 � P �f j �ev � D	 � P �f j �ev	 P �D j f	� ��	

Under many circumstances �e�g�� relatively �at P ��		 this kind of reasoning also appears
to support the idea of setting P �f j D	 to P �f j D� argmax�P �D j �		� so long as P �D j �	
is a peaked function of �� �In fact� this kind of reasoning appears to support setting � to
the maximum of almost any distribution over � and D that is a peaked function of ��	 So
there is ambiguity in what peak we should set � to� i�e�� in how to de�ne �ev �ambiguity
that is re�ected in the literature	� Accordingly� when it�s helpful for illustrative purposes�
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we will consider P �D j �	 rather than P �� j D	 and will take the term �evidence� to mean
P �D j �	 rather than �our default meaning	 P �� j D	�

Stripped of the context of equation ��	� the idea of setting the hyperparameter to the
value �ev is essentially identical to the techniques of ML�II and generalized maximum
likelihood ��� 
� 
��� The primary di�erence between the evidence procedure and those
older techniques is that those older techniques do not attempt to justify themselves with
the approximation in equation ��	� but rather view setting � � �ev as a priori reasonable�

As it turns out� there are reasons to doubt the validity of equation ��	� One such
reason is that in general the change of variables � � ����	 results in the evidence procedure
returning P �f j ��D	 for an � di�erent from �ev � That is� the Jacobian of the variable
transformation can change the distribution�s mode� �In other words� in general there will be
functions � for which P ��� j D	 is highly peaked about an �� which doesn�t equal �����ev	�
For such an � the evidence procedure used with the hyperparameter �� returns a posterior
distribution for f given by P �f j ���� D	 where ��� �� �ev �	 So the answer of the evidence
procedure can change under a variable transformation of the hyperparameter� whereas the
true posterior can not �cf� equation �
		� This suggests that the reasoning embodied in
equations �
	 through ��	 must be �awed� More is needed than simply having a distribution
over � and D that is a sharply peaked function of ��

Another reason to doubt the accuracy of the approximation in ��	 arises from considering
the evidence procedure from a graphical perspective� The contour plots in �gure 
 show two
hypothetical P ��� f j D	�s� for one�dimensional f � The projections of these distributions
onto the � and f axes are P �� j D	 and P �f j D	� respectively� In both plots P �� j D	
is peaked� about � � �ev � The evidence procedure�s posterior distribution is given by the
slice of the original distribution through � � �ev � In the left plot that slice resembles the
true posterior projection� But in the right plot it does not� Again we see that P �� j D	�s
being peaked cannot be the sole criterion for the validity of the evidence approximation�

These problems are partially due to the fact that P �� j D	 appeared in the integrand
in ��	 only after we multiplied and divided by it� So no matter how peaked the numerator
P �� j D	� it is exactly canceled by the denominator P �� j D	� This suggests that the
function P �f j ��D	 appearing in equation ��	 is just as rapidly varying a function of � as
P �� j D	� in which case collapsing the integral at �ev is unjusti�ed�

Note though that if the ��peak of P ��� f�D	 is close to �ev � there might be a fortuitous
cancellation of peaks that renders P �f j ��D	 a slowly varying function of �� �See equation
��	�	 While it is usually di�cult to check whether precise cancellation occurs� at a minimum
the peaks must overlap substantially for such cancellation to be possible� �This is proven
formally in section �ve�	 When there is such overlap it�s possible that the evidence procedure
closely approximates the Bayesian answer� Ironically� whereas the intuition behind equation
��	 suggests that the procedure works better for more highly peaked P �� j D	� the need for
that narrow peak to overlap with the peak of P ��� f�D	 suggests that the opposite is true�
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Figure 
� Contour sketches of hypothetical P ��� f j D	�s along with their projections onto
the � and f axes� The bottom plots are �proportional to	 slices of the distributions through
� � �ev � The left sketch is a success of the evidence procedure� and the right a failure� The
right sketch is similar to what one would get for the gaussian scenario discussed below�
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Figure �� A comparison of P �� j D	 and P ��� f�D	 as functions of � shows they do not
overlap� The data is taken from Gull�s Susie reconstruction� f here is the MAP of the
evidence procedure posterior f presented in Gull�s article �see text	�

�Theorem four below proves that that �opposite� is indeed true� the evidence procedure
fails for almost all f in the regime of su�ciently peaked P �� j D	�	

To illustrate this we consider Gull�s famous Susie reconstruction ���� Figure � plots
P �� j D	 and P �f� ��D	 as functions of � for the f �i�e�� the image	 at the peak of the
evidence procedure�s posterior in Gull�s Susie reconstruction� The two peaks clearly do not
cancel� which means the argument leading to equation ��	 does not hold� In addition� using
Gull�s Gaussian assumptions one can compute what f would have to be for the two peaks
to overlap� This f corresponds to the peculiar images where ��S � N � it is the image
where the number of good degrees of freedom is the number of pixels�

It turns out that even when peaks cancel and P �� j D	 is highly peaked� we still can�t
conclude that equation ��	 is necessarily a good approximation� This is because P �f j ��D	
need not be normalized over �� so the contribution to the integral from the �often very long	
tails of the integrand in equation ��	 can be as sizable as the contribution from around �ev �

As a �nal example of the subtleties involved in equation ��	 note that with enough
hyperparameters the evidence procedure can produce a posterior that is highly peaked
about the maximum likelihood f � �Nothing in the intuition behind equation ��	 presumes
� is low�dimensional� Indeed� some researchers have used the evidence procedure with high�
dimensional ��	 This follows from the equality P �D j ��	 �

R
dfP �D j f	P �f j ��	� This

equality shows that for a su�ciently high�dimensional �� �i�e�� su�ciently �exible P �f j �		�
to �nd the � maximizing P �D j ��	 one simply �nds the � for which P �f j ��	 is highly
peaked about the maximum likelihood f �i�e�� about the mode of P �D j f		� Consequently�
for that �� P �f j D��	 is also highly peaked about the maximum likelihood f �
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� The Gaussian distributions case

In this section we will focus on a particular example in which both the likelihood and the
conditional prior distribution are gaussians� For simplicity the likelihood does not involve
convolutions� The prior is centered on the origin and the likelihood is centered at a point
D all of whose components have equal magnitude d� �These restrictions entail no loss of
generality due to the translational and rotational invariance of gaussians	� Accordingly�
with N the dimension of f � the likelihood and �conditional	 prior are given by

P �D j f	 � �N�� e��j
�f � Dj

�

� and P �f j �	 � �N�� e��j
�f j

�

���

To agree with common usage� we will take the prior over � to equal 
�� from �min to
�max and zero elsewhere� We will be interested in the common case where �min is very close
to zero� Since our analysis won�t depend on the exact value of �min �the primary e�ect of
that value is to set the overall normalization	� here we will set it equal to �� Also� for this
section� we will treat �ev as though it equaled argmax�P �D j �	� It is straightforward to
redo the analysis under di�erent restrictions�

Evaluating
R
d�P �f j �	 gives P �f	 in terms of the incomplete gamma function�

P �f	 � �
jf jN

�
�
�N��	� �maxjf j

�
�

� �
jf jN

when �max jf j
� � N���

���

Note that for f away from the origin� the prior falls o� as a reciprocal power of distance
from the origin� even though P �f j �	 is gaussian P �f	 is not� �See theorem one below for a
proof of the generality of this phenomenon�	 Since the true posterior is proportional to the
product of the prior with the likelihood� it too is non�gaussian� However the evidence pro�
cedure�s posterior is gaussian� so the two posteriors must di�er� To calculate the di�erence
we must �nd the evidence procedure�s posterior� and to do that we must �rst evaluate

P �D j �	 �
Z
dfP �f� � j D	 �

�s
��

� � �
e
� ��

���
d�
�N

� ���

We can solve for the peak of this distribution� �ev �

�ev �
�

��d� � 

� ���

So the evidence procedure�s posterior is a gaussian centered between the peaks of the
prior and likelihood �i�e�� between f � � and f � d	�

P �f j D��ev	 � ��ev�	N�� e��jf � Dj���evjf j� � e�����ev�
��f � �

�ev��
D
���
� ���
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Note that d is the distance along any coordinate separating the peaks of the prior and
the likelihood� Therefore ��d� is the separation between the peaks measured in units of
the likelihood�s width� But equation ��	 only has a meaningful solution if ��d� � 
� unless
the peaks are separated by more than the width of likelihood� there isn�t a peak in the
evidence� In this sense the evidence procedure is not even well�de�ned unless the data
are unexpected� �We use the term �unexpected� a bit loosely here� more formally � and
laboriously � one could analyze how �unexpected� the data are by considering the width
of the prior predictive distribution rather than the width of the likelihood�	 Moreover�
as the separation increases beyond two widths� so that ��d� � �� the value �ev becomes
smaller than �� Yet as �ev shrinks below � the evidence procedure�s approximation to the
posterior approaches the likelihood distribution� So as we pass the condition allowing the
evidence procedure to be well�de�ned� the data become more unexpected� and the evidence
procedure produces a posterior which increasingly approximates the likelihood�

These and related e�ects are illustrated in �gure �� Since the evidence approximated
posterior is a symmetric gaussian it is fully characterized by any single one�dimensional
slice through its peak� This is not the case with the true posterior unfortunately� since that
posterior is not symmetric about its peak� Nonetheless� we can learn a lot about the true
posterior by looking at a slice through it going from the origin out along the D direction in
f space� Figure � shows this slice and the corresponding slice of the evidence procedure�s
posterior for various separations� i�e�� various values of ��d�� The likelihood is also shown�
The plots for other slice directions exhibit similar behavior�

These plots show that the evidence and true posteriors have di�erent symmetries� peak
positions and widths� Moreover the true posterior can have two peaks whereas the evidence
procedure�s posterior only has one� and the true posterior tends to have �sometimes much	
more of its probability �mass� near the origin� Also note that the neither the peak position
nor peak widths of the two distributions approach one another until the distributions start to
converge on the likelihood � at which point the true posterior is about as well approximated
by the likelihood as it is by the evidence procedure�s posterior�

For large enough �max and �min close to �� as N increases the peaks of the true posterior
and of the evidence procedure�s posterior don�t move� nor does the position of the peak
of the evidence move� But all those distributions�and in particular the plots in �gure
��become sharper �cf� equations ��� �� and �	� and compare �gures �b and �d	� �Due to
this sharpening of peaks the plots for high N values aren�t very informative� this is why the
plots are for low N values even though the evidence isn�t very peaked for low N values�	 So
as N increase� the evidence becomes more peaked� But at the same time the discrepancy
between the true posterior and the evidence procedure�s posterior gets worse� not better�

Given all this� it seems fair to say that the evidence procedure�s posterior is a poor rep�
resentation of the true posterior�except for in the case when the prior doesn�t matter �i�e��
when things are likelihood dominated	� Nonetheless� in some circumstances� the evidence
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Figure �� Solid line� True posterior� P �f j D	� Dot�Dash� Evidence procedure�s posterior
P �f j �ev � D	� Dashed� Likelihood P �D j f	� Going from �gure �a	 through �c	� there is
increasing distance �i�e�� increasing ��D�	 between the peaks of the prior and the likelihood�
For ��d� 	 
� �ev is unde�ned� Figure �d	 increases the dimension from N � 
 to N � 
��
the mismatch between the distributions becomes worse� ��max � 
��� d � � 	

procedure�s posterior could provide a good approximation for calculating low�dimensional
expectation values� This will occur if erroneous behavior in the tails of the distribution
�compensates� for erroneous behavior in the central regions� �See section � below�	

Finally� we point out that it is a simple matter to calculate the true prior �and there�
fore the posterior	 not only when the conditioned prior is gaussian� but also when it is
entropic �see equation ��	 and �
��	� Moreover� for both scenarios one can often directly
approximate the exact posterior with a convenient form� Equation ��	 presents an example
of this for the gaussian prior case� and for the entropic prior such a direct approximation
is P �f	 � 
�S�f	N��� where S is the entropy �see �
��	� Nonetheless� one can not rule out
the possibility that there might be cases where the evidence procedure�s functional form
for the posterior is more convenient than �direct approximations� for the posterior� On the
other hand of course� unlike the exact calculation�s form for the posterior� generating the
evidence procedure�s form entails recalculating �ev for each new data set�

� Using evidence for things other than the posterior

Interestingly enough� all this doesn�t mean that the evidence procedure is useless� This
is because even though it gets the posterior wrong� when certain conditions are met the
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evidence procedure�s approximation for low�dimensional expectation values can be excellent�
As an example� consider the posterior expected value of a function g�f	� hgi �R

d�
R
df g�f	 P �f� � j D	� Suppose that g is a simple function of a single coordinate

fj � and that P �f�D j �	 factors as �N
k��P �fk � Dk j �	 �as it does in our gaussians example	�

Then by equation ��	�

hgi �
Z �max

�min

d�

Z
dfg�fj	

P �f� � j D	

P �� j D	
P �� j D	�

Cancelling terms between the numerator P �f� � j D	 and the denominator P �� j D	 �R
dfP �f� � j D	 �recall the assumption that P �f�D j �	 factors	� we see that

hgi �
Z �max

�min

d�P �� j D	R��	 ���

where R��	 �

R
dfjg�fj�P �fj�Djj��R

dfjP �fj�Dj j��
�
R
dfjg�fj	P �fj j Dj � �	�

Equations ��	 and ��	 have the same form� except that in equation ��	 the ratio occurring
in the integrand �R��		 only involves one�dimensional quantities� As a result� often equation
��	 does not give us the same di�culty that equation ��	 did� since in equation ��	 the
denominator of the ratio is a one�dimensional integral� it is often not strongly peaked� so to
have the ratio be smooth on the scale of the peak of the evidence does not require that the
numerator of that ratio be strongly peaked� as it did in equation ��	� So as long as� �max

is not too large �so that the tails don�t contribute much	� R��	 is not a rapidly varying
function �a condition often met for simple expectation values like the mean	� and P �� j D	
is a highly peaked function of � �cf� equation ��		� then calculating the expected g by
collapsing the integral over � down to the peak of P �� j D	 might be justi�ed�

R��	 and P �� j D	 for the gaussians case are sketched in �gure � for g�f	 � f �so
hgi is the posterior average f	� To highlight the important aspects of the plot� P ��	 is
�at between � and �max rather than Je�reys� These plots shows that slowly�varying R��	
and peaked P �� j D	 is not uncommon� provided one has appropriate choices of �max

and the like� �Note that this is not the behavior of all the plots however� Also note the
logarithmic scale of the x axis that �compresses� the tails�	 So in some circumstances the
evidence procedure can accurately estimate low�dimensional expectation values even if it
poorly approximates the �high�dimensional	 posterior distribution� To help understand this
in light of the preceding discussion� note that P �� j D	 is usually only highly peaked on
the likelihood�dominated side of the midpoint in R��	� And of course in the likelihood�
dominated regime we are free to introduce approximation error into the prior�

Note that all of this depends on the tails in �gure � being relatively unimportant� which
usually holds only if �max is not too large� For example� in the gaussians case� for large
enough �max the tails of P �� j D	 will provide more weight in the integral over � than the
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Figure �� R��	 makes a smooth transition from the prior�dominated to the likelihood�
dominated regime� It is weighted by P �� j D	 in the integral giving hgi� The long tails of
P �� j D	 can outweigh the peak of P �� j D	 in the integral� particularly when that peak
lies beyond the crossover point from the likelihood�dominated regime�

peak does� In such a situation� we are not justi�ed in �collapsing the integral down to the
peak�� and the evidence�s procedure�s approximation for the expectation value is poor�

Unfortunately though� there is a lot of confusion about how to choose �max� In partic�
ular� while a large �max does indeed result in a less informative P ��	� it results in a more

informative P �f	� This is because the larger �max is� the narrower P �f	 becomes� �Similar
�conjugate� behavior in a di�erent context has been discussed by Jaynes �
���	 This is
a special example of the following more general rule� if one knows the physical meaning
of a hyperparameter� then one can set the prior over it directly� without concern for how
that prior a�ects P �f	� However if the hyperparameter has no physical meaning� and if
one sets the prior over it without taking into account how that prior a�ects P �f	� then
one is introducing �usually �ctitious	 prior �knowledge� concerning the ultimate object of
interest� f � This problem is particularly pronounced if P �f j �	 is somewhat ad hoc� like
in the case of neural nets� where f is an input�output mapping� and P ��	 only sets P �f	
indirectly� by means of an intermediate distribution over �weight vectors� ��
��

There are many other quantities of interest in addition to the posterior and its low�
dimensional marginalizations� Two such quantities are the posterior over a single coor�
dinate �i�e�� P �fi j D		 and the predictive distribution for new data given old data �i�e��
P �new data set � D� j D		� Since the posterior over a single coordinate is a low�dimensional
marginalization of the full posterior� we expect the evidence procedure to estimate it accu�
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rately when it estimates other low�dimensional marginalizations well� On the other hand�
the predictive distribution is a high�dimensional object� and therefore we expect the evi�
dence procedure to estimate it as poorly as it does the full posterior�

Yet another quantity of interest is the mode of the posterior� the �MAP� f � Since the
MAP f is not a low�dimensional marginalization of the posterior� one would not expect the
evidence procedure to approximate it well unless things are likelihood dominated� This is
the case with gaussians for example � see �gure ��

Despite this though� applications of the evidence procedure frequently concentrate on
the f �mode of P �f j �ev � D	� This isn�t as unreasonable as it might seem if P �f j �ev � D	
is symmetric and unimodal� since for such a distribution the mode equals the mean� So
when the evidence procedure�s posterior is symmetric and unimodal� �nding the mode of
that posterior provides an accurate estimate of the true posterior�s mean �if it so happens
that the mean of the evidence procedure�s posterior is a good approximation of the true
posterior�s mean � cf� equation ��		� We speculate that this is the origin of the cryptic
claim that the evidence procedure estimates �where most of the mass is� correctly�

So in these symmetric and unimodal circumstances it is indeed sensible to concentrate
on the mode of the evidence procedure�s posterior� However when the evidence procedure�s
posterior is either asymmetric or multimodal� the peak of the procedure�s posterior does
not equal its mean� For such cases the mode of the procedure�s posterior has no special
signi�cance� and there is no reason to concentrate on that mode� In particular� this problem
a�ects use of the evidence procedure with the entropic prior� and with �highly multi�modal	
neural nets� Ironically� these are two situations in which it happens to be particularly
common for researchers to concentrate on modes of the evidence procedure�s posterior�

As a �nal example of a quantity of interest� note that in many applications one is more
concerned with unusual events than with likely events� �For example� a battleship�s captain
might not be interested in a �typical� reconstruction of a radar�image� but rather in the
probability that that image was created by an approaching periscope�	 In such a case we are
interested in the probability distribution across the tails of the hypothesis space� However
in general there is no reason to believe that the evidence procedure approximates such tails
well� In particular� in the gaussians example the ratio of the true posterior to the evidence
procedure�s posterior goes to in�nity in the tails of f �cf� equations ��� �		� In the �nal
analysis� whether or not a particular use of the evidence procedure is sound depends on
what one wants to know �which in turn is determined by one�s loss function	�

� Formal bounds on evidence�s error

This section presents a formal analysis of upper and lower bounds on the error incurred
by using the evidence procedure� �Some of these results correct de�ciencies in the results
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reported in �����	 In most of this analysis we will not restrict attention to hyperparameters
which occur in the conditional prior� so we denote hyperparameters by � rather than ��
Also� although most of this analysis goes through essentially unchanged when � is multi�
dimensional� for simplicity only the one�dimensional � case is presented here�

This section is organized as follows� First it is proven that P �f	 can not be of the form
P �f j � � 
	 for some constant 
 �i�e�� marginalizing out a hyperparameter can never be
equivalent to setting it to some particular value	� It is argued that this means that ��rst�
principles� arguments for a prior which don�t set the value of the hyperparameter are not
self�consistent� It also means that the evidence procedure will always have some error�

Next the reasoning of section � is formalized to derive an upper bound on the error of
the evidence procedure� Like many of the other results presented in this section� this upper
bound applies to a wide variety of possible uses of the evidence procedure�

Then it is shown that the separation between the ��peaks of P �f� � j D	 and P �� j D	
must be small or the evidence procedure�s error will be large �cf� the discussion of �fortuitous
cancellation of peaks� near the end of section �	� This is done by both showing that the
upper bound on the error increases with that separation� and then by deriving a lower
bound on the error which increases with that separation� So by measuring the separation
one can test the evidence procedure� In addition� the lower bound can be used to show that
when P �� j D	 is highly peaked�exactly the situation which traditionally was thought to
justify the evidence procedure�the evidence procedure can give an accurate estimate of
the entire posterior P �f j D	 only if that posterior is likelihood�dominated�

Finally� we discuss how well the evidence procedure performs when one uses error mea�
sures like the Ln di�erence between the correct posterior and the evidence procedure�s guess
for that posterior�

We start with a proof that for a broad class of P �f j �	�s� there is no non�pathological
scenario for which the evidence procedure�s approximation to P �f	 is correct�

Theorem �� Assume that for those � for which it does not equal zero� P �f j �	 � e��U�f�

for some function U��	� Then the only way that one can have P �f	 � e��U�f� for some
constant 
 is if P ��	 � � for all � �� 
�

Proof� Our proposed equality is e��U �
R
d�T ��	� e��U � where the integration limits

are implicitly restricted to the region where P �f j �	 �� �� and where T ��	 � P ��	 �R
dfe��U�f��

R
dfe��U�f�� �Note that for both P �f	 and P �f j �	 to be properly de�ned�

both integrals in the de�nition of T ��	 must be greater than zero and �nite�	 We must �nd
an 
 and T ��	 such that this equality holds for all realizable values of U � Let u be such a
realizable value of U � Take the derivative with respect to U of both sides of the proposed
equality t times� and evaluate for U � u� The result is 
t �

R
d���	t�R��	 for any integer




�

t � �� where R��	 � T ��	� eu������ Therefore
R
d���� 
	� �R��		 � �� Since both R��	

and �� � 
	� are nowhere negative� this means that for all � for which �� � 
	� �� �� R��	
must equal zero� Therefore P ��	 must equal zero for all � �� 
� QED�

Theorem one has two important consequences� First� consider any ��rst principles�
argument which says that the prior over f is proportional to K�f	e��U�f� for some U��	
and K��	 but does not �x �� Our ignorance concerning � implies a non�delta function
distribution P ��	� By theorem one� such a distribution ensures that P �f	 is not proportional
to K�f	e��U�f� for some 
� So in a certain sense� such a ��rst�principles� argument for a
prior is not self�consistent� In particular� the �rst principles arguments which have been
o�ered in favor of the so�called �entropic prior� but which do not �x � �e�g�� �Skilling

���		 su�er from this problem� As another example� with U�f	 � � log�V �f	� theorem
one implies that a Dirichlet prior with an unspeci�ed exponent �i�e�� a non�delta function
P ��		 is not a Dirichlet prior� �A similar point is made in �
���	

Second� if the likelihood is nowhere�zero� theorem one says that there is a non�zero
lower bound on the error of using evidence to set the posterior� The only question is how
low the bound is� To address this make the de�nition P �f j D	 � P �D j f	 �PE�f	 �
Er�f	� �P �D	� where �PE�f	� means the evidence procedure�s approximation to P �f	� So
if P �D	 	 PE�D	� the error in the evidence procedure�s estimate for the posterior equals
P �D j f	 � Er�f	�P �D	� Therefore we can have arbitrarily large Er�f	 for a particular
f and not introduce sizable error into the posterior of that f � but only if the likelihood
is small for that f � As D varies� the set of those f whose likelihood is not small varies�
And as such a set of f varies� the � �if there is one	 such that for those f P �f j �	 is a
good approximation to P �f	 varies� When it works� the ��D	 returned by the evidence
procedure re�ects this changing of � with D�

In general though� one needn�t use the evidence procedure to estimate a posterior� but
might instead use it for other purposes �see section �	� To circumvent the issue of how
the posterior gets used� we will examine the evidence procedure�s error as an estimator of
an expectation value

R
df �A�f �	 � P �f � j D	� where f � is a dummy f variable� and A��	 is

determined by the use we have in mind for the posterior�
For example� A�f �	 � f � if we�re interested in the posterior average f � If we�re interested

in the posterior directly� then A�f �	 � A�f� f �	 � ��f � f �	� and expected A is a function of
f as well as f �� As a �nal example� if we�re interested in the predictive distribution� then
A�f �	 � P �new data set � D� j f �	� and A is a function of D� as well as f ��

To analyze such expectation values� let expressions of the form �Ef�A ��� stu�	� meanR
df �A�f �	� P �f � ��� stu�	� where �stu�� can involve f �� conditional bars� or whatever� Ef

expectation values are over f alone� So for example Ef�A j D	 �
R
df �A�f �	�P �f � j D	� and

Ef�A� � j D	 �
R
df �A�f �	� P �f �� � j D	� �This is slightly non�standard use of the �E��	�

notation�	 Also� take expressions like �P ������ ���	� to be shorthand for �P �� � ����� ���	��
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The intuition for when the evidence procedure works for expectation values is analogous
to the intuition for posteriors� the posteriors intuition is based on equation ��	� and the
expectation values intuition is based on the very similar equation

Ef�A j D	 �
Z
d�

Ef�A� � j D	

P �� j D	
P �� j D	 �

Z
d�Ef�A j ��D	P �� j D	� �
�	

Just like equation ��	� equation �
�	 suggests � 	 that if P �� j D	 is sharply peaked about
�� and Ef�A j ��D	 is slowly varying� then Ef�A j D	 	 Ef�A j ��� D	�

We now present several theorems which formalize this intuitive reasoning� These theo�
rems give upper and lower bounds on the error induced by using the evidence procedure� In
these theorems we never need to specify A��	� In addition� we don�t need to assume anything
special about the probability distributions� e�g�� that they�re linear gaussian models�

We will consider three properties�


	 How sharp the ��peak of P �� j D	 is�
�	 How much Ef �A j ��D	 � Ef�A� � j D	�P �� j D	 varies around that peak of P �� j D	�
�This provides the scale for measuring the peakedness of P �� j D	�	
�	 How Ef�A� � j D	 behaves for � signi�cantly far from that peak of P �� j D	� �This � not
peakedness of P �� j D	 � determines if we are justi�ed in ignoring the tails in our integrals�	

Formally� �rst choose a �� and a � � ��
In practice these will usually serve as the peak position and peak width of P �� j D	
respectively� and we will loosely refer to them as such� �Note though that we make no
such stipulations in their de�nitions� and the theorems presented below don�t rely on
their serving those functions�	

Our �rst two de�nitions characterize the �peakedness� of P �� j D	� the smaller � and!or
� the more �peaked� the distribution�

� � max �P ��
����jD�

P ���jD� � P ��
���jD�

P ���jD� ��

We will say �condition �i	 holds� if � is small� It is usually assumed that � 	 
�

 � 
�
R ����
���� d�P �� j D	�

We will say �condition �i�	 holds� if  is small�

Our next de�nition characterizes how slowly varying Ef�A j ��D	 is across the peak� the
smaller � � the more slowly varying Ef�A j ��D	 is across ��� � �� �� � ���




�

� � max jEf�A j ��D	�Ef�A j ��� D	j across � 
 ��� � �� �� � ���

We will say �condition �ii	 holds� if � is small�

Our next two de�nitions characterize how much tails over � matter� the smaller � and!or

B� the less those tails matter�

� � jEf�A j D	�
R ����
���� d�Ef�A� � j D	j�

� is the contribution to Ef�A j D	 arising from Ef�A� � j D	 lying outside ������ ������

We will say �condition �iii	 holds� if � is small�

B � max jEf�A j ��D	j across � �
 ��� � �� �� � ���

B measures how big Ef�A j ��D	 can get when � is outside of ��� � �� �� � ���

We will say �condition �iv	 holds� if B is not too large�

�Evidence�s error� is the magnitude of the di�erence between the full Bayesian answer
and the evidence procedure�s answer� jEf�A j D	 � Ef�A j ��� D	j� We will say that
�evidence works� if evidence�s error is small�

We can now formalize the intuition for when evidence works by writing down an upper
bound on evidence�s error�

Theorem �� Evidence�s error � � � ��
� 	 � Ef�A j ��� D	� jj�

Proof� jEf�A j D	 �
R ����
���� d��Ef�A j ��D	 � P �� j D	�j � �� by de�nition of �� By

the de�nition of � � j
R ����
���� d��Ef�A j ��D	P �� j D	� � Ef�A j ��� D	

R ����
���� d�P �� j D	j �

�
R ����
���� d�P �� j D	� Combining� jEf�A j D	 � Ef�A j ��� D	

R ����
���� d�P �� j D	j � � �

�
R ����
���� d�P �� j D	� Therefore Ef�A j ��� D	�Ef�A j D	 � ����
�	�Ef�A j ��� D	��

QED�

One can �nd some su�ciency conditions for evidence to work in the literature� These
are speci�c to certain kinds of distributions� and are derived by evaluating the evidence
procedure�s answer and the exact answer and seeing if the two di�er� Of course� if you can
evaluate the exact answer� there�s no need for an approximation like the evidence proce�
dure in the �rst place� In contrast� theorem two provides us with some sets of su�ciency
conditions which don�t rely on evaluating the exact answer�

For example� if conditions �i�	� �ii	 and �iii	 hold� and Ef�A j ��� D	 is not too large� then
theorem two tells us that evidence�s error is small� �We have no guarantees that it�s easy to
evaluate whether those conditions hold� of course�	 Intuitively� condition �iii	 is what lets us
restrict attention to the region immediately surrounding the peak of P �� j D	� Condition
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�ii	 then tells us that Ef�A j ��D	 doesn�t vary across that region� and can therefore be
evaluated at � � �� and pulled out of the integral� The overall error introduced by the
value of that remaining integral is re�ected in the Ef�A j ��� D	� jj term�

Note that this remaining error can be minimized either by having a sharp peak � small	
or by having Ef�A j ��� D	 � the guess of the evidence procedure � be close to zero� So we
don�t need to have condition �i�	 hold �i�e�� have P �� j D	 peaked	 for evidence to work�
�There are a number of other situations in which the evidence procedure can be justi�ed
even though P �� j D	 is not peaked� see section � below�	 On the other hand� in section one
we saw that peaked P �� j D	 does not guarantee the accuracy of the evidence procedure�
Summarizing� the evidence procedure sometimes works even when P �� j D	 isn�t peaked�
and there are also circumstances for which it doesn�t work despite P �� j D	�s being peaked�

All of this notwithstanding� when evidence works in practice usually condition �iii	 is
met by having  small� with Ef �A j ��D	 staying reasonably bounded for � outside of
���� �� �� � ��� Formally� � � B � � so that conditions �i�	 and �iv	 give condition �iii	� In
such scenarios� peakedness of P �� j D	 does go hand in hand with evidence working�

We now turn to the issue of lower bounds on the error of the evidence procedure�
Intuitively� one might think that since �� is the �dominant contributing ��� the evidence
procedure should work for peaked P �� j D	 in general� The problem is that one can just as
easily argue that the �dominant contributing �� for what we are interested in �namely
Ef �A j D		 is given by argmax�Ef�A� � j D	� not argmax�P �� j D	� After all� Ef�A j D	
is the ��integral of Ef�A� � j D	� not of P �� j D	� This suggests that for evidence to work�
�� must �nearly	 maximize Ef �A� � j D	�

Indeed� recall that the intuitive justi�cation of the evidence procedure outlined in equa�
tion �
�	 required that the peaks of Ef �A� � j D	 and P �� j D	 nearly coincide� lest � be
too large� This reasoning is formalized in the following theorem� which provides a lower
bound on � based on the peak separation� and which uses the � measure of peakedness�

Theorem �� If Ef �A� ��D	 does not have a ��peak somewhere within � of ��� then
� � Ef �A j ��� D	�
� �	 � ��

Proof� By hypothesis Ef�A� ��� D	 has no local maximum in ��� � �� �� � �	� Therefore
we can�t have both Ef�A� �� � ��D	 and Ef�A� �� � ��D	 less than Ef�A� ��� D	 � With�
out loss of generality� assume Ef �A� ��� D	 � Ef �A� �� � ��D	� Now examine the ratio
expectation values Ef �A j �� � ��D	�Ef�A j ��� D	� which we can write as the product of
ratios �P ��� j D	�P ��� � � j D	� � �Ef�A� �

� � ��D	�Ef�A� �
�� D	�� By our assumption�

the second term in square brackets � 
� However by de�nition of �� the �rst term in square
brackets � 
��� Therefore Ef�A j �� � ��D	 � Ef�A j ��� D	�� � and the di�erence
Ef �A j �� � ��D	 � Ef �A j ��� D	 � Ef�A j ��� D	� ���� � 
	� Using the de�nition of � �
this means that Ef�A j ��� D	� ���� � 
	 � � � QED�
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In terms of equation �
	� large � means that around � � ��� Ef�A j ��D	 is not slowly
varying on the scale of the width of the peak of P �� j D	� Recall though that if � is large�
then the intuition behind the evidence procedure�that P �� j D	 �picks out� Ef�A j ��D	
evaluated at � � ���is faulty� Formally� if � is large theorem ��	 gives a weak upper bound�
And by theorem ��	 � is always large if we have a wide separation between our peaks�

In fact� we can use distance between the peaks to give a lower bound on evidence�s
error� to go with the upper bound of theorem two� To do this� de�ne � as the magnitude
of the distance between �� and that ��maximum of Ef�A� ��D	 which lies closest to ���

Theorem �� If Ef�A� � j D	 is non�negative for all �� it follows that evidence�s er�
ror � Ef�A j ��� D	 � ��P ��� j D	 � 
�� Equivalently� it follows that evidence�s error
� Ef �A j D	� � 
 � �
 � �P ��� j D		 ��

Proof� Since evidence�s error is non�negative� if � � �� the theorem trivially holds� If
� � �� �� isn�t a maximum of Ef �A� ��D	� Accordingly� Ef �A� ��D	 must either grow as �
increases past �� or as it decreases below ��� ��Grow� here is taken to mean �stays level or
rises��	 Without loss of generality assume it grows as � increases past ��� Then the soonest
it could stop growing is at � � �� � �� Therefore

R ����
�� d�Ef�A� ��D	 � �Ef�A� ��� D	�

which implies that
R ����
�� d�Ef�A� � j D	 � �Ef �A� �� j D	� Recall our hypothesis that

Ef�A� � j D	 is non�negative� which implies that Ef�A j D	 �
R
d�Ef�A� � j D	 �R ����

�� d�Ef�A� � j D	� Ef�A j D	 � �Ef�A� �� j D	� So Ef�A j D	 � Ef �A j ��� D	 �
Ef�A j ��� D	 � ��P ��� j D	 � 
�� which proves the �rst bound� Now de�ne " as the
evidence�s error and use the fact that Ef�A j ��� D	 � Ef�A j D	�" to convert our lower
bound on Ef�A j D	 to Ef �A j D	 � �P ��� j D	 � �Ef�A j D	 �"�� Rearranging gives
the second bound� QED�

Theorem four provides another reason for why having the ��peaks far apart is bad for
the evidence procedure� �An example of testing the evidence procedure by evaluating the
distance between the peaks was presented in �gure ��	 Note that theorem four does not
mean that a small separation between the peaks implies that evidence works� In fact� it
is not even true that evidence working means that the peak separation must be small� the
overall multiplicative factor in theorem four might be tiny�

Note that our two peaks are the maximizers over � of two very similar integrals�R
df �A�f �	P �f �� ��D	 and

R
df �P �f �� ��D	� Accordingly� often if one can evaluate the peak

of the evidence� one can also evaluate the peak of Ef�A� ��D	� and therefore one can eval�
uate �� So if one can use the evidence procedure� usually one can test its validity� In
some cases in fact� it�s easier to evaluate the peak of Ef �A� ��D	 than it is to evaluate the
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evidence peak �e�g�� for the entropic prior � see �
��	� In such circumstances� if one has
reason to believe that the evidence procedure is valid �so that � must be small	� it is easier
to evaluate �ev by �nding the mode of Ef�A� ��D	 than by �nding the mode of P �� j D	�

The need for the peaks to coincide can set strong restrictions on the restrictions on the
use of the evidence procedure� For example� take A�f �	 � ��f � f �	� so that expectation
values of A are probabilities of f � Assume P �� j D	 is quite peaked� Say we want to use
the evidence procedure to estimate Ef�A j D	 � P �f j D	 for some particular f � #f � Then

theorem four tells us that for evidence to work� if P � #f j D	 is non�negligible �or equivalently
the evidence procedure�s prediction P � #f j ��� D	 is non�negligible	� then � must be quite
small for #f � i�e�� the peak of P � #f� ��D	 � P �D j #f� �	P � #f j �	P ��	 must lie close to �� �as
measured on the scale of 
�P ��� j D		� Setting the peaks exactly equal gives us an equation
for #f in terms of D ��� being a function of D	� In general this equation will have a highly
restricted solution for #f � F �D	 �i�e�� F �D	 is a low�dimensional manifold in f �space	� For
example� in the case of the entropic prior� F �D	 is a set of f all sharing the same entropy
�that entropy value being set by D	� In our gaussians case� F �D	 is a set of points all
sharing the same jf j� �where again the precise value is set by D � see theorem four of ����	�

So for su�ciently peaked evidence� unless those f with non�negligible posterior all lie
in a highly restricted region �F �D		� the evidence procedure is guaranteed to have sizable
error for some f � Therefore for su�ciently peaked evidence� if the evidence procedure is to
correctly estimate the full posterior� that posterior must be highly peaked �i�e�� its support
must be con�ned to a highly restricted region	� This in turn usually implies that we�re in a
likelihood dominated regime � in which case there�s little reason to apply Bayesian analysis�

These e�ects can be envisioned with the help of �gure �� Recall that as N rises� the only
e�ect is that all � 	 distributions �over both � and f	 become more peaked� the shapes of
the distributions and in particular the positions of their peaks do not change� This means
that the curves in �gure � get more peaked�but otherwise do not change�as the evidence
gets more peaked �cf� parts b and d of �gure �	� Accordingly� as the evidence gets more
peaked� the set of f which both have non�zero posterior and which have their posterior
well approximated by the evidence procedure becomes tightly restricted� Indeed� that set
is empty in part d of �gure �� In fact� of the three ��s in �gure �� it is only for the � of
part c that the �tightly restricted set of f� doesn�t quickly vanish with rising N � Yet it is
precisely that value of � in part c that is the largest of those depicted in the �gure� This
illustrates the fact that when the evidence procedure correctly estimates the full posterior
we have high �� and that this e�ect becomes more pronounced as the evidence becomes
more peaked �i�e�� as N rises	� Rephrasing� things must be likelihood�dominated for the
evidence procedure to work� especially when the evidence is peaked�
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� Variations on the su�ciency conditions

There are a number of issues related to upper bounds on evidence�s error which were
peripheral to the discussion in section �ve but which deserve mention nonetheless� This
section summarizes some of them�

Although it is usually associated with peaked P �� j D	� there are some scenarios in which
the evidence procedure can be used even if P �� j D	 is not peaked� One such scenario was
mentioned in the discussion of theorem two� if Ef�A j ��� D	 is small� then we don�t need
small  to get a low upper bound on the evidence procedure�s error� Another way to avoid
the need for peaked evidence arises if we know the value of �
� 	� The idea is to exploit
an inequality �established in the proof of theorem two	 concerning the �multiplicatively
corrected� error� jEf�A j D	� �
� 	Ef�A j ��� D	j � � � ��
� 	� This relation means
that if we multiply the evidence procedure�s guess by 
 �  before using it� then we will
incur small error regardless of the value of  �so long as � and � are small	� On the other
hand� although it shrinks the upper bound of the evidence�s error� such post�multiplication
of the evidence procedure�s guess also raises the lower bound on the error� rather than the
bound of theorem four� the bound becomes Ef�A j ��� D	� ��P ��� j D	 � � 
��

Another way to bypass the need for peaked P �� j D	 arises if we�re interested in the
ratio of two expectation values rather than the expectation values themselves� Assume
that for some � jEf�A j D	 � �Ef�A j ��� D	j is bounded by the same small constant
" for both Ef�A� j D	 and Ef�A� j D	� �E�g�� have � and � small for both A�s� take
� � 
�� and apply the inequality mentioned in the preceding paragraph�	 Then the ratio
Ef�A� j D	 � Ef�A� j D	 � �Ef�A� j ��� D	 � d�� � �Ef�A� j ��� D	 � d��� where both jd�j
and jd�j are bounded by "��� As an example choose A� � ��f � f�	 and A� � ��f � f�	�
if Ef�A� j ��� D	 � "�� �note that "�� � � � ���
 � 		� then we can write Ef �A� j
D	 � Ef�A� j D� 	 Ef�A� j �

�� D	 � Ef�A� j �
�� D	� and the evidence procedure accurately

approximates the ratio of the two posteriors�

There are other scenarios besides those involving ratios where one isn�t directly con�
cerned with �evidence�s error� as de�ned in the preceding sections� Most such scenarios
have A��	 a function of f as well as f �� so our expectation values are functions of f � �Recall
that this is the case when posterior expected A��	 is equivalent to the posterior probability of
f � for example�	� To avoid confusion� in addressing these scenarios we will write expressions
like Ef ��Af j D	 �

R
df �Af�f �	P �f � j D	� since A��	 is a function of two arguments� the

subscript on the �E� is modi�ed to indicate exactly which argument is being marginalized�
and a subscript is introduced onto the A��	 to indicate the remaining free variable�

For this kind of A��	 one might wish to measure the accuracy of the evidence procedure
over all f � rather than just at one particular f � One way to do this is to evaluate a
functional of the two functions Ef ��Af j D	 and Ef ��Af j ��� D	� So for example we might
be interested in the least upper bound �over all f	 of jEf ��Af j D	�Ef ��Af j ��� D	j� Since



�


theorem two holds for any individual f � this least upper bound is bounded above by the
quantity maxf� ��f	 � ��f	�
� 	 � Ef ��Af j �

�� D	 jj 	 �� and � have dependence on f
through their dependence on A��		� This gives the largest possible gap �across f	 between
the evidence approximation to the posterior and the correct posterior�

Arguments similar to this least upper bound �lub	 one can be used to directly boundR
df jEf ��Af j D	� Ef ��Af j �

�� D	j� More generally� we can use a bound �however arrived
at	 on lubf � jEf ��Af j D	� Ef ��Af j �

�� D	j 	 to get bounds on the Ln di�erence between
Ef ��Af j D	 and Ef ��Af j �

�� D	 for any n� We illustrate this for the case where A�f� f �	 �
��f � f �	� so that the expectation value we�re examining is the posterior distribution of f �

De�ne �Ln�x�f	 � y�f		� to mean the Ln di�erence between x�f	 and y�f	� We can
bound this di�erence as follows�

Theorem �� Let � be an upper bound on lubf � jP �f j D	 � P �f j ��� D	j 	� Then
Ln�P �f j D	� P �f j ��� D	� � �� �������n�

Proof� Let W be the volume of the region in f space where P �f j D	 � �� Let C � 

be the integral of P �f j D	 over the region corresponding to W � Write P �f j D	 as h�f	
and P �f j ��� D	 as g�f	� for simplicity� Note that both h and g are positive de�nite and
normalized to 
�
De�ne V � �
� �C �W�	� � �� Since C �W� � 
� V � �� Now choose a region of volume
V across which h�f	 is in�nitesimal� We can always do this since h�f	 is normalized to 

and positive de�nite� and because f space is in�nite� there are regions of arbitrarily large
volume over which h�f	 is arbitrarily small�
Fix h� Make the hypothesis that the g which maximizes Ln�h�f	� g�f	� equals �h�f	� ��
across the region corresponding to W � has the value � across the region corresponding to
V � and is zero everywhere else�
This g�f	 is positive de�nite and normalized to 
� Furthermore� for this g�f	� the value of
Ln�h�f	� g�f	� is bounded by ��nW � �n�
 � �C � �W 		�� � �n�
 � C	�����n� where
the last term inside the square brackets is an upper bound on the contribution of the re�
gion where g�f	 equals zero but h�f	 need not� Rewriting this we get Ln�h�f	� g�f	� �
���W � ��� �C	�����n � ��������n� as in the statement of the result�
Therefore we only need to prove that our hypothesized g is the one which maximizes the Ln

di�erence between h�f	 and g�f	� To do this� note that we have three regions of interest�
call them �i	� �ii	� and �iii	� Region �i	 is the region with volume W � Region �ii	 is the
region having �volume ��� �C �W�	��� across which h�f	 is in�nitesimal�� Region �iii	
is the rest of f �space� across which g�f	 has value �� although h�f	 need not�
If our hypothesized g were not the Ln�maximizing g� then it would be possible to increase
Ln�g�f	� h�f	� by appropriately shifting some of g between the three regions� Now g can�t
shrink in region �iii	 �it�s positive de�nite	� and it can�t shrink in region �i	 �it must lie



��

within � of h by de�nition of �	� Therefore our only possibility is that g increase�or�stays�
the�same in both regions �i	 and �iii	� and decreases�or�stays�the�same in region �ii	�
If g increases in region �i	 but stays the same in region �iii	� to preserve normalization it
must decrease in region �ii	� For n � 
� to have g�f	 extremize the Ln norm while not
exceeding h by more than �� we want g�f	 to equal � or � everywhere in region �ii	� Using
this� normalization of g� and the fact that g�f	 can�t di�er from h by more than � across
region �i	� we see that the Ln norm can only decrease in this �shifting� procedure�
The same result holds if g increases in region �iii	 but not in region �i	� or if g increases in
both those regions� Therefore g can not change without shrinking the Ln norm� QED�
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