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CHAPTER 3 

46656 Varieties 
of  Bayesians (#765) 

. . 
Some attacks and defenses o f  the ~ a ~ e s i a n ' ~ o s i t i o n  assume that i t  is  unique so i t  
should be helpful to point out that there are at least 46656 different interpreta- 
tions. This i s  shown by the following classification based on eleven facets. The 
count would be larger i f  I had not artificially made some of the facets discrete and 
my heading would have been "On the Infinite Variety o f  Bayesians." 

Al l  Bayesians, as I understand the term, believe that i t  i s  usually meaningful to 
talk about the probability of a hypothesis and they make some attempt to be con- 
sistent in their judgments. Thus von Mises (1942) would not count as a Bayesian, 
on this definition. For he considered that Bayes's theorem is  applicable only when 
the prior i s  itself a physical probability distribution based on a large sample from 
a superpopulation. I f  he i s  counted as a Bayesian, then there are at least 46657 
varieties, which happens to rhyme with the number o f  Heinz varieties. But no 
doubt both numbers will increase on a recount. 

Here are the eleven facets: 
1 . Type //rationality. (a) Consciously recognized;'(b) not. Here Type I I ration- 

ality i s  defined as the recommendation to maximize expected uti l i ty allowing for 
the cost of theorizing (#290). I t  involves the recognition that judgments can be 
revised, leading at best to consistency o f  mature judgments. 

2. Kinds of judgments. (a) Restricted to a specific class or classes, such as 
preferences between actions; (b) all kinds permitted, such as o f  probabilities and 
utilities, and any functions o f  them such asexpected utilities, weights of evidence, 
likelihoods, and surprise indices (#82; Good, 1954). This facet could of course 
be broken up into a large number. 

3. Precision of judgments. (a) Sharp; (b) based on inequalities, i.e. partially 
ordered, but sharp judgments often assumed for the sake o f  simplicity (in accor- 
c i a n r ~  with 1 Fa1 \ 

4. Extremeness. (a) Formal Bayesian procedure recommended for all applica- 
tions; (b) non-Bayesian methods used provided that some set of axioms o f  intui- 
tive probability are not seen to be contradicted (the Bayeslnon-Bayes compromise: 
Hegel and Marx would call i t  a synthesis); (c) non-Bayesian methods used only 
after they have been given a rough Bayesian justification. 

5. Utilities. (a) Brought in from the start; (b) avoided, as by H. Jeffreys; 
(c) utilities introduced separately from intuitive probabilities. 

6. Quasiutilities. (a) Only one kind o f  ut i l i ty recognized; (b) explicit recog- 
nition that "quasiutilities" (#%90A, 755) are worth using, such as amounts o f  
information or "weights of evidence" (Peirce, 1978 [but  see #I3821 ; #13); (c) 
using quasiutilities without noticing that they are substitutes for utilities. The 
use of quasiutilities is  as old as the words "information" and "evidence," bu t  I 
think the name "quasiutility" serves a useful purpose in focussing the issue. 

7. Physical probabilities. (a) Assumed to exist; (b) denied; (c) used as i f  they 
exist but without philosophical commitment (#617). 

8. Intuitive probability. (a) Subjective probabilities regarded as primary; (b) 
credibilities (logical probabilities) primary; (c) regarding i t  as mentally healthy to 
think of subjective probabilities as estimates o f  credibilities, without being sure 
that credibilities really exist; (d) credibilities in principle definable by an inter- 
national body. . . . 

9. Device of imaginary results. (a) Explicit use; (b) not. The device involves 
imaginary experimental results used for judging final or posterior probabilities 
from which are inferred discernments about the initial probabilities. For examples 
see ##13, 547. 

10. Axioms. (a) As simple as possible; (b) incorporating Kolmogorov's axiom 
(complete additivity); (c) using Kolmogorov's axiom when mathematically con- 
venient but regarding i t  as barely relevant to the philosophy of  applied statistics. 

11. Probability "types. " (a) Considering that priors can have parameters with 
"Type I II" distributions, as a convenient technique for making judgments; (b) 
not. Here (a) leads, by a compromise with non-Bayesian statistics, to such tech- 
niques as Type I I  maximum likelihood and Type I I  likelihood-ratio tests (#547). 

Thus there are at least 24 36 . 4 = 46656 categories. This i s  more than the 
number of professional statisticians so some of the categories must be empty. 
Thomas Bayes hardly wrote enough to be properly categorized; a partial attempt 
i s  b--aaa?-b--. My own category i s  abcbcbccaca. What's yours? 
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CHAPTER 4 

The Bayesian Influence, 
or How to Sweep Subjectivism 
under the Carpet (#838) 

ABSTRACT 

O n  several previous occasions I have argued the need for a Bayeslnon-Bayes 
compromise which I regard as an application o f  the "Type 11"  principle o f  ration- 
al i ty. By this is meant the maximization o f  expected ut i l i ty  when the labour and 
costs o f  the calculations are taken in to account. Building o n  this theme, the pres- 
ent  work indicates how some apparently objective statistical techniques emerge 
logically f rom subjective soil, and can be further improved i f  their subjective 
logical origins ( i f  not  always historical origins) are no t  ignored. There should in  
m y  opinion be a constant interplay between the subjective and objective points 
o f  view, and not  a polarization separating them. 

Among the topics discussed are, two  types o f  rationality, 2 7  "Priggish Prin- 
ciples," 46656 varieties o f  Bayesians, the Black Box theory, consistency, the un- 
obviousness o f  the obvious, probabilities o f  events that have never occurred 
(namely all events), the Device o f  Imaginary Results, graphing the likelihoods, 
the hierarchy o f  types o f  probabil i ty, Type II maximum likelihood and likelihood 
ratio, the statistician's ut i l i t ies versus the client's, the experimenter's intentions, 
quasiutilities, tail-area probabilities, what is "more extreme"?, "deciding in  ad. 
vance," the harmonic mean rule o f  thumb for signif i~ance tests in  parallel, den- 
sity estimation and roughness penalities, evolving probability and pseudorandom 
numbers and a connection wi th statistical mechanics. 

1. PREFACE 

. . . There is  one respect in which the title o f  this paper i s  deliberately ambig- 
uous: i t  is  not clear whether it refers to the historical or to the logical influence 
o f  "Bayesian" arguments. In fact i t  refers to both, but with more emphasis on 
the logical influence. Logical aspects are more fundamental to a science or phil- 
osophy than are the historical ones, although they each shed light on the other. 
The logical development i s  a candidate for being the historical development on 
nnnthor nl-net 

I have taken the expression the "Bayesian influence" from a series o f  lectures 
in  mimeographed form (#750). In  a way I am fighting a battle that has already 
been won to a large extent. For example, the excellent statisticians L. J .  Savage, 
D. V. Lindley, G. E. P. Box (R. A. Fisher's son-in-law) and J .  Cornfield were 
converted to the Bayesian fold years ago. For some years after World War II ,  
I stood almost alone at meetings o f  the Royal Statistical Society in crusading 
for a Bayesian point o f  view. Many o f  the discussions are reported in the Journal, 
series B, but the most detailed and sometimes heated ones were held privately 
after the formal meetings in dinners at Berterolli's restaurant and elsewhere, 
especially with Anscombe, Barnard, Bartlett, Daniels, and Lindley. [Lindley 
was a non-Bayesian until 1954.1 These protracted discussions were historically 
important but have never been mentioned in print before as far as I know. There 
i s  an unjustifiable convention in the writing of the history o f  science that science 
communication occurs only through the printed word. . . . 

I l .  INTRODUCTION 

On many previous occasions, and especially at the Waterloo conference o f  1970, 
I have argued the desirability of a Bayeslnon-Bayes compromise which, from one 
Bayesian point of view, can be regarded as the use of a "Type I I "  principle o f  
rationality. By this i s  meant the maximization of expected uti l i ty when the labour 
and costs o f  calculations and thinking are taken into account. Building on this 
theme, the present paper will indicate how some apparently objective statistical 
techniques emerge logically from subjective soil, and can be further improved by 
taking into account their logical, i f  not always historical, subjective origins. Therc 
should be in my opinion a constant interplay between the subjective and objec- 
tive points of view and not a polarization separating them. 

Sometimes an orthodox statistician will say o f  one of his techniques that it 
has "intuitive appeal." This i s  I believe always a guarded way o f  saying that i t  
has an informal approximate Bayesian justification. 

Partly as a matter of faith, I believe that all sensible statistical procedures can 
be derived as approximations to Bayesian procedures. As I have said on previous 
occasions, "To the Bayesian all things are Bayesian." 

Cookbook statisticians, taught by non-Bayesians, sometimes give the impres- 
sion to their students that cookbooks are enough for all practical purposes. Any 
one who has been concerned with complex data analysis knows that they are 
wrong: that subjective judgment o f  probabilities cannot usually be avoided, even 
if this judgment can later be used for constructing apparently non-Bayesian pro- 
cedures in the approved sweeping-under-the-carpet manner. 

(a) What I s  Swept under the Carpet? 

I shall refer to "sweeping under the carpet" several times, so I shall use the 
abbreviations UTC and SUTC. One part o f  this paper deals with what is  swept 



24 THE BAYESIAN INFLUENCE (#838) 

under the carpet, and another part contains some examples o f  the SUTC process. 
(The past tense, etc., will be covered by the same abbreviation.) 

Let us then consider what i t  is that is swept under the carpet. Maurice Bartlett 
once remarked, in a discussion at a Research Section meeting o f  the Royal Statis- 
tical Society, that the word "Bayesian" i s  ambiguous, that there are many varie- 
ties o f  Bayesians, and he mentioned for example, "Savage Bayesians and Good 
Bayesians," and in a letter in the American Statistician I classified 46656 varie- 
ties (#765). There are perhaps not that numbev o f  practicing Bayesian statisti- 
cians, but the number comes to 46656'.wh& your cross-classify the Bayesians 
in  a specific manner by eleven facets. Some o f  the categories are perhaps logical- 
l y  empty but the point I was making was that there i s  a large variety o f  possible 
interpretations and some o f  the arguments that one hears against the Bayesian 
position are valid only against some Bayesian positions. As so often in contro- 
versies " i t  depends what you mean," The particular form o f  Bayesian position 
that I adopt might be called non-Bayesian by some people and naturally i t  is my 
own views that I would like most to discuss. I speak for some o f  the Bayesians 
all the time and for all the Bayesians some o f  the time. In the spoken version 
o f  this paper I named my position after "the Tibetan Lama K. Caj Doog," and 
I called my position "Doogian." Although the joke wears thin, i t  i s  convenient 
to have a name for this viewpoint, but "Bayesian" i s  misleading, and "Goodian" 
or "Good" i s  absurd, so I shall continue with the joke even in print. (See also 
Smi th, 1961, p. 18, line minus 15, word minus 2.) 

Doogianism i s  mainly a mixture o f  the views o f  a.few o f  my eminent pre-1940 
predecessors. Many parts o f  i t  are therefore not odginal, but, taken as a whole 
I think i t  has some originality; and at any rate i t  i s  convenient here to  have a 
name for it. I t  i s  intended to be a general philosophy for reasoning and for 
rationality in action and not just for statistics. I t  i s  a philosophy. that applies to 
all activity, to statistics, to economics, to  the practice and philosophy o f  science, 
to ordinary behavior, and, for example, to chess-playing. O f  course e'ach of these 
fields o f  study or activity has its own specialized problems, but, just as the the- 
ories o f  each o f  them should be consistent with ordinary logic, they should in 
my opinion be consistent also with the theory o f  rationality as presented here 
and in my previous publications, a theory that i s  a useful and practically necessary 
extension o f  ordinary logic. . . . 

A t  the Waterloo conference (#679), 1 listed 27 Priggish Principles that sum- 
marize the Doogian philosophy, and perhaps the reader will consult the Pro- 
ceedings and some o f  its bibliography for a more complete picture, and for his- 
torical information. Here i t  would take too long to work systematically through 
all 27 principles and instead I shall concentrate on the eleven facets o f  the Bayes- 
ian Varieties in the hope that this will give a fairly clear picture. I do not claim 
that  any o f  these principles were "discovered last week" (to quote Oscar Kemp- 
thorne's off-the-cuff contribution to the spoken discussion), in fact I have de- 
veloped, acquired or published them over a period o f  decades, and most o f  them 
were used by others before 1940, in one form or another, and with various 
degrees o f  bakedness or emphasis. The mair, merit that I claim for the Doogian 
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philosophy i s  that i t  codifies and exemplifies an adequately complete and simple 
theory of rationality, complete in the sense that i t  i s  I believe not subject to the 
criticisms that are usually directed at other forms o f  Bayesianism, and simple in 
the sense that i t  attains realism with the minimum of machinery. To pun some- 
what, i t  i s  "minimal sufficient." 

(b) Rationality, Probability, and the Black Box Theory 

In some philosophies of rationality, a rational man is  defined as one whose 
judgments o f  probabilities, utilities, and o f  functions o f  these, are all both con- 
sistent and sharp or precise. Rational men do not exist, but the concept i s  use- 
ful in the same way as the concept o f  a reasonable man in legal theory. A ration- 
al man can be regarded as an ideal to hold in mind when we ourselves wish to be 
rational. I t  i s  sometimes objected that rationality as defined here depends on 
betting behavior, and people sometimes claim they do not bet. But since their 
every decision is  a bet I regard this objection as unsound: besides they could in 
principle be forced to bet in the usual monetary sense. I t  seems absurd to me to 
suppose that the rational judgment of probabilities would normally depend on 
whether you were forced to bet rather than betting by free choice. 

There are of course people who argue (rationally?) against rationality, but 
presumably they would agree that i t  i s  sometimes desirable. For example, they 
would usually prefer that their doctor should make rational decisions, and, when 
they were fighting a legal case in which they were sure that the evidence "proved" 
their case, they would presumably want the judge to be rational. I believe that 
the dislike of rationality i s  often merely a dishonest way o f  maintaining an in- 
defensible position. Irrationality i s  intellectual violence against which the pacifism 
o f  rationality may or may not be an adequate weapon. 

In practice one's judgments are not sharp, so that to use the most familiar 
axioms i t  is necessary to work with judgments of inequalities. For example, 
these might be judgments o f  inequalities between probabilities, between utilities, 
expected utilities, weights o f  evidence (in a sense to be defined . . .), or any 
other convenient function of probabilities and utilities. We thus arrive at a 
theory that can be regarded as a combination o f  the theories espoused by 
F. P. Ramsey (1926/31/50/64), who produced a theory o f  precise subjective 
probability and util ity, and of j. M. Keynes (1921), who emphasized the impor- 
tance of inequalities (partial ordering) but  regarded logical probability or cred- 
ibility as the fundamental concept, at least unti l  he wrote his obituary on Ramsey 
(Keynes, 1933). 

To summarize then, the theory I have adopted since about 1938 i s  a theory 
of subjective (personal) probability and uti l i ty in which the judgments take the 
form o f  inequalities (but see Section I I I [ i i i ]  below). This theory can be formu- 
lated as the following "black box" theory. . . .[See pp. 75-76.] 

To extend this theory to rationality, we need merely to allow judgments 
of preferences also, and to append the "principle o f  rationality," the recom- 
mendation to maximize expected uti l i ty. (##13, 26, 230.) 
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physical probabilities corresponding to the cells o f  multidimensional contingency 
tables. Many cells will be empty for say a 2'' table. A Bayesian proposal for this 
problem was made in Good (p. #75 o f  #398), and I am hoping to  get a student 
to look into i t ;  and to compare i t  with the use o f  log-linear models which have 
been applied to this problem during the last few years. One example o f  the use 
o f  a log-linear model is, after taking logarithms o f  the relative frequencies, to ap- 
ply a method o f  smoothing mentioned in # I46 in relation to factorial experi- 
ments: namely to  treat non-significant interactions as zero (or o f  course they 
could be "flattened" Bayesianwise instead for slightly greater accuracy). 

Yet another problem where the probabilities of events that have never oc- 
curred before are o f  interest i s  the species sampling problem. One o f  its aspects 
is the estimation of the probability that the next animal or word sampled will he 
one that has not  previously occurred. The answer turns out  to be approximately 
equal to n ,  IN, where n, i s  the number o f  species that have so far occurred just 
once, and N is  the total sample size: see ##38 & 86; this work was originated 
with an idea of Turing's (1940) which anticipated the empirical Bayes method 
in a special case. (See also Robbins, 1968.) The method can be regarded & non- 
Bayesian but  with a Bayesian influence underlying it. More generally, the prob- 
ability that the next animal will be one that has so far been represented r times i s  
approximately (r + l)nr+l IN, where nr i s  the "frequency o f  the frequency r," 
that is, the number o f  species each o f  which has already been represented r times. 
(In practice i t  i s  necessary to smooth the n,'s when applying this formula, to get 
adequate results, when r>l.) I shall here give a new proof o f  this result. Denote 
the event o f  obtaining such an animal by Er. Since the order in which the N ani- 
mals wcre sampled i s  assumed to be irrelevant (a Bayesian-type assumption of 
permutability), the required probability can be estimated by the probability that 
E, would have occurred on the last occasion an animal was sampled i f  a random 
permutation were applied to the order in which the N animals were sampled. But 
E, would have occurred i f  the last animal had belonged to a species represented 
r + 1 times altogether. This gives the result, except that for greater accuracy we 
should remember that we are talking about the (N + 1 ) s t  trial, so that a more ac- 
curate result i s  (r + l )BN+ 1 (n,+, )/(N + 1). Hence the expected physical prob- 
ability 9r corresponding to those nr species that have so far occured r times 
i s  

r + 1 & N + I  (",+I) 
g(9r)  = -. 

N+ 1 EN(nr) 

This i s  formula (1 5) o f  #38 which was obtained by a more Bayesian argument. 
The "variance" o f  9, was also derived in that paper, and a "frequency" proof of 
i t  would be more difficult. There i s  an interplay here between Bayesian and ' frequency ideas. 

One aspect of Doogianism which dates back at lcast to  F. P. Ramsey (19261 
31 /50/64) i s  the emphasis on consistency: for example, the axioms o f  probability 
can provide only relationships between probabilities and cannot manufacture a 

I _ I I . I . .  - . .  -. - 

Fisher's fiducial argument. (This assumption i s  pinpointed in #659 on its p. 139 
omitted herein. The reason Fisher overlooked this is also explained there.) 

The idea of consistency seems weak enough, but it has the following immed- 
iate consequence which is often overlooked. 

Owing to the adjectives "initial" and "final" or "prior" and "posterior," i t  is  
usually assumed that initial probabilities must be assumed before final ones can 
be calculated. But there i s  nothing in the theory to prevent the implication be- 
ing in the reverse direction: we can make judgments o f  initial probabilities and 
infer final ones, or we can equally make judgments o f  final ones and infer initial 
ones by Bayes's theorem i n  reverse. Moreover this can be done corresponding to 
entirely ilnaginary obscrvations. This i s  what I mean by the Device o f  Imaginary 
Results for the judging o f  initial probabilities. (See, for example, Index of #13). 
I found this device extremely uscful in connection with the choice of a prior 
for multinomial estimation and significance problems (#547) and I believe the 
device will be found to be of the utmost value in future Bayesian statistics. 
Hypothctical experiments have been familiar for a long time in physics, and in 
thc arguments that led Ramsey to the axioms of subjective probability, but the 
use o f  Bayes's theorem in reverse i s  less familiar. "Ye priors shall be known by 
their posteriors" (p. 17). Even the slightly more obvious technique o f  imag- 
inary bets is still disdained by many decision makers who like to say "That pos- 
sibility i s  purely hypothctical.'' Anyone who disdains the hypothetical i s  a 
philistine. 

I l l .  THE ELEVENFOLD PATH OF DOOGIANISM 

As I said before, I should now like to take up the 46656 varieties o f  Bayesians, 
in other words the cleven facets for their categorization. I would have discussed 
the 27-fold path of Doogianism i f  there had been space enough. 

(i) Rationality of Types I and I I  

I have already rcferred to the first facet. Rationality of Type I i s  the recom- 
mendation to maximize cxpected util ity, and Type II i s  the same except that it 
allows for the cost o f  theorizing. I t  means that in any practical situation you 
have to decide when to stop thinking. You can't allow the current to go on cir- 
culating round and round the black box or the cranium forever. You would like 
to reach a sufficient maturity of judgments, but you have eventually to reach 
some conclusion or to make some decision and so you must be prepared to sac- 
rificc strict logical consistency. A t  best you can achieve consistency as far as 
you have sccn to date (p. 49 of #I 3). Thcre i s  a time element, as in chess, and 
this i s  realistic of most practice. I t  might not  appeal to some of you who love 
ordinary logic, but i t  i s  a mirror of the true situation. 

It may help to  convince some readers i f  I recall a remark of Poincare's that 
some antinomies in ordinary (non-probabilistic) logic can be resolved by bring- 
ing in a time element. ("Tcmporal," "evolving" or "dvnamir" I no ic? l  
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controversies between the orthodox and Bayesian points of view, also involves a 
shifting o f  your probabilities. The subjective probabilities shift as a consequence 
o f  thinking. . . . [See p. 107.1 The conscious recognition o f  Type I I  ration- 
ality, or not, constitutes the two aspects o f  the first facet. 

Another name for the principle o f  Type I I  rationality might be the Principle 
o f  Non-dogmatism. 

(ii) Kinds of Judgment 

Inequalities between probabilities and between expected utilities are perhaps 
the most standard type o f  judgment, but other kinds are possible. Because o f  my 
respect for the human mind, I believe that one should allow any kind o f  judg- 
ments that are relevant. One kind tha't I believe will ultimately be regarded as 
vying in importance with the two just mentioned i s  a judgment o f  "weights o f  
evidence" (defined later) a term introduced by Charles Sanders Peirce (1878) 
although I did not know this when I wrote my 1950 book. . . . 

It will encourage a revival o f  reasoning i f  statisticians adopt this appealing 
terminology . . . . [But Peirce blew it. See #1382.] 

One implication o f  the "suggestion" that all types o f  judgments can be used i s  
to encourage you to compare your "overall" judgments with your detailed ones; 
for example, a judgment by a doctor that i t  i s  better to operate than to apply 
medical treatment, on the grounds perhaps that this would be standard practice 
in thc given circumstances, can be "played off" against separate judgments of 
the probabilities and utilities o f  the outcomes of the various treatments. 

(iii) Precision of J udgments 

Most theories o f  subjective probability deal with numerically precise proba- 
bilities. These would be entirely appropriate i f  you could always state the lowest 
odds that you would be prepared to accept in a gamble, but in practice there i s  
usually a degree o f  vagueness. Hence I assume that subjective probabilities are 
only partially ordered. In this I follow Keynes and Koopman, for example, ex- 
cept that Keynes dealt primarily with logical. pro.babilities, and Koopman with 
"intuitive" ones (which means either logical or subjective). F. P. Ramsey (19261 
31150164) dealt with subjective probabilities, but "sharp" ones, as mentioned 
before. 

A theory of "partial ordering" (inequality judgments) for probabilities is a 
compromise between Bayesian and non-Bayesian ideas. For i f  a probability is 
judged merely to lie between 0 and 1, this is equivalent to making no judg- 
ment about i t  at all. The vaguer the probabilities the closer is this Bayesian 
viewpoint to a non-Bayesian one. 

Often, in the interests o f  simplicity, I assume sharp probabilities, as an ap- 
proximation, in accordance with Type II rationality. 

(iv) Eclecticism 

Many Bayesians take the extreme point of view that Bayesian methods should 
always be used in statistics. My view i s  that non-Bayesian methods are acceptable 
provided that they are not  seen to contradict your honest judgments, when com- 
bined with the axioms o f  rationality. This facet number (iv) is  an application o f  
Type I I  rationality. I believe i t  i s  sometimes, but not by any means always, easier 
to use "orthodox" (non-Bayesian) methods, and that they are oftengoodenough. 
I t  i s  always an application o f  Type I I  rationality to  say that a method is  good 
enough. 

(v) Should Utilities Be Brought in from the Start in the Development 
of the Theory? 

I have already stated my preference for trying to  build up the theory o f  sub- 
jective probability without reference to utilities and to bring in utilities later. 
The way the axioms are introduced is not  o f  great practical importance, provided 
that the same axioms are reached in the end, but i t  is  o f  philosophical interest. 
Also there i s  practical interest in seeing how far one can go without making use 
o f  utilities, because one might wish to  be an "armchair philosopher" or "fun 
scientist" who is more concerned with discovering facts about Nature than in 
applying them. ("Fun scientist" i s  not intended to be a derogatory expression.) 
Thus, for example, R. A. Fisher and Harold Jeffreys never used ordinary uti l-  
ities in their statistical work as far as I know (and when Jeffreys chaired the 
meeting in Cambridge when I presented my paper #26 he stated that he had 
never been concerned with economic problems in his work on probability). 
See also the following remarks concerned with quasiutilities. 

(vi) Quasiutilities 

Just as some schools o f  Bayesians regard subjective probabilities as having 
sharp (precise) values, some assume that utilities are also sharp. The Doogian 
believes that this i s  often not so. I t  is not merely that uti l i ty inequality judg- 
ments o f  course vary from one person to another, but that utilities for indiv- 
iduals can also often be judged by them only to lie in wide intervals. I t  con- 
sequently becomes useful and convenient to make use of substitutes for util ity 
which may be called quasiutilities or pseudoutilities. Examples and applications 
of quasiutilities will be considered later in this paper. The conscious recognition 
or otherwise of quasiutilities constitutes the sixth facet. 

(vii) Physical Probability 

Different Bayesians have different attitudes to thc question o f  physical 
probability. de Finetti regards i t  as a concept that can be defined in terms o f  
subjective probability, and does not attribute any othcr "real existence" to it. 
My view, or that o f  my alter ego, i s  that i t  seems reasonable to  suppose that 
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physical probabilities do exist, but that they can be measured only be means of 
a theory of subjective probability. For a fuller discussion of  this point see de 
Finetti (1968170) and #617. The question of the real existence of  physical 
probabilities relates to the problem of determinism versus indeterminism and I 
shall have something more to say on this. 

When I refer to physical probability I do not assume the long-run frequency 
definition: physical probability can be applied just as well to unique circum- 
stances. Popper suggested the word "propensity" for it, which I think i s  a good 
term, although I think the suggestion o f  a word cannot by itself be regarded as 
the propounding of  a "theory." [See also p. 405 of Feibleman, 1969.1 As I have 
indicated before, I think good terminology i s  important in crystallizing out 
ideas. Language can easily mislead, but part of the philosopher's job is to find 
out where i t  can lead. Curiously enough Popper has also stated that the words 
you use do not matter much: what is important is what they mean in your 
context. Fair enough, but it can lead to Humpty-Dumpty-ism, such as Popper's 
interpretation o f  simplicity [or Carnap's usage o f  "confirmation" which has mis- 
led philosophers for decades]. 

(viii) Which is Primary, Logical Probability (Credibility) or Subjec- 
tive Probability? 

I t  seems to me that subjective probabilities are primary because they are the 
ones you have to use whether you like i t  or not. But I think i t  is mentally heal- 
thy to think of your subjective probabilities as estimates o f  credibilities, whether 
these really "exist" or not. Harold Jeffreys said that the credibilities should be 
laid down by an international body. He would undoubtedly be the chairman. As 
Henry Daniels once said (c. 1952) when I was arguing for subjectivism, "all stat- 
isticians would like their models to be adopted," meaning that in some sense 
everybody is a subjectivist. 

(ix) Imaginary Results 

This matter has already been discussed but I am mentioning i t  again because 
i t  distinguishes between some Bayesians in practice, and so forms part o f  the 

I categorization under discussion. I shall give an example of i t  now because this , 
will help to shed light on the tenth facet. 

1 I t  is necessary to introduce some notation. Let us suppose that we throw a ' 

sample o f  N things into t pigeon holes, with statistically independent physical ' 

probabilities pl, p2, . . . , p,, these being unknown, and that you obtain fre- 
quencies n,,  n2, . . . , nt in the t categories or cells. This is a situation that 
has much interested philosophers o f  induction, but for some reason, presumably 
lack of familiarity, they do not usually call i t  multinomial sampling. In common 

I 

with many people in the past, I was interested (##398, 547) in estimating the 
physical probabilities p l ,  p2, . . . , p,. . . . [See pp. lOCLl03.1 

That then is an example o f  a philosophical attitude leading to a practical sol- 
I uLion of a statistical problem. As a matter of fact, i t  wasn't just the estimation 

of the p's that emerged from that work, but, more important, a significance test 
for whether the p's were all equal. The method has the pragmatic advantage that 
i t  can be used for all sample sizes, whereas the ordinary chi-squared test breaks 
down when the cell averages are less then I. Once you have decided on a prior 
(the initial relative probabilities of the components of the non-null hypothesis), 
you can calculate the weight o f  evidence against the null hypothesis without 
using asymptotic theory. (This would be true for any prior that is a linear com- 
bination o f  Dirichlet distributions, even i f  they were not symmetric, because in 
this case the calculations involve only one-dimensional integrations.) That then 
was an example o f  the device o f  imaginary results, for the selection of a prior, 
worked out in detail. 

The successful use of the device o f  imaginary results for this problem makes i t  
obvious that i t  can and will also be used effectively for many other statistical 
problems. I believe i t  will revolutionize multivariate Bayesian statistics. 

(x) Hierarchies of Probabilities 

When you make a judgment about probabilities you  night s i t  back and say 
"Is that judgment probable." This is how the mind works-it is natural to think 
that way, and this leads to a hierarchy of types of  probabilities (#26) which in 
the example just mentioned, I found useful, as well as on other occasions. Now 
an objection immediately arises: There is nothing in principle to stop you inte- 
grating out the higher types of probability. But i t  remains a useful suggestion to 
help the mind in making judgments. I t  was used in #547 and has now been 
adopted by other Bayesians, using different terminology, such as priors of the 
second "order" (instead of "type" or "two-stage Bayesian models." A convenient 
term for a parameter in a prior is "hyperparameter." [See also #1230.1 

New techniques arose out of the hierarchical suggestion, again apparently 
first in connection with the multinomial distribution (in the same paper), name- 
ly the concept of Type I I  maximum likelihood (maximization of the Bayes fac- 
tor against the null hypothesis by allowing the hyperparameters to vary), and 
that o f  a Type II likelihood ratio for significance tests. I shall discuss these two 
concepts when discussing likelihood in general. 

(xi) The Choice of Axioms 

One distinction between different kinds of Bayesians i s  merely a mathematical 
one, whether the axioms should be taken as simple as possible, or whether, for 
example, they should include Kolmogorov's axiom, the axiom of complete ad- 
ditivity. I prefer the former course because I would want people to use the 
axioms even i f  they do not know what "enumerable" means, but I am prepared 
to use Kolmogorov's axiom whenever i t  seems to  be sufficiently mathematically 
convenient. Its interest is mathematical rather than philosophical, except perhaps 
for the philosophy of mathematics. This last facet by the way i s  related to an ex- 
cellent lecture by Jimmie Savage of about 1970, called "What kind o f  probabil- 
it,, A n  ,,n,, . . n n t 7 "  
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So much for the eleven facets. Numbers (i) to (vii) and number (ix) all 
involve a compromise with non-Bayesian methods; and number (xiii) a compro- 
~ n i s e  with the "credibilists." 

IV.  EXAMPLES OF THE BAYESIAN INFLUENCE AND OF SUTC 

(a) The Logical and Historical Origins of Likelihood 

One aspect o f  util ity is communicating with other people. There are many sit- 
uations where you are interested in making a decision without communicating. 
But there are also many situations, especially in much statistical and scientific 
practice where you do wish to communicate. One suggestion, "obvious," and 
often overlooked as usual, i s  that you should make your assumptions clear and 
you should try to separate out the part that i s  disputable from the part that is 
less so. One immediate consequence o f  this suggestion is an emphasis on likeli- 
hood, because, as you all know, in Bayes's theorem you have the initial proba- 
bilities, and then you have the likelihoods which are the probabilities o f  the 
event, given the various hypotheses, and then you multiply the likelihoods by 
the probabilities and that gives you results proportional to the final probabilities. 
That i s  Bayes's theorem expressed neatly, the way Harold Jeffreys (1 939161 ) ex- 
pressed i t .  Now the initial probability o f  the null hypothesis i s  often highly dis- 
putable. One person might judge i t  to  be betweeh and lo - '  whereas an- 
other might judge i t  to be between 0.9 and 0.99. There i s  much less dispute 
about likelihoods. There i s  no dispute about the numerical values o f  likelihoods 
i f  your basic parametric model i s  accepted. O f  course you usually have to use 
subjective judgment in laying down your parametric model. Now the hidebound 
objectivist tends to hide that fact; he will not volunteer the information that he 
uses judgment at all, but i f  pressed he will say "I do, in fact, have good judgment." 
So there arc good and bad subjectivists, the bad subjectivists are the people with 
bad or dishonest judgment and also the people who do not make their assump- 
tions clear when communicating with other people. But, on the other hand, 
there arc no good 100% (hidebound) objectivists; they are all bad because they 
sweep their judgments UTC. 

Aside: In the spoken discussion the following beautiful interchanges 
took place. Kempthorne (who also made some complimentary com- 
ments): Now, on the likelihood business, the Bayesians discovered 
likelihood Goddamit! Fisher knew all this stuff. Now look Jack, you 
are an educated guy. Now please don't pull this stuff. This really 
drives me up the wall! Lindley: I f  Fisher understood the likelihood 
principle why did he violate i t? Kempthorne: I 'm not saying he under- 
stood i t  and I 'm not saying you do or you-nobody understand; it. 
But  likelihood ideas, so to speak, have some relevance to  the data. 
That's a completely non-Bayesian argument. Good: I t  dates back to 
the 18th century. Kempthorne: Oh i t  dates back; but there are a lot 
o f  th~nps being (?)  Doogian. vou know. Thcv started with thk  euv 

Doog. Who is this bugger? Doog i s  the guy who spells everything 
backwards. 

In reply to this entertaining harangue, which was provoked by a misunder- 
standing that was perhaps my fault, although I did refer to  Fisherian informa- 
tion, I mention the following points. Bayes's theorem (Bayes, 1763165, 1940158; 
Laplace, 1774) cannot be stated without introducing likelihoods; therefore like- 
lihood dates back at least to 1774. Again, maximum likelihood was used by 
Daniel Bernoulli (1 77417811 961); see, for example, Todhunter (1 865, p. 236) or 
Eisenhart (1 964, p. 29). Fisher introduced the name likelihood and emphasized 
the method o f  maximum likelihood. Such emphasis i s  important and o f  course 
merits recognition. The fact that he was anticipated in its use does not deprive 
him of  the major part o f  the credit or of the blame especially as the notion o f  
defining [his kind o f ]  amount o f  information in terms of likelihood was his 
brilliant idea and i t  led to the Aitken-Silverstone information inequality (the 
minimum-variance bound). [Perhaps not due to Aitken and Silverstone.] 

Gauss (1 79811 809/57/1963) according to Eisenhart, used inverse probability 
combined with a Bayes postulate (uniform initial distribution) and an assump- 
tion o f  normal error, to give one o f  the interpretations o f  the method of least 
squares. He could have used maximum likelihood in this context but apparently 
did not, so perhaps Daniel Bernoulli's use o f  maximum likelihood had failed to 
convince him or to be noticed by him. Further historical research might be re- 
quired to  settle this last question i f  i t  i s  possible to  settle i t  at all. 

So likelihood i s  important as all statisticians agree now-a-days, and i t  takes 
sharper values than initial probabilities. But some people have gone to extremes 
and say that initial probabilities don't mean anything. Now I think one reason 
for their saying so i s  trade unionism of  a certain kind. I t  i s  very nice for a statis- 
tician to be able to give his customer absolutely clear-cut results. I t  i s  unfortun- 
ate that he can't do i t  so he is tempted to cover up, to pretend he has not had to 
use any judgment. Those Bayesians who insist on sharp initial probabilities are 
I think also guilty of "trade unionism," unless they are careful to point out 
that these are intended only as crude approximations, for I do not believe that 
sharp initial probabilities usually correspond to their honest introspection. If, 
on the other hand, they agree that they are using only approximations we might 
need more information about the degree o f  the approximations, and then they 
would be forced to use inequality judgments, thus bringing them closer to the 
True Religion. (I believe Dr. Kyburg's dislike of the Bayesian position, as expres- 
sed by him later in this conference, depended on his interpreting a Bayesian as 
one who uses sharp initial probabilities.) The use o f  "vague" initial probabilities 
(inequality judgments) does not prevent Bayes's theorem from establishing the 
likelihood principle. For Dr. Kempthorne's benefit, and perhaps for some others, 
I mention that to me the likelihood principle means that the likelihood function 
exhausts all the information about the parameters that can be obtained from an 
experiment or observation, provided of course that there i s  an undisputed set of 

I exhaustive simple statistical hypotheses such as i s  provided, for example, by a 
I 
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parametric model. (In practice, such assumptions are often undisputed but are 
never indisputable. This i s  the main reason why significance tests, such as the 
chi-squared test, robust to  changes in the model, are of value. Even here there i s  
a Doogian interpretation that can bc based on beliefs about the distribution o f  
the test statistic when i t  i s  assumed that the null hypothesis i s  false. I lcavc this 
point on  one side for the moment.) Given the likelihood, the inferences that can 
be drawn from the observations would, for examplc, be unaffected i f  the statis- 
tician arbitrarily and falsely calimed that he had a train to catch, although he 
rcally had decided to stop sampling because his favorite hypothesis was ahead o f  
the game. (This might cause you to distrust the statistician, but i f  you believe his 
observations, this distrust would be immaterial.) On the other hand, the "Fisher- 
ian" tail-area method for significance testing violates the likelihood principle l?e- 
causc the statistician who i s  prepared to pretend he has a train to catch (optional 
stopping of sampling) can reach arbitrarily high significance Icvels, given enough 
time, even when the null hypothesis i s  true. For example, see Good (1956). 

(b) Weight of Evidence 

Closely related to tlie concept o f  likelihood is  that o f  wcight o f  evidence, 
which I mentioned before and promised to define. 

Let us suppose that we have only two hypotheses under consideration, which 
might be because we have decided to consider hypotheses two at a time. Dcnote 
thcm by  H and H, where the bar over the second H denotes ncgation. (These 
need no t  be "simple statistical hypotheses," as defined in a moment.) Suppose 
further that we have an event, experimental result, or observation denoted by E. 
Theconditional probability of E i s  either P(EJH) or P(EIH), depending on wheth- 
er H o r  H i s  assumed. I f  H and H are "simple statistical hypotheses," then these 
two probabilities have sharp uncontroversial values given tautologically by the 
meanings o f  H and H. Even i f  they are composite hypothesis, not  "simple" ones, 
the Bayesian will s t i l l  be prepared to talk about these two probabilities. In either 
case we can see, by four applications of the product axiom, or by two applica- 
tions o f  Bayes's theorem, that 

where 0 denotes odds. (The odds corresponding to  a probability p are defined as 
p/( l -p) . )  Turing (1941) called the right side o f  this equation the factor in favor 
of the hypothesis H providedby theevidence E, for obvious reasons. I t s  logarithm 
i s  the weight of evidence in favor o f  H, as defined independently by Peirce (1 878), 
#I 3, and Minsky and Selfridge (1 961 ). [But see #1382.] I t  was much used by 
Harold Jeffreys (1939/61), except that in that book he identified i t  with the 
final log-odds because his initial probabilities were taken as 112. He had previous- 
ly  (1936) used the general form of weight o f  evidence and had called i t  "support." 
The non-Bayesian uses the left side o f  the equation, and calls i t  the probability 
ratio, provided that H and fi are simple statistical hypotheses. He SUTC the right 

side, because he does not talk about the probability o f  a hypothesis. The Bayesim, 
the doctor, the judge and the jury can appreciate the importance o f  the right 
sidc even with only the vaguest estimates o f  the initial odds o f  H. For example, 
the Bayesian (or at least tlie Doogian) can logically argue in the following man- 
ner (p. 70 of #I 3): I f  we assume that i t  was sensible to start a sampling expcri- 
ment in the first place, and i f  it has provided appreciable weight o f  evidence in 
favor of some hypothesis, and i t  i s  felt that the hypothesis i s  not yet convincing 
enough, then i t  i s  sensible to enlarge the sample since wc know that the final 
odds o f  the hypothesis have increased whatever they arc. Such conclusions can 
be reached even though judgments o f  the relevant initial probability and o f  the 
utilities have nevcr been announced. Thus, even when the initial probability i s  
extrcmcly vague, the axioms o f  subjective probability (and weight o f  cvidence) 
can be applied. 

When one or both of H and fi are composite, the Bayesian has to assume rel- 
ative initial probabilitiesfor the simple components o f  the composite hypothesis. 
Although these are subjective, they typically seem to be less subjective than the 
initial probability of H itself. To  put  the matter more quantitatively, although 
this i s  not easy in so general a context, I should say that the judgment o f  the fac- 
tor in favor of a hypothesis might typically differ from one person to another by 
up to about 5, while the initial odds o f  H might differ by a factor o f  10 or 100 
or 1000. Thus the separation o f  the estimation o f  the weight o f  evidence from 
the initial or final probability of H serves a useful purpose, especially for com- 
munication with other people, just as i t  i s  often advisable to separate the judg- 
ments o f  initial probabilities and likelihoods. 

I t  often happens that the weight o f  evidence i s  so great that a hypothesis 
scems convincing almost irrespective o f  the initial probability. For example, in 
quantum mechanics, i t  seems convincing that the SchrBdinger equation i s  ap- 
proximately true (subject to  some limitations), given the rest of some standard 
formulation o f  quantum mechanics, because o f  great quantities o f  evidence from 
a variety o f  experiments,such as the measurements o f  the frequencies o f  spec- 
tral lines to several places o f  decimals. The large weight o f  evidence makes it 
seem, to people who do not stop to think, that the initial probability o f  the equa- 
tion, conditional on the rest o f  the theory, i s  irrelevant; but really there has to 
be an implicit judgment that the initial probability is  not too low; for example, 
not less than (In a fuller discussion I would prefer t o  talk of the relative 
odds o f  two equations in competition.) How we judge such inequalities, whcther 
explicitly or implicitly, is  not clear: if we knew how we made judgments we 
would not call them judgments (#183). I t  must be something to do with the 
length o f  the equation (just as the total length of [the "meaningful" nonredun- 
dant parts of the] chromosomes in a cell could be used as a measure o f  complex- 
i ty o f  an organism) and with i t s  analogy with the classical wave equation and 
heat equation. (The latter has even suggested to some people, for example, Weizel 
[1953], that there i s  some underlying random motion that will be found to "cx- 
plain" the equation.) A t  any rate the large weight o f  evidence permits the initial 
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probability to be SUTC and i t  leads to an apparent objectivism (the reliance on 
the likelihoods alone) that i s  really multisubjectivism. The same happens in 
many affairs o f  ordinary life, in perception (p. 68 o f  #13), in the law, and in 
medical diagnosis (for example, #755). 

On a point o f  terminology, the factor in favor o f  a hypothesis is  equal to the 
likelihood ratio, in the sense o f  Neyman, Pearson, and Wilks, only when both H 
and fi are simple statistical hypotheses. This i s  another justification for using 
Turing's and Peirce's expressions, apart from their almost self-explanatory nature, 
which provides their potential for improving the reasoning powers o f  all people. 
Certainly the expression "weight o f  evidence'" captures one of the meanings 
that was intended by ordinary language. I t  i s  not surprising that i t  was an out- 
standing philosopher who first noticed this: for one o f  the functions of philos- 
ophy i s  to make such captures. [ I t  i s  a pity that Peirce's discussion contained an 
error.] 

George Barnard, who i s  one o f  the Likelihood Brethren, has rightly emphasized 
the merits of graphing the likelihood function. A Bayesian should support this 
technique because the initial probability density can be combined with the like- 
lihood afterwards. I f  the Bayesian i s  a subjectivist he will know that the initial 
probability density varies from person to person and so he will see the value of 
graphing of the likelihood function for communication. A Doogian will consider 
that even his own initial probability density i s  not unique so he should approve 
even more. Difficulties arise in general i f  the parameter space has more than two 
dimensions, both in picturing the likelihood hypersurface or the posterior den- 
sity hypersurface. The problem is  less acute when the hypersurfaces are quad- 
ratic in the neighborhood o f  the maximum. In any 'case the Bayesian can in ad- 
dit ion reduce the data by using such quantities as expected utilities. Thus he 
has all the advantages claimed by the likelihood brotherhood, but has additional 
flexibility. [See also #862, p. 71 1 and #1444.] 

(c) M a x i m u m  L i ke l i hood ,  Invariance, Quasiuti l i t ies, a n d  ~ u a s i l o s s e s  

Let us now consider the relationship between Bayesian methodsand maximum 
likelihood. 

In a "full-dress" Bayesian estimation of parameters, allowing for utilities, you 
compute their final distribution and use it, combined with a loss function, to 
find a single recommended value, i f  a point estimate i s  wanted. When the loss 
function i s  quadratic this implies that the point estimate should be the final ex- 
pectation of the parameter (even for vector parameters i f  the quadratic i s  non- 
singular). The final expectation i s  also appropriate i f  the parameter i s  a physical 
probability because the subjective expectation o f  a physical probability o f  an 
event is  equal to the current subjective probability o f  that event. 

I f  you do not wish to appear to assume a loss function, you can adopt the ar- 
gument of Jeffreys (1939161, Section 4.0). He points out that for a sample of 
size n (n observations), the final probability density i s  concentrated in a range of 
order n-n, and that the difference between the maximum-likelihood value of 
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the parameter and the mode o f  the final probability density i s  o f  the order 1In. (I  
call this last method, the choice o f  this mode, a Bayesian method "in mufti.") 
"Hence i f  the number o f  observations i s  large, the error committed by taking the 
maximum likelihood solution as the estimate i s  less than the uncertainty inevita- 
ble in any case. . . . The above argument shows that in the great bulk of cases 
its results are indistinguishable from those given by the principle of inverse prob- 
ability, which supplies a justification for it." I t  also will not usually make much 
difference i f  the parameter i s  assumed to have a uniform initial distribution. 
(jeffreys, 1939161, p. 145; p. 55 o f  #13. L. J. Savage, 1959162, p. 23, named 
estimation that depends on this last point "stable estimation.") 

By a slight extension o f  Jeffreys's argument, we can see that a point estimate 
based 011 a loss function, whether i t  is  the expectation of the parameter or some 
other value (which will be a kind o f  average) induced by the loss function, will 
also be approximated by using the Bayes method in mufti, and by the maximum- 
likelihood estimate, when the number o f  observations i s  large. Thus the large- 
sample properties o f  the maximum-likelihood method cannot be used for distin- 
guishing i t  from a wide class o f  Bayesian methods, whether full-dress or in muft i .  
This i s  true whether we are dealing with point estimates or interval estimates. In -  
terval estimates and posterior distributions are generally more useful, but point 
estimates are easier to  talk about and we shall concentrate on them for the sake 
o f  simplicity. 

One may also regard the matter from a more geometrical point o f  view. I f  
the graph of the likelihood function is  sharply peaked, then the final density will 
also usually be sharply peaked at nearly the same place. This again makes it clear 
that there i s  often not much difference between Bayesian estimation and maxi- 
mum-likelihood estimation, provided that the sample i s  large. This argument ap- 
plies provided that the number o f  parameters i s  itself not large. 

All this i s  on the assumption that the Bayesian assumptions are not dogmatic 
in the sense o f  ascribing zero initial probability to  some range o f  values o f  the 
parameter; though "provisional dogmatism" i s  often justifiable to save time, 
where you hold at the back o f  your mind that i t  might be necessary to make an 
adjustment in the light o f  the evidence. Thus I do not agree with the often-given 
dogmatic advice that significance tests must be chosen before looking at the 
results o f  an experiment, although o f  course I appreciate the point of the advice. 
I t  is  appropriate advice for people o f  bad judgment. 

I t  i s  perhaps significant that Daniel Bernoulli introduced the method of maxi- 
mum likelihood, in a special case, at almost the same time as the papers by Bayes 
and Laplace on inverse probability were published. But, as I said before, it is  the 
logical rather than the historical connections that I wish to emphasize most. I 
merely state my belief that the influence o f  informal Bayesian thinking on appar- 
ently non-Bayesian methods has been considerable at both a conscious and a less 
conscious level, ever since 1763, and even from 1925 to 1950 when non-Bayesian 
methods were at their zenith relative to Bayesian ones. 

Let us consider loss functions in more detail. In  practice, many statisticians 
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emphasize this interpretation because the formulation o f  hypotheses is often 
said to lie outside the statistician's domain o f  formal activity, qua statistician. I t  
has been pointed out that Jeffreys's invariant prior (Jeffreys, 1946) can be re- 
garded as a minimax choice when quasiutility i s  measured by weight of evidence 
(##618, 622). Thus other invariant priors could be obtained from other invari- 
ant quasiutilities (of which there i s  a one-parameter family mentioned later). 

Jeffreys's invariant prior is equal to the square root of the determinant of 
Fisher's information matrix, although Jeffreys (1946) did not express i t  this way 
explicitly. Thus there can be a logical influence from non-Bayesian to Bayesian 
methods, and of course many other examples of influence in this direction could 
be listed. 

Let us return to the discussion of Maximum Likelihoo'd (ML) estimation. Since 
nearly all methods lead to ROME (Roughly Optimal Mhntic Estimation) when 
samples are large, the real justification for choosing one method rather than an- 
other one must be based on samples that are not large. 

One interesting feature o f  ML estimation, a partial justification for ,it, is its 
invariance property. That is, i f  the ML estimate o f  a parameter 8 is denoted by 
6, then the ML estimate o f  f(8), for any monotonic function f, even a discontin- 
uous one, i s  simply f(6). Certainly invariant procedures have the attraction o f  
decreasing arbitrariness to some extent, and i t  is a desideratum for an ideal pro- 
cedure. But there are other invariant procedures of a more Bayesian tone to 
which I shall soon return: o f  course a completely Bayesian method would be in- 
variant i f  the prior probabilities and utilities were indisputable. Invariance, like 
patriotism, is not enough. An example o f  a very bad invariant method is to 
choose as the estimate the least upper bound of all possible values of the para- 
meter if i t  i s  a scalar. This method i s  invariant under all increasing monotonic 
transformations of the parameter! 

Let us consider what happens to ML estimation for the physical probabilities 
o f  a multinomial distribution, which has been used as a proving ground for many 
philosophical ideas. 

In the notation used earlier, let the frequencies in the cells be nl, n,, . . . , 
n,, with total sample size N. Then the ML estimates of the physical probabilities 
are n;/N, i = 1, 2, . . . , t. Now I suppose many people would say that a sample 
size o f  n = 1,000 is large, but even with this size i t  could easily happen that one 
of the n;'s is zero, for example, the letter Z could well be absent in a sample 07 
1,000 letters of English text. Thus a sample might be large in one sense but effec- 
tively small in another (##38, 83, 398). I f  one of  the letters is absent (n i=  O), 
then the maximum-likelihood estimate o f  p i  is zero. This is an appallingly bad 
estimate i f  i t  i s  used in a gamble, because i f  you believed i t  (which you wouldn't) 
i t  would cause you to give arbitrarily large odds against that letter occurring on 
the next trial, or perhaps ever. Surely even the Laplace-Lidstoneestimate (n; + I ) /  
( N  + t) would be better, although i t  is not optimal. The estimate of Jeffreys 
(1 946), (ni + 1 /2)/(N + t/2), which is based on his "invariant prior," is also better 
(in the same sense) than the ML estimate. Still better methods are available which 
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are connected with reasonable "Bayesian significance tests" for multinomial dis- 
tributions (##398, 547). 

Utility and quasiutility functions are often invariant in some sense, although 
"squared loss" i s  invariant only under linear transformations. For example, i f  the 
utility in estimating a vector parameter 8 as @ is u(8,@), and if the parameter 
space undergoes some one-one transformation 8*= $(8) we must have, for con- 
sistency, @* = $(@) and u*(8*,@) = u(8,@), where u *  denotes the utility function 
in the transformed parameter space. 

The principle of selecting the least favorable prior when i t  exists, in accordance 
with the minimax strategy, may be called the principle o f  least uti l i ty, or, when 
appropriate, the principle of least quasiutility. Since the minimax procedure must 
be invariant with respect to transformations o f  the problem into other equivalent 
languages, i t  follows that the principle o f  least uti l i ty leads to an invariant prior. 
This point was made in ##618,622. I t  was also pointed out there (see also ##699, 
701, 81 0 and App. C of #815) that there is a class of invariant quasiutilities for 
distributions. Namely, the quasiutility of assuming a distribution of density g(x), 
when the true distribution o f  x i f  F(x),  was taken as 

where 

From this i t  follows further that 

is an invariant prior, though i t  might be "improper" (have an infinite integral). In  
practice improper priors can always be "shaded of f "  or truncated to give them 
propriety (p. 56 of #13). 

I f  6 is the vector parameter in a distribution function F(xl8) of a random vari- 
able x, and 6 is not to be used for any other purpose, then in logic we must iden- 
tify u(8,@) with the utility of taking the distribution to be F(xl@) instead of  
F(xl8). One splendid exampleof an invariant uti l i ty isexpected weight of evidence 
per observation for discriminating between 8 and @ or "dinegentropy," 

u:(6,$) = I log df ix lBidF(x~8),  
dF(xI@) 

which is invariant under non-singular transformations both of the random 
variable and of the parameter space. (Its use in statistical mechanicsdates back 
to Gibbs.) Moreover it  isadditive for entirely independent problems, as a utility 
function shouId be. With this quasituility, A(8) reduces to Fisher's information 
matrix, and the square root o f  the determinant o f  A(8) reduces to Jeffreys's 
invariant prior. The dinegentropy was used by Jeffreys (1946) as a measure 
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o f  distance between two distributions. The distance o f  a distribution from a cor- 
rect one can be regarded as a kind o f  loss function. Another additive invariant 
quasiu til ity i s  (#82; RCnyi, 1961; p. 18Oof #755) the "generalized dinegentropy," 

the l imi t  o f  which as c+O is the expected weight o f  evidence, uo(B,$), somewhat 
surprising at first sight. The square root o f  the determinant o f  the absolute value 
o f  the Hessian o f  this uti l i ty at q5 = 8 i s  then an invariant prior indexed by the 
non-negative number c. Thus there i s  a continuum o f  additive invariant priors of 
which Jeffreys's i s  an extreme case. For example, for the mean of a univariate 
normal distribution the invariant prior i s  uniform mathematically independent 
o f  c The invariant prior for the variance q5 i s  u - ' I / m ,  which i s  propor- 
tional t o  a-' and so i s  again mathematically independent of c. 

In more general situations the invariant prior will depend on c and will there- 
fore not be unique. I n  principle i t  might be worth while to assume a ("type I l l " )  
distribution for c, to obtain an average of the various additive invariant priors. I t  
might be best to give extra weight to the valuec = 0 since weight o f  evidence seems 
to be the best general-purpose measure o f  corroboration (##211, 599). 

I t  is interesting that Jeffreys's invariant prior, and its generalizations, and also 
the principles o f  maximum entropy and o f  minimum discriminaability (KuIIback, 
1959) can all be regarded as applications o f  the principle o f  least quasiutility. 
This principle thus unifies more methods than has commonly been recognized. 
The existing criticisms o f  minimax procedures thus apply to these special cases. 

The term "invariance" can be misleading if  the class o f  transformations under 
which invariance holds i s  forgotten. For the invariant priors, although this class 
o f  transformations is  large, i t  does not include transformations to a different 
applicution o f  the parameters. For example, if 8 has a physical meaning, such as 
height of a person, i t  might occur as a parameter in the distribution o f  her waist 
measurement or her bust measurement, and the iniariance will not apply between 
these two  applications. This in my opinion (and L. J .  Savage's, July 1959) is a 
logical objection to the use o f  invariant priors ,when the parameters have clear 
physical meaning. To overcome this objection completely i t  would perhaps be 
necessary to consider the joint distribution of all the random variables of poten- 
tial interest. In the example this would mean that the joint distribution o f  at least 
the "vital statistics," given 8, should be used in constructing the invariant 
prior. 

Thcre i s  another argument that gives a partial justification for the use o f  the 
invariant priors in spite o f  Savage's objection just mentioned. I t  is  based on the 
notion of "marginalism" in the sense defined by Good (pp. 808-809 o f  #174; 
p.  61 o f  #603B; p. 15 o f  #732). 1 quote from the last named. " I t  is only in mar- 
ginal cases that the choice o f  the prior makes much difference (when i t  is chosen 
to give the non-null hypothesis a reasonable chance o f  winning on the size of 

THE BAYESIAN INFLUENCE (#838) 45 

sample we have available). Hence the name marginalism. I t  is a trick that does 
not give accurate final probabilities, but i t  protects you from missing what the 
data i s  trying to say owing to a careless choice o f  prior distribution." In accor- 
dance with this principle one might argue, as do Box and Tiao (1973, p. 44) that 
a prior should, at least on some occasions, be uninformative relative to the ex- 
periment being performed. From this idea they derive the jeffreys invariant prior. 

I t  i s  sometimes said that the aim in estimation is  not necessarily to minimize 
loss but merely to obtain estimates close to the truth. But there i s  an implicit 
assumption here that i t  is  better to be closer than further away,and thisisequiva- 
lent to the assumption that the loss function i s  monotonic and has a minimum 
(which can be taken as zero) when the estimate i s  equal to the true value. This 
assumption of monotonicity i s  not enough to determine a unique estimate nor a 
unique interval estimate having an assigned probability of covering the true value 
(where the probability might be based on information before or after the obser- 
vations are taken). But for large enough samples (effectively large, for the purpose 
in hand), as I said, all reasonable methods o f  estimation lead to Rome, i f  Rome 
i s  not too small. 

(d )  A BayesINon-Bayes Compromise for Probability Density 
Estimation 

Up to a few years ago, the only nonparametric methods for estimating 
probability densities, from observations x , ,  X Z ,  . . . , xN, were non-Bayesian. 
These, methods, on which perhaps a hundred papers have been written, are 
known as window methods. The basic idea, for estimating the density at a point 
x, was to see how many of the N observations lie in some interval or region 
around x, where the number v o f  such observations tendsto infinity whilev/N + 0 
when N + m. Also less weight i s  given to observations far from x than to those 
close to x, this weighting being determined by the shape o f  the window. 

Although the window methods have some intuituve appeal i t  i s  not clear in 
what way they relate to the likelihood principle. On the other hand, i f  the 
method o f  ML  is used i t  leads to  an unsatisfactory estimate o f  the density func- 
tion, namely a collection of fractions 1/N o f  Dirac delta functions, one at each 
of the observations. (A discussant: Go all the way to infinity i f  they are Dirac 
functions. Don't be lazy! IJG: Well I drew them a little wide so they are less high 
to make up for it.) There i s  more than one objection to this estimate; partly i t  
states that the next observation will certainly take a value that i t  almostcertainly 
will not, and partly i t  i s  not smooth enough to satisfy your subjective judgment 
of what a density function should look like. I t  occurred to me that it should 
make sense to apply a "muftian" Bayesian method, which in this application 
means finding some formula giving a posterior density in the function space o f  
all density functionsfor the random variable X, and then maximizing this posterior 
density so as to obtain a single density function (single "point in function space") 
as the "best" estimate of the whole density function for X. But this means that 
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from the log-likelihood Z log f(x;) we should subtract a "roughness penalty" 
before maximizing. (##733, 699, 701, 810, 1200.) There i s  some arbitrariness 
in the selection of this roughness penalty (which i s  a functional o f  the required 
density function f ) ,  which was reduced to the estimation o f  a single hyperpa- 
rameter, but I omit the details. The point I would like to make here i s  that the 
method can be interpreted in a non-Bayesian manner, although i t  was suggested 
for Bayesian reasons. Moreover, in the present state o f  the art, only the Bayes- 
ian interpretation allows us to make a comparison between two hypothetical 
density functions. The weight o f  evidence by itself i s  not an adequate guide for 
this problem. Then again the non-Bayesian could examine the operational 
characteristics of the Bayesian interpretation. The Doogian should do this be- 
cause i t  might lead him to a modification o f  the roughness penalty. The ball 
travels backwards and forwards between the Bayesian and non-Bayesian courts, 
the ball-game as a whole forming a plank o f  the Doogian platform. 

I t  i s  easy to explain why the method o f  M L  breaks down here. I t  was not 
designed for cases where there are very many parameters, and in this problem 
there is an infinite number o f  them, since the problem is  nonparametric. (A 
nonparametric problem is  one where the class o f  distribution functions cannot 
be specified in terms o f  a finite number o f  parameters, but of course any dis- 
tr ibution can be specified in terms o f  an infinite number o f  parameters. My 
method o f  doing so i s  to regard the square root o f  the density function as a 
point in Hilbert space.) 

To select a roughness penalty for multidimensional density functions, I find 
consistency appealing, in the sense that the estimate o f  densities that are known 
to factorize, such as f(x)g(y) in two dimensions, should be the same whether 
f and g are estimated together or separately. This idea enabled me to propose a 
multidimensional roughness penalty but numerical examples of i t  have not yet 
been tried. 1 See also #I341 .] 

An interesting feature o f  the subtractive roughness-penalty method o f  density 
estimation, just described, i s  that i t  can be made invariant with respect to trans- 
formations of the x axes, even though such transformations could make the true 
density function arbitrarily rough. The method proposed for achieving invari- 
ance was to make use o f  the tensor calculus, by noticing that the elements o f  the 
matrix A(0) form a covariant tensor, which could be taken as the "fundamental 
tensor" g i j  analogous to that occurring in General Relativity. For "quadratic 
loss" this tensor becomes a constant, and, as in Special Relativity, i t  i s  then not 
necessary to use tensors. The same thing happens more generally i f  u(O,$) i s  
any function (with continuous second derivatives) o f  a quadratic. 

(e) Type II Maximum Likelihood and the Type II Likelihood Ratio 

The notion of a hierarchy o f  probabilities, mentioned earlier, can be ubed to 
produce a compromise between Bayesian and non-Bayesian methods, by treat- 
ing hyperparameters in some respects as i f  they were ordinary parameters. In 
particular, a Bayes factor can be maximized with respect to the hyperparameters, 
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and the hyperparameters so chosen (their "Type I! M L "  values) thereby fix the 
ordinary prior, and therefore the posterior distribution o f  the ordinary param- 
eters. This Type I1  ML method could also be called the Max Factor method. This 
technique was well illustrated in #547. I t  ignores only judgments you might 
have about the Type I l l  distributions, but I have complete confidence that this 
will do far less damage than ignoring all your judgments about Type I I  distribu- 
tions as in the ordinary method of ML. Certainly in the reference just mentioned 
the Type I I  M L  estimates of the physical probabilities were far better than the 
Type I M L  estimates. 

The same reference exemplified the Type I1  likelihood Ratio. The ordinary 
(Neyman-Pearson-Wilks) Likelihood Ratio (LR) i s  defined as the ratio of two 
maximum likelihoods, where the maxima are taken within two spaces corres- 
pond~ng to two hypotheses (one space embedded in the other). The ratio i s  then 
used as a test statistic, its logarithm to base l / d e  having asymptotically (for 
large samples) a chi-squared distribution with a number o f  degrees o f  freedom 
equal to the difference of the dimensionalities of the two spaces. The Type I I 
Likelihood Ratio is defined analogously as 

max P{EIH ( 8 ) )  /max P{EIH(O)) 
0ew 0ci2 

where 0 i s  now a hyperparameter in a prior H (O), i2 i s  the set o f  all values o f  0 
and w i s  a subset o f  i2. In  the application to multinomial distributions this led 
to a new statistic called G having asymptotically a chi-squared distribution with 
one degree o f  freedom (corresponding to a single hyperparameter, namely the 
parameter of a symmetric Dirichlet distribution). Later calculations showed that 
this asymptotic distribution was accurate down to fantastically small tail-area 
probabilities such as 10-16, see #862. In  this work i t  was found that i f  the Bayes 
factor F, based on the prior selected in #547 [see also #1199] were used as a 
non-Bayesian statistic, in accordance with the Bayes/non-Bayes compromise, it 
was almost equivalent to the use o f  G in the sense o f  giving nearly the same 
significance levels (tail-area probabilities) to samples. I t  was also found that the 
Bayes factor based on the (less reasonable) Bayes postulate was roughly equiva- 
lent in the same sense, thus supporting my claims for the Bayes/non-Bayes 
compromise. 

( f )  The Non-Uniqueness of  Utilities 

For some decision problems the uti l i ty function can be readily measured in 
monetary terms; for example, in a gamble. I n  a moderate gamble the uti l i ty can 
reasonably be taken as proportional to the relevant quantities o f  money. Large 
insurance companies often take such "linear" gambles. But in many other 
decision problems the uti l i ty i s  not readily expressible in monetary terms, and 
can also vary greatly from one person to another. In  such cases the Doogian, 
and many a statistician who i s  not Doogian or does not know that he is, will 
often wish to keep the utilities separate from the rest o f  the statistical analysis 
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i f  he can, There are exceptions because, for example, many people might assume 
a squared loss function, but with different matrices, yet they will all find ex- 
pected values to  be the optimal estimates o f  the parameters. 

One implication o f  the recognition that utilities vary from one person to an- 
other i s  that the expected benefit o f  a client is not necessarily the same, nor 
even o f  the same sign, as that o f  the statistical consultant. This can produce 
ethical problems for the statistician, although i t  may bc possible to reward him 
in a manner that alleviates the problems. (See, for example, ##26, 690a.) 

One example of this conflict o f  interests relates to the use o f  confidence- 
interval estimation. This technique enables the statistician to ensure that his in- 
terval estimates (asserted without reference to probability) will be correct say 
95% of  the time in the long run. I f  he i s  not  careful he might measure his ut i l i ty 
gain by this fact alone (especially i f  he learns his statistics from cookbooks) 
and i t  can easily happen that i t  won't bear much relation to his client's ut i l i ty 
on a specific occasion. The client is apt to be more concerned with the final 
probability that the interval wil l  contain the true value o f  the parameter. 

Neyman has warned against dogmatism but his followers do not often give 
nor heed the warning. Notice further that there aie degrees of dogmatism and 
that greater degrees can be justified when the principles involved are the more 
certain. For example, it seems more reasonable to be dogmatic that 7 times 9 
is 63 than that witches exist and should be caused not to exist. Similarly i t  is  
more justifiable to be dogmatic about the axioms o f  subjective probability than 
to insist that the probabilities can be sharply judged or that confidence intervals 
should be used in preference to Bayesian posterior intervals. (Please don't call 
them "Bayesian confidence intervals," which i s  a contradiction in terms.) 

Utilities are implicit in some circumstances even when many statisticians are 
unaware o f  it. Interval estimation provides an example o f  this; for i t  i s  often 
taken as a criterion o f  choice between two confidence intervals, both having the 
same confidence coefficient, that the shorter interval is  better. Presumably this 
i s  because the shorter interval i s  regarded as leading to  a more economical search 
or as being in general more informative. In  either case this i s  equivalent to the 
use o f  an informal ut i l i ty or quasiutility criterion. I t  will often be possible to 
improve the interval estimate by taking into account the customer's ut i l i ty 
function more explicitly. 

An example o f  this i s  when a confidence interval is stated for the position o f  
a ship, i n  the light o f  direction finding. I f  an admiral is'presented with say an 
elliptical confidence region, I suspect he would reinterpret i t  as a posterior prob- 
ability density surface, with its mode in the center. (#618; Good, 1951 .) The 
admiral would rationally give up the search when the expense per hour sank be- 
low the expected uti l i ty o f  locating the ship. In other words, the client.would 
sensibly ignore the official meaning of the statistician's assertion. I f  the statis- 
tician knows this, i t  might be better, at least for his client, i f  he went Bayesian 
(in some sense) and gave the client what he wanted. 
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(g) Tail-Area Probabilities 

Null hypotheses are usually known in advance to be false, and the point o f  
significance tests i s  usually to find out whether they are nevertheless approxi- 
mately true (p. 90 o f  #13). In  other words a nu l l  hypothesis is usually com- 
posite even if only just. But for the sake o f  simplicity I shall here regard the null 
hypothesis as a simple statistical hypothesis, as an approximation to the usual 
real-life situation. 

I have heard i t  said that the notion o f  tail-area probabilities, for the signifi- 
cance test of a null hypothesis Hn (assumed to be a simple statistical hypothesis), 
can be treated as a primitive notion, not requiring further analysis. But this 
cannot be true irrespective of the test criterion and o f  the plausible alternatives 
to the null hypothesis, as was perhaps originally pointed out  by Neyman and 
E. S. Pearson. A value XI of the test criterion X should bc regarded as "more 
extreme" than another one Xz only i f  the observation o f  X, gives "more evi- 
dence" against the null hypothesis. To give an interpretation o f  "more evidence" 
it is necessary to give up the idea that tail-areas are primitive notions, as wil l  
soon be clear. One good interpretation o f  "more evidence" i s  that the weight o f  
evidence against Hn provided by XI i s  greater than that provided by X2, that i s  

log P.D. (XI I H I )  > log P.D. (XZ  I H i  ) 
P.D. (Xi IHo) P.D. (x2 1 H,)' 

where H, i s  the negation o f  H, and i s  a composite statistical hypothesis, and P.D. 
stands for "probability density." (When H, and H ,  are both simple statistical 
hypotheses there i s  l itt le reason to use "tail-area" significance tests.) This in- 
terpretation o f  "more extreme" in particular provides a solution to the follow- 
ing logical difficulty, as also does the Neyman-Pcarson technique i f  all the simple 
statistical hypotheses belonging to HI make the simple likelihood ratio mono- 
tonic increasing as x increases. 

Suppose that the probability density of a test statistic X, given Hn, has a 
known shape, such as that in Figure l a .  We can transform the x axis so that the 
density function becomes any density function we like, such as that illustrated 
in Figure 1 b. We then might not know whether the x's "morc extreme" than 
the observed one should be interpreted as all the shaded part o f  1 (b), where thc 
ordinates are smaller than the one observed. Just as the tail-area probability 
wallah points out that the Bayes postulatc is not invariant with respect to trans- 
formations of the x axis, the Bayesian can say t u  quoque. (Compare, for example, 
p. 53, o f  #750; Kalbfleisch, 1971, 5 7, 1-8.) Of  course Doogians and many 
other modern Bayesians are not at all committed to the Bayes postulate, though 
they often use i t  as an approximation to  their honest judgment, or marginal- 
istically. 

When tail-areas are used for significance testing, we need to specify what i s  
meant by a "more extreme" value o f  the criterion. A smaller ordinate might 



50 T H E  BAYESIAN INFLUENCE (#838)  

Figure 1. 

not be appropriate, as we have just seen. I believe i t  i s  a question of ordering the 
values o f  the ordmate according to the weight o f  evidence against the null hy- 
pothcsis, as just suggested. (Sometimes this ordering is mathematically indepen- 
dent of the relative initial probabilities of thc simple statistical hypothescs that 
make up the composite non-null hypothesis H , .  In  this case the interpretation 
o f  "more cxtreme" is maximally robust modulo thc Bayesian assumptions.) This 
or slmilar fact is often swept UTC, although a special case of  i t  is often implicit 
when i t  is pointed out that sometimes a single tail should be used and sometimes 
a double tail, depending on the nature of the non-null hypotheses. 

For some problems i t  would not be appropriate to interpret "more extreme" 
to mean "further to the right" nor "either further to the right o f  one point or 
further to  the left o f  another" (i.e. for "double tails"). For example, the null 
hypothesis might be a bimodal distribution with mean zero, the rivals being un- 
modal also with mean zero. Then we might need to regard values of the random 
variable close to the origin as significant, in addition to large positive and nega- 
tive values. We'd be using a "triple tail" so to speak. All this comes out in the 
wash when "more extreme" is interpreted in terms of  weight of evidence. 

I t  i s  stimulating to consider what is "more extreme" in multivariate prob- 
lems. I t  will be adequate to think o f  bivariate p;oblems which are enough to 
bring out all the philosophical lor logical] aspects, which are more important 
than the mathematical ones. We might first ask what i s  the analogue of being 
"further to the right." One analogue is being "further to the north and east." 
This analogue is often dubious (unless the two independent varaiables are like 
chalk and cheese, or like oil and water) even without reference to any Bayesian 
or Neymanian-Pearsonian ideas. For under a linear transformation o f  the in- 
dependent variables, such as an orthogonal transformation, there are a contin- 
uous infinity of different regions that are further to the north and east. The cor- 
responding ambiguity in one dimension refers merely to the question o f  whether 
a single tail i s  more or less appropriate than a double tail. 

The previously mcntioned elucidation o f  "more extreme" in terms of weight 
of evidence applies just as much to multivariate problems as to univariate ones, 
and provides and answer to this "north-east" difficulty. 
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Even when a sensible meaning is ascribed to the expression "more extreme," 
my impression is that small tail-areas, such as 1/10000, are by no means as 
strong evidence against the null hypothesis as is often supposed, and this is 
one reason why I believe that Bayesian methods are important in applications 
where small tail areas occur, such as medical trials, and even more in ESP, 
radar, cryptanalysis, and ordinary life. I t  would be unfortunate i f  a radar signal 
were misinterpreted through overlooking this point, thus leading to the end of 
life on earth! The more important a decision the more "Bayesian" i t  is apt to 

be. 
The question has frequently been raised of  how theuse of tail-area significance 

tests can be made comformable with a Bayesian philosophy. (See, for example, 
Anscombe [ I  9681691 .) An answer had already appeared on p. 94 of #13, and 
I say something more about i t  here. (See also p. 61 o f  %03B.) 

A reasonable informal Bayesian interpretation o f  tail-area probabilities can be 
given in some circumstances by treating the criterion X as i f  i t  were the whole 
of the evidence (even i f  i t  is not a sufficient statistic). Suppose that the proba- 
bility density fo of  X given Ho is known, and that you can make a rough sub- 
jective estimate of the density f ,  given Ho. ( I f  you cannot do this at all then the 
tail area method is I think counterintuitive.) Then we can calculate the Bayes 
factor against Ho as a ratio of ordinates f, (X)/fo(X). I t  turns out that this is 
often the order o f  magnitude of ( 1 I d N ) G  fl ( x ) d x / ~ f o ( x ) d x ,  where N i s  
the sample size, and this in its turn will be somewhat less than l / ( P d N )  where 
P i s  the right-hand tail-area probability on the null hypothesis. (See p. 863 of 
#127; improved on p. 416 of  #547; and still further in #862.) Moreover, this 
argument suggests that, for a fixed sample size, there should be a roughly mono- 
tonic relationship and a very rough proportionality between the Bayes factor 
F against the null hypothesis and the reciprocal o f  the tail-area probability, P, 
provided of course that the non-null hypothesis is not at all specific. (See also 
p. 94 of #13; #547.) 

Many elementary textbooks recommend that test criteria should be chosen 
before observations are made. Unfortunately this could lead to a data analyst's 
missing some unexpected and therefore probably important feature of thc data. 
There is no existing substitute for examining the original observations with care. 
This i s  often more valuable than the application o f  formal significance tests. I f  
it i s  easy and inexpensive to obtain new data then there is little objection to the 
usual advice, since the original data can be used to formulate hypotheses to be 
tested on later sample. But often a further sample is expensive or virtually im- 
possible to obtain. 

The point of the usual advice is to protect the statistician against his own 
poor judgment. 

A person with bad judgment might produce many far-fetched hypotheses on 
the basis of the first sample. Thinking that they were worth testing, i f  he were 
non-Bayesian he would decide to apply standard significance tests to these hy- 
potheses on the basis of a second sample. Sometimes these would nazs the t p c t  
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but some one with good judgment might be able to see that thcy were still im- 
probable. It seems to me that the ordinary method of significance tests makes 
some sense because experimenters often have reasonable judgment in the for- 
mulation o f  hypotheses, so that the initial probabilities of these hypotheses 
are not usually entirely negligible. A statistician who believes his client i s  sen- 
sible might assume that the hypotheses formulated in advance by the client are 
plausible, without trying to produce an independent judgment o f  their initial 
probabilities. 

Let us suppose that data are expensive and that a variety o f  different non-null 
hypotheses have been formulated on the basis o f  a sample. Then the Bayesian 
analyst would try, in conjunction with his client, to judge the initial probabil- 
ities q l ,  q 2 ,  . . . of these hypotheses. Each separate non-null hypothesis might 
be associated with a significance test i f  the Bayesian i s  Doogian. These tests 
might give rise to tail-area probabilities P I ,  P I ,  P 3 ,  . . . . How can these be 
combined into a single tail-area probability? (#174.) 

Let us suppose that the previous informal argument i s  applicable and that we 
can interpret these tail-area probabilities as approximate Bayes factors C/Pl,  C/P2, 
C/P3, . . . against thc null hypothesis, these being in turn based on the assump- 
tion o f  the various rival non-null hypotheses. ("Significance tests in parallel.") 
By a theorem of  weighted averages o f  Bayes factors, it follows that the resulting 
factor i s  a weighted average o f  these, so that the equivalent tail-areaprobability 
i s  about equal to a weighted harmonic mean o f  P, ,  P,, P3 ,  . . . , with weights 
q ,  , q,, q 3 ,  , . . . This result i s  not much affected i f  C i s  a slowly decreasing 
function of P instead o f  being constant, which I believe i s  often the case. Never- 
theless the harmonic-mean rule is  only a rule o f  thumb. 

But we could now apply the Bayes/non-Bayes compromise for the invention 
o f  test criteria, and use this weighted harmonic mean as a non-Bayes tcst cri- 
terion (p. 863 of #127; ##547, 862). 

The basic idea of the Bayeslnon-Bayes compromise for the invention of test 
criteria is that you can take a Bayesian model, which need not be an especially 
good one, come up with a Bayes factor on the basis of  this model, but then 
use i t  as i f  i t  were a non-Bayesian test criterion. That is, try to work out or 
"Monte Carlo" its distribution based on the nuN hypothesis, and also its power 
relative to various non-null hypotheses. 

An example o f  thc Bayeslnon-Bayes compromise arises in connection with 
discrimination between two approximately multinomial distributions. A crude 
Bayesian model would assume that the two distributions were precisely multi- 
nomial and this would lead to  a linear discriminant function. This could then be 
used in a nowBayesian manner or i t  might lead to the suggestion o f  using a linear 
discriminant function optimized by some other, possibly non-Bayesian, method. 
Similarly an approximate assumption o f  kult inormality for two hypotheses 
leads t o  a quadratic discriminant function with a Bayesian interpretation but 
which can then be interpreted non-Bayesianwise. (See pp. 49-50 o f  #397 where 
there are further references.) 

Lct us now consider an example of an experimental design. I take this example 
from Finney (1 953, p .  90) who adopts an orthodox (non-Bayesian) line. Finney 
emphasizes that, in his opinion, you should decide in advance how you are go- 
ing to analyze the experimental results o f  a designed experiment. He considered 
an experimental design laid out as shown in Figure 2. The design consists o f  ten 
plots, consisting o f  five blocks each divided into two plots. Wc decide to apply 
treatment A and treatment B in a random order within each block, and we 
happen to get the design shown. Now this design could have arisen by another 
process: namely by selecting equiprobably the five plots for the application o f  
treatment A from the 10!/(5!)2 = 252 possibilities. Finney then says, "The form 
of analysis depends not on the particular arrangement o f  plots and varieties in 

Figure 2. An agricultural experiment. 

the field [ I have been talking about treatments instead here but it does not affect 
theargument] but  on the processof randomization from which the particular one 
was selected." (Perhaps one should talk o f  a stochastic or random design pro- 
cedure and a realization of  the procedure.) For one design procedure we would 
perhaps use the comparison within the five pairs, and for the other procedure we 
would compare the set of five yields from treatment A with the set o f  five yields 
from treatment B. Leaving aside the analysis o f  variance, we might find that 
every plot A did better than every plot B, thus bringing o f f  a distribution-free 
chance of 11252; but we are "permitted" to say merely that the chance i s  1/32 
i f  the design procedure was based on the five blocks. Suppose the statistician 
hadn't said which was his design and then he'd dropped dead after the experi- 
ment and suppose this i s  an important experiment organized by the government 
to decide whether a certain big expensive and urgent food production method 
was to be put into effect. Would it be reasonable to search the statistician's 
papers carefully to  f ind out what his intentions had been? Or would it on the 
other hand be reasonable to call in agriculturalists to look at the plots in the 
field in order to try to decide which design would have been more reasonable? 
There are of course reasons for choosing one design rather than another one. 
So, i f  you entirely accept the Fisherian logic (as exemplified by Finney) you are 
whole-heartedly trusting the original judgment of choice o f  design: this i s  what 
the mystiquc recommends. My own feeling is that you would do better to iudw 
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tlie prior probabilities that:ach of the two designs is  to be preferred, and then 
use thcse probabilities as wights in a procedure for combining significance tests 
(# I74 and p. 83 o f  #750). 

A living agricultul-alist right examine the field and say that the design corres- 
ponding to the tail-area p3bability of 1/32 deserved twice as much weight as 
the other design. Then theiarmonic-mean rule o f  thumb would suggest that the 
equivalent tail-area probabity from the observations i s  

O f  course we might do beter by using the analysis of variance in a similar man- 
ner. I have used a distribuon-free approach for the sake of simplicity. This im- 
precise result i s  better tha either of the precise ones, 1/32 and 11252. 1 predict 
that lovers o f  the "precisio fallacy" will ignore all this. 

I t  i s  often said that no-Bayesian methods have the advantage o f  conveying 
the evidence in an experirent in a self-contained manner. But we see from the 
example just discussed tht thcy depend on a previous judgment; which in the 
special case o f  the dead-dapping of the statistician, has to be a posterior judg- 
ment. So it's misleading b tell the student he must decide on his significance 
test in advance, although i l i s  correct according to the Fisherian technique. 

(h) Randomness, and 5bjectivism in the Philosophy of Physics 

I would have included detailed discussionon the use o f  random sampling and 
random numbers, but hav decided not  to do so because my views on the sub- 
ject arc explained, for eamplc, on p. 255 o f  #85A and on pp. 83-90. The 
use o f  random sampling i a device for obtaining apparently precise objcctivity 
but this precise objectivit i s  attainable, as a lways ,  only at tlie pricc of throwing 
away some information (ty using a Statistician's Stooge who knows the random 
numbers but does not dislose them). But the use o f  sampling without random- 
i ~ a t i o n  involves the pureaayesian in such difficult judgments that, at least i f  
he i s  at all Doogian, he l ight decide, by Type II rationality, to use random 
sampling to savc time. A Cornfield (1968/70, p. 108) points out, this can' be 
covered within the Bayesin framework. 

Since this conferences concerned with physics as well as with statistics I 
should like to mention a onnection between something I have been saying and 
a point that i s  o f  intercs in the philosophy o f  physics. (This point i s  also dis- 
cussed in  #8lS.) 

When discussing the cobability that the millionth digit o f  n i s  a 7, 1 could 
have pointed out that snilar statements can be made about pseudorandom 
numbers. These are deteninistic sequences that are complicated enough so that 
they appear random at last superficially. I t  would be easy to makc them so 
complicated that i t  woultbe practically impossible to find the law o f  generation 
when you do know it. Peudorandom numbers are o f  value in computer appli- 
cations o f  the so-calledMonte Carlo method. They are better than random 


