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Probability

e The world is a very uncertain place

e 30 years of Artificial Intelligence and
Database research danced around this fact

e And then a few Al researchers decided to
use some ideas from the eighteenth century
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What we're going to do
e We will review the fundamentals of
probability.
e It's really going to be worth it

e In this lecture, you'll see an example of
probabilistic analytics in action: Bayes
Classifiers
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Discrete Random Variables

e A is a Boolean-valued random variable if A
denotes an event, and there is some degree
of uncertainty as to whether A occurs.

e Examples
e A = The US president in 2023 will be male

e A = You wake up tomorrow with a
headache

e A = You have Ebola
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Probabilities

e We write P(A) as “the fraction of possible
worlds in which A is true”

e We could at this point spend 2 hours on the
philosophy of this.

e But we won't.
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Visualizing A

Event space of

a:loﬁgzs'ble T Worlds in which P(A) = Area of
Als true reddish oval

Its area is 1~

Worlds in which A is False
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The Axioms of Probability

e 0<=PA) <=1
e P(True) =1
e P(False) =0

P(A or B) = P(A) + P(B) - P(A and B)

Where do these axioms come from? Were they “discovered”?
Answers coming up later.
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Interpreting the axioms

e 0<=PA)<=1

e P(True) =1

e P(False) =0

e P(AorB)=P(A) + P(B) - P(A and B)

The area of A can't get
any smaller than 0

And a zero area would
mean no world could
ever have A true
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Interpreting the axioms

e 0<=PA)<=1

e P(True) =1

e P(False) =0

e P(AorB)=P(A) + P(B) - P(A and B)

The area of A can't get
any bigger than 1

And an area of 1 would
mean all worlds will have
A true
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Interpreting the axioms

e 0<=PA)<=1

e P(True) =1

e P(False) =0

e P(AorB)=P(A) + P(B) - P(A and B)
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Interpreting the axioms

0<=PA) <=1

P(True) = 1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)

P(A and B

J

Simple addition and subtraction
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These Axioms are Not to be
Trifled With

e There have been attempts to do different
methodologies for uncertainty
e Fuzzy Logic
¢ Three-valued logic
e Dempster-Shafer
¢ Non-monotonic reasoning

e But the axioms of probability are the only
system with this property:
If you gamble using them you can't be unfairly exploited
by an opponent using some other system [di Finetti 1931]
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Theorems from the Axioms

e 0<=P(A) <=1, P(True) = 1, P(False) = 0

e P(AorB)=P(A) + P(B) - P(A and B)
From these we can prove:
P(notA) = P(~A) = 1-P(A)

e How?

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 13

Side Note

e I am inflicting these proofs on you for two
reasons:

1. These kind of manipulations will need to be
second nature to you if you use probabilistic
analytics in depth

2. Suffering is good for you
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Another important theorem

e 0<=P(A) <=1, P(True) = 1, P(False) = 0
e P(AorB)=P(A) + P(B) - P(A and B)
From these we can prove:
PA) = P(A " B) + P(A " ~B)

e How?
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Multivalued Random Variables

e Suppose A can take on more than 2 values

e Ais a random variable with arity kif it can
take on exactly one value out of {v,v,, ..

Vit
e Thus...

P(A=v,nA=v,)=0ifi#j
P(A=v,vA=v,vA=v,)=1
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An easy fact about Multivalued
Random Variables:

¢ Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

¢ And assuming that A obeys...

P(A=v,And=v,)=0if i# j
P(A=vivA=v,vA=v,)=1

e It's easy to prove that
P(A=v,vA=v,vA=v)= ZP(A v,)

j=1
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An easy fact about Multivalued
Random Variables:

¢ Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)
e And assuming that A obeys...
P(A=v,nA=v,)=0if i # ]
P(A=v,vA=v,vA=v)=1
e It's easy to prove that
P(A=v,vA=v,vA=v)= ZP(A V)

=1
¢ And thus we can prove i J=

> P(4=v,))=1
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Another fact about Multivalued
Random Variables:

¢ Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

¢ And assuming that A obeys...

P(A=v,And=v,)=0if i# j
P(A=vivA=v,vA=v,)=1
e It's easy to prove that ;
P(B/\[szlvA=v2vA=vl.])=ZP(B/\A:vj)

J=1
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Another fact about Multivalued
Random Variables:

¢ Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

e And assuming that A obeys...

P(A=v,nA=v,)=0if i #j
P(A=v,vA=v,vA=v)=1
e It's easy to prove that ;
P(B/\[A:vlvA:vsz:vl.]):ZP(B/\A:vj)
¢ And thus we can prove k /=
P(B)=) P(BAA=v),)
j=l1
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Elementary Probability in Pictures
e P(~A) + P(A) = 1

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 21

Elementary Probability in Pictures
e P(B) = P(B " A) + P(B A ~A)
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Elementary Probability in Pictures
iP(A = vj) =1
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Elementary Probability in Pictures

P(B) = iP(B/\A =v,)

J=1
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Conditional Probability

e P(A|B) = Fraction of worlds in which B is
true that also have A true

),
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H = “Have a headache”
F = “Coming down with Flu

4

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

“Headaches are rare and flu
is rarer, but if you're
coming down with *flu
there’s a 50-50 chance
you'll have a headache.”

Probabilistic Analytics: Slide 25

Conditional Probability

.

H = “Have a headache”
F = “Coming down with Flu

14

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2
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P(H|F) = Fraction of flu-inflicted
worlds in which you have a
headache

= #worlds with flu and headache

#worlds with flu

= Area of "H and F” region

Area of “F” region
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Definition of Conditional Probability

P(A * B)
7)) R p——

Corollary: The Chain Rule
P(A * B) = P(A/B) P(B)
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Probabilistic Inference

H = “Have a headache”

F F = “Coming down with Flu”
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat!
50% of flus are associated with headaches so I must have a
50-50 chance of coming down with flu”

Is this reasoning good?
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Probabilistic Inference

F

.

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(F A H) = ...

P(FIH) = ..

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 29

Another way to understand the

intuition

Thanks to Jahanzeb Sherwani for contributing this explanation:

F

Let's say we have P(F), P(H), and P(HIF), like inthe
example in class.

Areawise, P(F1=A+B, PH=B+C,

Also, PIHF =_E
A+B

Thus, to get the opposite conditional probability, ie,
P(FIH), we needto figure out _ B

B+C

Since wie know B/ (A+B), we can get B/ (B+C) by
multiplying by (A+B) and dividing by (B+C). But
since we already calculated, A+B = P(F), and
B+C = P{H), so we are actually multipling by P{F)
and dividing by P(H). Which is Bayes Rule:

P{FIH) = P{HIF) " P(F)
P{H)
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Probabilistic Analytics: Slide 30




What we just did...

P(A~B)  P(A|B) P(B)
G T — N ——

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418
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Using Bayes Rule to Gamble

(N N N | 00

The “Win" envelope The “Lose” envelope
has a dollar and four has three beads and
beads in it no money

Trivial question: someone draws an envelope at random and offers to
sell it to you. How much should you pay?
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Using Bayes Rule to Gamble

(N N N | 00

The “Win" envelope The “Lose” envelope
has a dollar and four has three beads and
beads in it no money

Interesting question: before deciding, you are allowed to see one bead
drawn from the envelope.

Suppose it's black: How much should you pay?

Suppose it's red: How much should you pay?
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Calculation...

(X X X J (N N
$1.00
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More General Forms of Bayes Rule

P(B| HP(4)

A(A|B)=
AB| AP(A)+AB|~ AP~ A)

P(B| AANX)P(ANX)
ABAX)

P(ABAX)=
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More General Forms of Bayes Rule

P(A= |B)= nAP(B|A=\¢)P(A=w)

> P(B| A=v)P(A=y,)

k=1
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Useful Easy-to-prove facts
P(A| B+P(—A4|B) =1

ZP(A:vk|B):1
k=1
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The Joint Distribution .,c. s00es

variables A, B, C

Recipe for making a joint distribution
of M variables:
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The Joint Distribution .., s

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

Copyright © 2001, Andrew W. Moore

variables A, B, C

A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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The Joint Distribution .,c. s00es

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2Mrows).

2. For each combination of values,
say how probable it is.
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variables A, B, C

A B C Prob
0 0 0 0.30
0 0 1 0.05
0 1 0 0.10
0 1 1 0.05
1 0 0 0.05
1 0 1 0.10
1 1 0 0.25
1 1 1 0.10
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The Joint Distribution .., s

variables A, B, C
Prob
0.30
0.05
0.10
0.05
0.05
0.10
0.25
0.10

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

mlrlr|lr|lo|lo|olo|s
m|lrlo|lo|lr|r|o|lo|lm

2. For each combination of values,
say how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must
sum to 1.

0.30 N
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gender hours_worked wealth

Female v0:40.5- poor 0253122 [N

= rich 00245895 |||
USI ng the v1:40.5+ poor 0.0421768 [l
= rich  0.0116293 ||
JOI nt Male  v0:40.5- poor 0331313 [N
rich  0.0971295 [N
v1:40.5+ poor 0.134106 |
rich 0105933 [N

One you have the JD you can P(E) = ZP(row)
ask for the probability of any

logical expression involving
your attribute

rows matching £
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gender hours_worked wealth

Female v0:40.5- poor 0253122 |
= rich  0.0245895 |||
USI ng the v1:40.5+ poor 0.0421765 [l
= rich  0.0116293 ||
J O I nt Male  v0:40.5- poor  0.331313 DINEGEEE
rich  0.0971295 |
v1:40.5+ poor  0.134106 )N
rich 0105933 [
P(Poor Male) = 0.4654 P(E)= Y P(row)
rows matching £
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gender hours_worked wealth
Female v0:40.5- poor 0253122 DG
= rich 00245895 |||
USI ng the v1:40.5+ poor  0.0421768 DI
= rich  0.0116293 ||
J O I nt Male  v0:40.5- poor 0.331312 DG
rich  0.0971295 [N
v1:40.5+ poor 0.134106 )N
rich 0105933 [N
P(Poor) = 0.7604 P(E)= ) P(row)
rows matching £
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gender hours_worked wealth

Inference | weos oo
With the v1:40.5+ :Z:r

= rich

J O I nt Male v0:40.5- poor
rich

v1:40.5+ poor
tich

0253122 [

0.0245895 ||}

0.0421768 [l

0.0116293 |

0331313
0.0971295 [N

0134106 [

0.105933 [N

Z P(row)

P(E| | Ey) = P(E.)

_ P(El /\E2) — rows matching £, and E,

Z P(row)

rows matching £,
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gender hours_worked wealth

Inference

Female v0:40.5- poor 0253122 DG

= ’ rich 00245895 |||

Wlth the v1:40.5+ poor  0.0421768 DI
= rich  0.0116293 ||
JOI nt Male  v0:40.5- poor 0.331313_
rich  0.0971295 [N

i v1:40.5+ poor 0.134106)
| rich  0.105933 [

Z P(row)

— P(E1 /\Ez) — rows matching £, and E,

P(E, | E,) P(E.)

Z P(row)

rows matching £,

P(Male | "o01) = 0.4654 / 0.7604 = 0.612
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Inference is a big deal

e ['ve got this evidence. What's the chance
that this conclusion is true?
e I've got a sore neck: how likely am I to have meningitis?

e I see my lights are out and it's 9pm. What's the chance
my spouse is already asleep?
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Inference is a big deal

e ['ve got this evidence. What's the chance
that this conclusion is true?
¢ I've got a sore neck: how likely am I to have meningitis?

e I see my lights are out and it's 9pm. What's the chance
my spouse is already asleep?
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Inference is a big deal

e ['ve got this evidence. What's the chance
that this conclusion is true?
e I've got a sore neck: how likely am I to have meningitis?

e I see my lights are out and it's 9pm. What's the chance
my spouse is already asleep?

e There’s a thriving set of industries growing based
around Bayesian Inference. Highlights are:
Medicine, Pharma, Help Desk Support, Engine
Fault Diagnosis
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Where do Joint Distributions
come from?

e Idea One: Expert Humans

e Idea Two: Simpler probabilistic facts and
some algebra

Example: Suppose you knew
P(A) = 0.7 P(C|IA~B) = 0.1 _
P(C|A~~B) = 0.8 Then you can automatically
P(B|A) = 0.2  P(C|~A~B) = 0.3 compute the JD using the
P(B|~A) = 0.1 P(C|~A~A~B) =0.1  chainrule

In another lecture:
P(A=x N B=y ~ C=2) = Bayes Nets, a
P(C=z|A=x" B=y) P(B=y|A=x) P(A=x) systematic way to
do this.
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Where do Joint Distributions
come from?
e Idea Three: Learn them from data!

Prepare to see one of the most impressive learning
algorithms you’'ll come across in the entire course....

Copyright © 2001, Andrew W. Moore
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Learning a joint distribution

Build a JD table for your
attributes in which the

probabilities are unspecified

C

Prob

mlrlr|lr|lo|lo|o|o|s
m|lr|lo|lo|lr|r|o|o|lm

0
1
0
1
0
1
0
1

ENH BEVE BEVE BEVE EEVE BEVE RV BEN)

Fraction of all records in which

The fill in each row with

P(row) = records matching row
total number of records
A B C Prob
0 0 0 0.30
0 0 1 0.05
0 1 0 0.10
0 1 1 0.05
1 0 0 0.05
1 0 1 0.10
1 1 0 '0.25
1 1 1 0.10

A and B are True but C is False - -
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Example of Learning a Joint

¢ This Joint was
obtained by

Iea n | ng from gender hours_worked wealth
Female v0:40.5- poor 0253122 [

th re_e . rich  0.0245895 ||
attn buteS N v1:40.5+ poor 0.0421765 [l
the UCI rich  0.0116293 ||
n ” Male  v0:40.5- poor 0331313 [

Ad u It rich  0.0971295
Census v1:40 5+ poor 0.134106 [N

ich  0.105933 [N
Database
[Kohavi 1995]
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Where are we?
e We have recalled the fundamentals of
probability

e \We have become content with what JDs are
and how to use them

e And we even know how to learn JDs from
data.

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 54




Density Estimation

e QOur Joint Distribution learner is our first
example of something called Density
Estimation

¢ A Density Estimator learns a mapping from
a set of attributes to a Probability

Input  ————— Density

Attributes :: EstlmatOr " PrObablllty
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Density Estimation

e Compare it against the two other major
kinds of models:

Input . -
Attrigutes - Classifier »Prediction of
> categorical output
Input 1 Density .
Attributes " Estimator Probability
Input . -
Attrigutes »Prediction of
> real-valued output
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Evaluating Density Estimation
Test-set criterion for estimating performance
on future data*

* See the Decision Tree or Cross Validation lecture for more detail )

>

Input : -~ Test set
Attributes Prediction of

> categorical output Accuracy
Input > Density . 2
Attributes Estimator Probability ¢
Input - .
Attributes Prediction of Test set
8 real-valued output
Accuracy
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Evaluating a density estimator

e Given a record x, a density estimator M can
tell you how likely the record is:

P(x|M)

e Given a dataset with R records, a density
estimator can tell you how likely the dataset
iS:

(Under the assumption that all records were independently
generated from the Density Estimator’s JD)
R

f’(dataset|M) = lf’(x1 AX, . AXM) = Hf’(xk|M)
k=1
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A small dataset: Miles Per Gallon

mpg  modelyear maker

good 75to78

bad  70to74

1 9 2 bad  75to78
R bad  70to74
Tra ni ng bad  70to74
bad  70to74

set bad  70to74
Records bad |75to78
bad  70to74

good | 79to83

bad  75to78

good  79to83

bad  75to78

good | 79to83
good | 79to83

bad  70to74
good  75to78
bad  75to78

asia
america
europe
america
america
asia
asia
america

america
america
america
america
america
america
america
america
europe

europe

From the UCI repository (thanks to Ross Quinlan)
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A small dataset:

mpg  modelyear maker

good | 75t078

bad  70to74

192 bad  75to78
H bad  70to74
Training bad  70to74
bad  70to74

Set bad  70to74
Records bad _|75io78
bad  70to74

good | 79t083

bad  75t078

good | 79t083

bad  75to78

good | 79t083
good | 79t083

bad  70to74
good |75to78
bad  75to78
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asia
america
europe
america
america
asia
asia
america

america
america
america
america
america
america
america
america
europe

europe

Miles Per Gallon

mpg
bad

oo

modelyear

Ttof4

T5tof T

T5toB3

o7 4

T5tof T

TotoB3

maker
america
asia
BurOpE
ametica
asia
BurOpE
ametica
asia
BUrOpE
ametica
asia
BUrOpE
ametica
asia
EUrOpE
america
asia

EUrOpE

027551

nozss102 [l

00153061 [

04153051 [N
nozss102 [l

00257143

o.0se1224 [

Mewver

Mever

00102041
00308122 [l
00459134 [
00308122 [l
00402163 [
00357143 [l
o11z245 |
o.0714236 [

00357143 [l
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A small dataset: Miles Per Gallon

mpy  modelvear  maker

mpg | modelyear maker bad  7Oto74 america 027551 [

asia  0.0zssioz

good 75to78 asia

192 bad 70to74 america europe  0.0153061 I
bad  75to78
bad 70 074 Sarope vatorr america 0153051 [ NNMMEE
Tralnln al to america
g bad 70to74  |america s nozss102 [l
Set bad 70to74 asia
bad 70to74 asia europe  0.0357143 Il
n 1 :

R
P(dataset|M ) = P(X, AX,...AX M) = HP(xk|M)
k=1
= (in this case) =3.4x 107"

asia oor4zas [N
europe 00357143 [l
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Log Probabilities

Since probabilities of datasets get so
small we usually use log probabilities

R R
log P(dataset|M) =log [ [ P(x,|M) =" "log P(x,|M)
k=1

k=1
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A small dataset: Miles Per Gallon

mpy  modelvear  maker

bad  70to74 america 027551 [ NNNREG

asia  0.0zssioz

mpg  modelyear maker

good 75to78 asia
bad 70to74 america europe  0.0153061 I

192 bad 75078 _ europe 7star7  america 04153061 [N
Tralnlng bad 70to74 amer!ca
bad |70to74  america asia n0zss102 [l
Set bad  70to74 asia
bad  70to74  asia europe  0.0357143 [l
~ L

R R
log P(dataset|M ) = logHP(xk|M) = Zlog P(x,|M)
k=1 k=1
= (in this case) =—466.19

i oor4zas [N
europe 00357143 [l
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Summary: The Good News

e We have a way to learn a Density Estimator
from data.

¢ Density estimators can do many good
things...

e Can sort the records by probability, and thus
spot weird records (anomaly detection)

e Can do inference: P(E1|E2)

Automatic Doctor / Help Desk etc
e Ingredient for Bayes Classifiers (see later)
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Summary: The Bad News

e Density estimation by directly learning the
joint is trivial, mindless and dangerous
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Using a test set

Set Size Log likelihood
Training Set 196 -466.1905
Test Set 196 -614.6157

An independent test set with 196 cars has a worse log likelihood

(actually it's a billion quintillion quintillion quintillion quintillion
times less likely)

....Density estimators can overfit. And the full joint density
estimator is the overfittiest of them all!
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Overfitting Density Estimators
N e e e v e—

If this ever happens, it means
3 ) ) asia nozssioz [l
there are certain combinations

that we learn are impossible o

eurape  0.0153061 [

america 0153051 [ NNRNEDIEE
n0zss102 [l

00357143 Il

751083 00561224 [
europe  Mever

good  TOto74 america 0.0102041I
|

R R
log P(testset|M) = logHP(xk|M) = Zlog P(x,|M)
k=1 k=1

= —ooif forany k P(x,/M)=0

I oo T —
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Using a test set

Set Size Log likelihood

Training Set 196 -466.1905
Test Set 196 -614.6157

The only reason that our test set didn't score -infinity is that my
code is hard-wired to always predict a probability of at least one
in 1020

We need Density Estimators that are less prone
to overfitting
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Naive Density Estimation

The problem with the Joint Estimator is that it just
mirrors the training data.

We need something which generalizes more usefully.

The naive model generalizes strongly:

Assume that each attribute is distributed
independently of any of the other attributes.
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Independently Distributed Data

e Let x/// denote the /th field of record x.

e The independently distributed assumption
says that for any jv, u; U,... U, U;,,... Uy
P(x[il=v|x[1]=u,,x[2]=u,,...x[i =1]=u, ,x[i +1] =u,

= P(x[i]=v)
e Or in other words, x///is independent of
X1 x[2]..x[I-1], x[i+1],..xIM]}
¢ This is often written as
x[i] L {11, x[2],... x[i = 1], x[i +1],...x[M ]}

e X[M ) =u,,)

+1
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A note about independence
e Assume A and B are Boolean Random

Variables. Then

“A and B are independent”

if and only if

P(A[B) = P(A)

e "A and B are independent” is often notated

as

ALlB
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Independence Theorems

e Assume P(A|B) = P(A)
e Then P(A”B) =

= P(A) P(B)

Copyright © 2001, Andrew W. Moore

e Assume P(A|B) = P(A)
e Then P(B|A) =

= P(B)
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Independence Theorems

e Assume P(A|B) = P(A) |e Assume P(A|B) = P(A)
e Then P(~A|B) = e Then P(A|~B) =

= P(~A) = P(A)
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Multivalued Independence

For multivalued Random Variables A and B,

Al B

if and only if
Vu,v:P(A=u|B=v)=P(A=u)
from which you can then prove things like...
Vu,v:P(A=unB=v)=P(A=u)P(B=v)
Vu,v:P(B=v|A=v)=P(B=v)
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Back to Naive Density Estimation

e Let x[i] denote the i'th field of record x:
¢ Naive DE assumes x/i/is independent of {x/1]x/2],..x[i-1], x[i+1],..x{M]}
e Example:

e Suppose that each record is generated by randomly shaking a green dice
and a red dice

e Dataset 1: A = red value, B = green value
e Dataset 2: A = red value, B = sum of values

e Dataset 3: A = sum of values, B = difference of values

¢ Which of these datasets violates the naive assumption?
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Using the Naive Distribution

e Once you have a Naive Distribution you can easily
compute any row of the joint distribution.

e Suppose A, B, Cand D are independently
distributed. What is P(AN~BACH~D)?

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 76




Using the Naive Distribution

¢ Once you have a Naive Distribution you can easily
compute any row of the joint distribution.

e Suppose A, B, C and D are independently
distributed. What is P(AN~BACA~D)?

= P(A|~BACA~D) P(~BACA~D)
= P(A) P(~BACA~D)

= P(A) P(~B|C~~D) P(CA~D)

= P(A) P(~B) P(CA~D)

= P(A) P(~B) P(C|~D) P(~D)

= P(A) P(~B) P(C) P(~D)
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Naive Distribution General Case

e Suppose x/1], x/2], ... x/M] are independently
distributed.

P(x[1l=u,x[2]=u,,...x[M]=u,,) :ﬁP(x[k] =u,)

¢ So if we have a Naive Distribution we can
construct any row of the implied Joint Distribution
on demand.

e S0 we can do any inference
e But how do we learn a Naive Density Estimator?
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Learning a Naive Density
Estimator

P(x[i]=u) =

#records in which x[i]=u

total number of records

Another trivial learning algorithm!

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 79

Contrast

Joint DE

Naive DE

Can model anything

Can model only very
boring distributions

No problem to model “C
is @ noisy copy of A”

Outside Naive's scope

Given 100 records and more than 6
Boolean attributes will screw up
badly

Given 100 records and 10,000
multivalued attributes will be fine

Copyright © 2001, Andrew W. Moore
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Empirical Results: “"Hopeless”

The “hopeless” dataset consists of 40,000 records and 21 Boolean
attributes called a,b,c, ... u. Each attribute in each record is generated

50-50 randomly as 0 or 1.

Name Model Parameters

Model1 joint  submodel=gauss

gaussiype=general

Model2 naive submodel=gauss

gaussiype=general

/N

LogLiI(e/

-272625 +~ 301.109

-58225.6 +~ 0.554747

Average test set log
probability during
10 folds of k-fold
cross-validation*

Described in a future Andrew lecture

U

Despite the vast amount of data, “Joint” overfits hopelessly and

does much worse
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Empirical Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0
or 1. D = A~~C, except that in 10% of records it is flipped

abocd
o000 01133
omze W
0113575 I
ooiz2s
o.112e7s
0012025 [l
|
001215 [l
0012325 |l
01125
0411375 |
oozz7s [l
0012325 [l
011335
0112325
ooizz

01112

(=1
(=1
- 0 = o - 0o - o = 0 = o - o
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0
1

0.500325
0.489675
0.50045
0.49955
0.50165
0.49835
0.69945
0.30055

a
The DE
learned by b
“Joint”
C
d
The DE
learned by

“Naive”

Probabilistic Analytics: Slide 82




Empirical Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0
or 1. D = A~~C, except that in 10% of records it is flipped

abocd
0000 0n3s I a 0 0.500325
s o v [ — 499675
— Name Model Parameters LogLike 50045
100011250 | Model1 joint  submodel=gauss -9613.79 +- 26.6781| ) 49055
1 O gausstype=general
1 0 01112 50165
1 oozl | Model2 naive submodel=gauss -10763.4 +~ 11.0538
1000 00232 gausstype=general 49835
101125 N J.69945
10 oanzrs I
1 0012275 |l 1 0.30035
100 0mz2z The DE
1 onzs I
10 o1izzes I learned by
1oz W Naive
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Empirical Results: "MPG”

The “MPG"” dataset consists of 392 records and 8 attributes

mpg had 0602041
e —— good 0.397059
e e e i evlinders 3 0.0102041
g Hevee 4 0.607653
THeTT Herver -
s o A tmy part of 5 000765306
eh e
e the DE ) e
e o o WM waicn b -
s o | Ieerned le displacement low 0.595938
wrvpe  Mever H
A R — Joint fiigh 0403061
e horsepowet  low 0.479582
[p—
THOOD  mmericn Mever high 0520408
A ! waight low 0.57396
g
eh e high 0.42602
high v
; acceleration  low 0459184
noh e
lew ke [ Meld  erverien 000255100 | high 0540816
CERY Mever
e e | maodelyear TOta74 0382653
(D The DE 75t077 0.226531
-
th e oo oo [ learned by 781083 0290815
L) e | A\Y A " maker america 0625
Naive
asia 0201431
surope 0173469
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Empirical Results: "MPG”

The “MPG"” dataset consists of 392 records and 8 attributes

mpg bad 0602041
P ——— T —— e ————————— goad 0387059
A A S s """l ofiinders 3 00102041
[—— 4 0.507653
r:: :: A tmy part of 5 000765306
Name Model Parameters LogLike
Model1 joint  submodel=gauss -472.486 +~ 77.2184 19
gausstype=general ,
Model2 naive submodel=gauss -257.212 +~ 3.02248 : 3
gausstype=general
e - acceleration  low 0.459184
lew o ke e Mot aericn high 0540816
:::‘, 1 modelyear TOto74 0382653
LD The DE 75t077 0326531
2 e e learned by Tetn3 0290518
- dl \\Naivell maker america 0625
asia 0.201531
eurape 0173469
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Empirical Results: “"Weight vs. MPG”

Suppose we train only from the “Weight” and “MPG" attributes

Copyright © 2001, Andrew W. Moore

P9 welght mpg  bad 0.602041
bad low 0193575 [N
high 0408163 | good 0.397959
good low  03s0102 |GG weight low 0.57398
high  0.0178571 || .
high 0.42602
/
The DE
learned by
Joint The DE
learned by
“Naive”
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Empirical Results: "Weight vs. MPG”

Suppose we train only from the “Weight” and “"MPG" attributes

ight
neg es mpg  bad 0.602041
bad low  0.193578 [N

high 0408163 [ good 0.397959
good Name Model Parameters LogLike

Model1 joint  submodel=gauss -44 3562 +~- 2.27547 _
gausstype=general [T ]

Model2 naive submodel=gauss -53.2231 +- 0-610411@:
gausstype=general

learned by
Ly The DE
learned by
“Naive”
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“Weight vs. MPG": The best that Naive can do

;":j mpg = mpg = D041
oot weight bad good [
low . I

high I

The light color shades denote predicted
densities. The dark shades are real data.

“Naive”
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Reminder: The Good News

e We have two ways to learn a Density
Estimator from data.

e *In other lectures we'll see vastly more
impressive Density Estimators (ixture Modes,

Bayesian Networks, Density Trees, Kernel Densities and many more)

¢ Density estimators can do many good
things...
e Anomaly detection
e Can do inference: P(E1|E2) automatic Doctor / Help Desk etc
e Ingredient for Bayes Classifiers
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Bayes Classifiers

¢ A formidable and sworn enemy of decision
trees

>

Input = -
Attributes Prediction of

> categorical output
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How to build a Bayes Classifier

e Assume you want to predict output Y'which has arity n7,and values
Vir Var v Vi

e Assume there are minput attributes called X, X, ... X,

* Break dataset into /7, smaller datasets called DS,, DS,, ... DS,

e Define DS;= Records in which Y=V,

e For each DS;, learn Density Estimator M, to model the input
distribution among the Y=v;records.
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How to build a Bayes Classifier

» Assume you want to predict output Y'which has arity 77,and values
Vi Vg e Vi

e Assume there are minput attributes called X, X, ... X,

 Break dataset into /7, smaller datasets called DS, DS,, ... DS,

e Define DS;= Records in which Y=y,

e For each DS;, learn Density Estimator M, to model the input
distribution among the Y=v; records.

e M, estimates P(X, X, ... X,/ Y=V;)
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How to build a Bayes Classifier

¢ Assume you want to predict output Ywhich has arity 77,and values
Vir Vi v Ve

e Assume there are m input attributes called X, X, ... X,

» Break dataset into /7,smaller datasets called DS, DS, ... DS,

¢ Define DS;= Records in which Y=y,

e For each DS, , learn Density Estimator M, to model the input
distribution among the Y=v;records.

e M, estimates P(X, X, ... X, / Y=V,)

e Idea: When a new set of input values (X; = u,, X, = u, ... X,
= u,,) come along to be evaluated predict the value of Y that
makes P(X,, X5, ... X,, / Y=v;) most likely

Yo = argmax P(X, =u, - X, =u, | Y =v)

Is this a good idea?
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How to build a Bayes Classifier

e Assume you want to predict output Y'which has arity 77,and values
Vi Vg e Vi

e Assume there are m input attrib

¢ Break dataset into 77,smaller dat

e Define DS;= Records in which Y]

e For each DS;, learn Density Esti
distribution among the Y=v;recd

e M, estimates P(X,, X, ... X, / Y=V,)

This is @ Maximum Likelihood
classifier.

It can get silly if some Ys are
very unlikely

Ypredict = argmax P(Xl =u, - Xm =u, | Y= V)

Is this a good idea?
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How to build a Bayes Classifier

e Assume you want to predict output Y'which has arity 77,and values
Vir Vi v Ve
e Assume there are m input attributes calle
» Break dataset into 7, smaller datasets call
e Define DS;= Records in which Y=y, Much Better Idea
e For each DS;, learn Density Estimator M,
distribution among the Y=v;records.

e M, estimates P(X, X, ... X, / Y=V,)

e Idea: When a new set of input val 1
= u,,) come along to be evalua redict
makes P(Y=v; / X, X, ... X,;) host likely

YPredict = argmax P(Y =y | Xl =u - Xm = um)

SUy Xo=Uy . X,
the value of Y that

Is this a good idea?
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Terminology

e MLE (Maximum Likelihood Estimator):
Y = argmax P(X, =u,-- X, =u, | Y =v)

v

e MAP (Maximum A-Posteriori Estimator):
YPe —argmax P(Y =v| X, =u,-- X, =u,)
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Getting what we need

Ypredict — argmaXP(Y =y | Xl =u, - Xm = le)
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Getting a posterior probability
PY=viX =u X, =u,)

PX,=u---X,=u,|Y=v)P(Y =v)
P(Xl :ul'”Xm :um)
P(X,=u-X, =u,|Y=v)P(Y =v)

Y P(X,=u,-X, =u,|Y=v,)PY =v,)
j=1
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Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives P(X,, X;, ... X, | Y=V;).
3. Estimate P(Y=v;). as fraction of records with Y=v;.

4, For a new prediction:
Y = argmax P(Y =v| X, =u,-- X, =u,)
=argmax P(X, =u,-- X, =u, |Y =v)P(Y =v)
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Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives P(X, X, ... X,, | Y=V;).

3. Estimate P(Y=v,). as fraction of records .
We can use our favorite
Density Estimator here.

4. For a new prediction:

Right now we have two
options:

YP4 = argmax P(Y = v| X, 3
=argmax P(X, =u,--- X, =u

eJoint Density Estimator
eNaive Density Estimator
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Joint Density Bayes Classifier

Y4 = argmax P(X, =u, - X

m

=u, |Y=v)P(Y =v)

In the case of the joint Bayes Classifier this
degenerates to a very simple rule:

ypredict = the most common value of Y among records
inwhich X; =u, X, =u, ... X, = U,,

Note that if no records have the exact set of inputs X;
=SUy Xo = Uy oo Xy, = Uy, then P(X, X5, ... X, [ Y=V;)
= 0 for all values of Y.

In that case we just have to guess Y's value
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Joint BC Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0
or 1. D = A~~C, except that in 10% of records it is flipped

d=0 d=1
(prior = 0.69945) (prior = 0.30055)
abe 2be The Classifier
0 0 o 0162056 [N © © 0 0.0425856 [ learned by
1 0.16237¢ [ 1 0.0407586 i “Joint BC”
10 018152 N ' 0 oo4001 W 4/‘
1 0.15ze82 [ 1 0.0404259 [l
100 0017621 |l 10 0 0374314
1 0150232 1 0.0408415
1 0 0017621 1 0 0377142
1 018059 | 1 0.0439195 i
Mame  Model Farameters FracRight
Modell bayesclass density=joint 090065+~ 000301897
submodel=gauss
gausstype=general
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Joint BC Results: “All Irrelevant”

The “all irrelevant” dataset consists of 40,000 records and 15 Boolean
attributes called a,b,c,d..o where a,b,c are generated 50-50 randomly
as 0 or 1. v (output) = 1 with probability 0.75, 0 with prob 0.25

Name  Model Parameters FracRight

Model1 bayesclass density=joint 0.70425 +/- 0.00583537
submodel=gauss
gausstype=general
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Naive Bayes Classifier

Ypredict = argmax P()(1 =u, - Xm =u, | Y= V)P(Y = V)

In the case (vjf the naive Bayes Classifier this can be
simplified:

yredet —argmax P(Y =v)[ [ P(X; =u, | Y =)

J=1
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predict __ —
Y =argmax P(X, =u,

simplified:

Technical Hint:

Copyright © 2001, Andrew W. Moore

X

YP4 = argmax| log P(Y = v) +

Naive Bayes Classifier

=u, |Y=v)P(Y =v)

m

In the case of the naive Bayes Classifier this can be

yredet — argmax P(Y = V)H P(X,=u;|Y=v)

Jj=1

If you have 10,000 input attributes that product will
underflow in floating point math. You should use logs:

ZlogP(Xj =u,|Y=v)

J=1
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BC Results: "XOR"”

The “XOR” dataset consists of 40,000 records and 2 Boolean inputs called a
and b, generated 50-50 randomly as 0 or 1. c (output) = a XOR b

c=0 c=1

{prior = 0.503175) {prior = 0 498825)

ah ah

ce=0 c=1

(prior = 0.503175) (prior = 0.496825)

submodel=gauss
gausstype=general

00 050 I O O o a0 0.50077 a 0 0.499874
1 Newer 1 0490574 I 1 0.49923 1 0.500126
ever |
ren 1O emE b 0 0.50077 b © 0500128
1 0400z I | Mever
, 1 0.49923 1 0.499874
The Classifier § |
ez by del Parameters FracRight i C Seehiies
“Joint BC" g learned by
yesclass density=joint 1 +- 0 “Naive BC”
submodel=gauss
gausstype=general
Model2 bayesclass density=naive 0.500125 ++~ 0.00529626
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Naive BC Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0
or 1. D = A~~C, except that in 10% of records it is flipped

d=0 d=1
(prior = 0.69945) (prior = 0.30055)
a0 0.644935 a 0 0.163783 The Classifier
1 0.355065 1 0.836217 learned by
b O 0.501287 b O 0.488503 Naive BC
1 0.498713 1 0.501497 /‘—
c O 0.358818 ¢ O 0.834054
1 0.641182 1 0.165946
Name  Model Parameters FracRight
Model1 bayesclass density=joint 090065 +/-~ 0.00301897
submodel=gauss [
gausstype=general
Model2 bayesclass density=naive 080065 +/ 0.00301897
submodel=gauss
gausstype=general
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Naive BC Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0

or 1. D = A~~C, except that in 10% of rec

This result surprised Andrew until he
had thought about it a little

rds it is flipped

Name

Modell bayesclass

Model2 bayesclass

Model

dvalues: 0 1
a = a =
c 0 1

Tt ——

{ W

The data shown in the figure is
merely a subsample of the full
dataset. The light color shades
denote predicted classes. The
dark shades are real data.

Parameters FracRight

density=joint 0.90065 +- 0.0030189%
submodel=gauss

gausstype=general

density=naive 0.90065

submodel=gauss
gausstype=general
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+- 0.00301897
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Naive BC Results: “All Irrelevant”

v=0 v=1
(prior = 0.75055) (pror = 0.24835) The “all irrelevant” dataset consists
alp ga000e7 a0 Serios of 40,000 records and 15 Boolean
1 0499933 1 0.498897 .
o o vsns b o 0500602 attributes called a,b,c,d..o where
! odm6 1 0493338 a,b,c are generated 50-50 randomly
c 0 0503031 ¢ 0 0497493 as 0 or 1 Vv (Output) - 1 Wlth
1 0436969 1 0502507 .y .
Yo ssorren 4 o o s0s01s probability 0.75, 0 with prob 0.25
1 0498202 1 0.494987
e 0 0500466 e O 0.500401 -
1 0499534 1 0499599 The ClaSSIﬁer
1o 0498335 f 0 0.50401 learned by
1 0.501665 1 048599 “Naive BC"
Name  Model Parameters FracRight
Model1 bayesclass density=joint 0.70425 +/ 0.00583537

submodel=gauss
gausstype=general

Model2 bayesclass density=naive 0.75065 +~ 0.00281976

submodel=gauss
gausstype=general
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mpg = bad mpg = good
(prior = 0.602041) (prior = 0,397959)
cylinders 3 00163492 cylinders 3 o B( Re S u I ts [ ]
4 0220338 4 0842306 u
5 000423729 s 0.0128205 “ ,,
L]
MPG": 392
8 0432203 8 0.00641026
displacement ow 0338383 displacement o 0887173 d
high 0661017 high 00128205 reCO r S
horsepower  low 0.207627 horsepower  low 0891026
high 0792373 high 0108974
weight low 0.322034 weight loemy 0955128
high 0 EB779EE high 00448718 .
acceleration  low 0550847 acceleration  low 0320513 The CIaSSIﬂer
high 0449153 high 0678487 Iea rned by
modelysar TMo74 0504237 mocedyear TotoT4 0196718 w - ”
75077 0.385583 T5tol? 023178 Na Ive BC
Tetos3 0110169 Totodd 0564103
maker america 0.809322 maker america 0346154
asia 00805085 asia 0384615
Europe 011089 europe 0269231
Name  Model Parameters FracRight
Model1 bayesclass density=joint 0.885256 ++~ 0.0247796
submodel=gauss
gausstype=general
Model2 bayesclass density=naive 0.852372 ++~ 0.0400495
submodel=gauss
gausstype=general
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BC Results:
“MPG": 40
records

Mame  Model Farameters FracRight

Model1  bayesclass density=joint 0725 +- 0114333
submodel=gauss
gausstype=general

Model2 bayesclass density=naive 08 +H- 0122227
submodel=gauss
gausstype=general
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More Facts About Bayes
Classifiers

Many other density estimators can be slotted in*.
Density estimation can be performed with real-valued
inputs*

Bayes Classifiers can be built with real-valued inputs*

Rather Technical Complaint: Bayes Classifiers don't try to
be maximally discriminative---they merely try to honestly
model what’s going on*

Zero probabilities are painful for Joint and Naive. A hack
(justifiable with the magic words “Dirichlet Prior”) can
help*.

Naive Bayes is wonderfully cheap. And survives 10,000
attributes cheerfully!

*See future Andrew Lectures
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What you should know
* Probability

e Fundamentals of Probability and Bayes Rule
e What's a Joint Distribution

e How to do inference (i.e. P(E1|E2)) once you
have a 1D

e Density Estimation
e What is DE and what is it good for
e How to learn a Joint DE
e How to learn a naive DE
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What you should know

e Bayes Classifiers
e How to build one
e How to predict with a BC
e Contrast between naive and joint BCs
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Interesting Questions

e Suppose you were evaluating NaiveBC,
JointBC, and Decision Trees

e Invent a problem where only NaiveBC would do well

e Invent a problem where only Dtree would do well

¢ Invent a problem where only JointBC would do well

¢ Invent a problem where only NaiveBC would do poorly
e Invent a problem where only Dtree would do poorly

e Invent a problem where only JointBC would do poorly
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