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To Bayes or not to Bayes?

John A. Scales∗ and Roel Snieder‡

Editor’s Note:

A goal that I have set for myself as Editor is to add
some new features to our standard fare of erudite tech-
nical articles. There are always times when those who do
science need to pause and reflect about the broader im-
plications of what they do. It occurred to me that an oc-
casional column by writers who want to probe into such
matters might interest a large cross-section of our read-
ers. Drs. John Scales and Roel Snieder of the Colorado
School of Mines and Utrecht University have written a
fascinating piece on a geophysical inversion methodol-
ogy associated with the name of the famous eighteenth
century mathematician and clergyman Thomas Bayes. I
hope that you will enjoy their short essay. I would also
like to know how you, the readers, feel about columns of
this kind, and would welcome your feedback, preferably
by e-mail to streitel@seg.org. I also encourage you to send
me your specific comments about the present essay.

—Sven Treitel
Editor

The goal of geophysical inversion is to make quantitative in-
ferences about the Earth from noisy, finite data. The limitations
of noise and the inadequacy of the data mean that geophysical
inversion problems are fundamentally problems of statistical
inference. We do not invert data to find “models,” as much as
we might like to; we invert data to make inferences about mod-
els. There will usually be an infinity of models that fit the data.
Thus we must look to probability theory for help.

There are two fundamentally different meanings of the term
“probability” in common usage. If we toss a coin N times, where
N is large, and see roughly N/2 heads, then we say the prob-
ability of getting a head in a given toss is about 50%. This
interpretation of probability is therefore called “frequentist.”
On the other hand, you can’t turn on the evening news without
hearing a statement such as: “the probability of rain tomorrow
is 50%.” Since this statement does not refer to the repeated
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outcome of a random trial, it is not a frequentist use of the
term probability. Rather, it conveys a statement of informa-
tion. This is the Bayesian use of “probability.” Both ideas seem
quite natural, so it is perhaps unfortunate that the same term
is used to describe them.

Bayesian inversion has in recent years gained a strong pop-
ularity in its application to geophysical inverse problems. The
philosophy of this procedure is as follows. Suppose one knows
something about a model before using the data. This knowl-
edge is cast in a statistical form and is called the a priori
model information. (A priori means before the data have been
recorded; i.e., information that is independent of the data.)
Suppose one then has a set of data, and that one also knows
the statistical properties of the data (e.g., the data variance
and covariance). Bayesian inversion provides a framework for
combining the a priori model information with the informa-
tion contained in the data to arrive at a more refined statistical
distribution; that is, the a posteriori model distribution. The
a posteriori distribution is what we know after we have assim-
ilated the data and our prior information. The point of using
the data is that the a posteriori model information hopefully
constrains the model more tightly than the a priori model dis-
tribution.

The popularity of Bayesian inversion cannot be explained
by the conceptual elegance of the method only. Instead, the
popularity is to a large extent a result of the freedom that is
taken in controlling the desired model properties through the
specification of the a priori model statistics. In other words, the
a priori knowledge of the model is often used as a knob to tune
the properties of the final model produced.

However, the notion of a priori model statistics can in prac-
tice be somewhat shaky. As an example, consider a seismic
survey. In such a situation one may have a fairly accurate idea
of the ranges of seismic velocity and density that are realistic.
However, the length scale of the velocity and density variation
is to a large extent unknown. Sonic logs taken over increasingly
smaller lengths indicate that the earth’s properties might not
have a characteristic length scale at all. The horizontal corre-
lation length is a property that is almost impossible to assess
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a priori, especially if one takes into account that seismic surveys
often are carried out to detect the rapid horizontal variations in
the seismic velocity that occur near structural features such as
faults or salt domes. This implies that our a priori knowledge of
the earth’s interior is rather poor, especially where it concerns
the a priori correlation length of the model.

So how can Bayesian inversion be so popular when our
a priori knowledge is often so poor? The reason for this is that
in practice one often uses the a priori model statistics to regu-
larize the a posteriori solution. In other words, in a succession
of different inversions one tunes the a priori model statistics
in such a way that the retrieved model has agreeable features.
Note that in such an approach the a priori model statistics are
used a posteriori to tune the retrieved model!

But Bayesian statistics relies completely on the specification
of a priori model statistics, i.e., on the knowledge that one has
of the model before one has used the recorded data. (This speci-
fication is encapsulated in Bayes’s theorem, which can be found
in textbooks on probability.) The flexibility taken in using the
a priori model statistics as a knob to tune properties of the
retrieved model therefore is completely at odds with the phi-
losophy of Bayesian inversion. This does not mean that there is
anything wrong with Bayesian inversion, but it does imply that
the reason for the popularity of Bayesian inversion within the
earth sciences is inconsistent with the underlying philosophy.
The quote “if I hadn’t believed it I would not have seen it”
certainly applies to this type of abuse of Bayes’s theorem.

In practice it is extremely difficult to use Bayes’s theorem to
do realistic inverse problems and be honest. In doing so it is
crucial to answer the following two questions:

1) Is the mathematical representation of the information
justified by the observations? This applies both to the
a priori model information (as we have seen), but also to
the description of the data statistics.

2) To what extent does this information refine the infer-
ences?

For Bayesians, the second question is the easiest to answer.
If we have a probability that assimilates all the available infor-
mation, then we can compute a variety of measures telling us
how reliable our estimates are. Essentially, this means that we
can define bounds for the model parameters, centered about
a most-probable value, within which we are confident, to a
certain degree, that the parameters must lie. The higher the
confidence we specify, the bigger the set of possible parameter
values. These are our “error bars.”

It’s the first question that causes problems. For realistic in-
verse problems one has a choice of three strategies. The first
strategy is to apply Bayes’s theorem and prescribe the a pri-
ori model statistics and data statistics “as honestly as possi-
ble.” (Note how difficult it is to give a formal definition of this
last statement.) In doing so one discovers that there are few
objective criteria to define the a priori model and data statis-
tics. For example, is it justified to take a statement such as:
parameter x must lie between a and b and represent this state-
ment as a uniform probability on the interval? No! There are
infinitely many probability distributions consistent with this
statement. To pick one is an overspecification of the informa-
tion given. Even an apparently conservative approach such as

taking the probability distribution that maximizes the entropy
subject to the constraint that x lies in the interval may lead to
pathologies in high-dimensional problems. This implies that it
is extremely difficult to prescribe unambiguously the statistical
properties of the data and the a priori model. One way out of
this dilemma is to presume that “probability lies in the eye of
the beholder.” Another possibility is to derive priors based on
a fundamental theory. We shall call this approach a pragmatic
Bayesian strategy.

A second strategy, more purely Bayesian, is to attempt to
model all quantitative information. (The distinction between
data and information is fuzzy at best. The point is that much
of the information that goes into the priors of the pragmatic
Bayesians is ultimately “data” and therefore subject to model-
ing.) This means that the data misfit function can be generalized
to include all such information. What’s left over goes into the
a priori distribution and should be as noninformative as possi-
ble. This limits the use of subjective priors, but still requires the
estimation of the statistics of all the information, now regarded
as data. But even noninformative priors are really informative
inasmuch as they are often based on theories and observations.
It is important to be able to show that the resulting inferences
do not depend strongly on this prior. In addition, for practical
purposes, a truly “noninformative” prior distribution is often
not very useful since it may primarily reveal that our data are
consistent with a shockingly large class of models.

A third strategy is to abandon Bayes altogether and use only
deterministic prior information about models; density is posi-
tive, for instance. The inference problem is still statistical since
random data uncertainties are taken into account. Essentially
the idea is to look at the set of all models that fit the data. Then
perform surgery on this set, cutting away those models that
violate the deterministic criteria, e.g., have negative density.
The result will be a (presumably smaller) set of models that
fit the data and satisfy these a priori considerations. If we do
this, however, we must accept that any particular model in this
set, the least-squares model for instance, has no special signif-
icance, even though it may fit the data slightly better than the
other models in the set. We have no way of saying that model
x is more probable than model y, since in this frequentist ap-
proach we do not attempt to put a probability distribution on
the models themselves.

A common complaint we hear is that people do not want
to hear about ranges of models, error bars, or all this messy
statistics. Perhaps the answer is to avoid speaking of “inverting
data.” Perhaps we should tell people that we are measuring the
risks associated with various interpretations of the data. After
all, interpreters do not really want to have a color plot of model
parameters. They want to have answers to concrete questions.
What are my chances, say, of penetrating a certain lithologic
boundary if I drill to a certain depth? An answer of the fol-
lowing form would be highly valuable: With 95% confidence,
the depth to this target is between a and b. If the difference
between a and b is small, the interpreter will know that the
risks are similarly small.

So the answer to the question posed in the title would seem
to be: yes, but only when one can justify characterizing the
prior information probabilistically, which, as we have indicated
above, is a good deal harder than apparent at first glance.


