CHAPTER 1

Background and Introduction

1.1 Introduction

Statistical analysis is the process of separating out systematic effects from
the random noise inherent in all sets of observations. There are three general
steps in this process: collection, analysis, and assessment. For most people,
data collection is not difficult in that we live in an age where data are om-
nipresent. More commonly, researchers possess an abundance of data and
seek meaningful patterns lurking among the various deadends and distrac-
tions. Armed with a substantive theory, many are asking: what should I do
now? Furthermore, these same people are often frustrated when receiving
multiple, possibly conflicting, answers to that question.

Suppose that there exists a statistical data analysis process with the

following desirable characteristics:
e Overt and clear model assumptions.

e A rigorous way to make probability statements about the real quantities
of theoretical interest.

e An ability to update these statements (i.e., learn) as new information is

received.
e Systematic incorporation of previous knowledge on the subject.
e Missing values handled seamlessly as part of the estimation process.

e Recognition that population quantities are changing over time rather

than forever fixed.
e The ability to model a wide class of data types.

e Straightforward assessment of both model quality and sensitivity to as-

sumptions.

As the title of this book suggests, the argument presented here is that
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the practice of Bayesian statistics possesses all of these qualities. I will
actually argue much beyond this point and assert that the type of data
social and behavioral scientists routinely encounter makes the Bayesian
approach ideal in ways that traditional data analysis cannot match. These
natural advantages include avoiding the assumption of infinite amounts of
forthcoming data, recognition that fixed-point assumptions about human
behavior are dubious, and a direct way to include existing expertise in the
field.

So why do so-called classical approaches dominate Bayesian usage in the
social and behavioral sciences? There are several reasons for this. First,
key figures in the development of modern statistics had strong prejudices
against aspects of Bayesian inference for narrow and subjective reasons.
Second, cost of admission is higher in the form of additional mathematical
formalism. Third, until recently realistic model specifications sometimes
led to unobtainable Bayesian solutions. Finally, there has been a lack of
methodological introspection in a number of disciplines. The primary mis-
sion of this book is to make the second and third reasons less of a barrier
through accessible explanation, detailed examples, and specific guidance on

calculation and computing.

1.2 Motivation and Justification

With Bayesian analysis, assertions about unknown model parameters are
not, expressed in the conventional way as point estimates with reliability
assessed using the null hypothesis significance test. Bayesians make no fun-
damental distinction between observations and unknown parameters are
treated as random variables themselves as a logical consequence of Bayesian
conditional analysis. Bayesian statistical information about parameters is
summarized in probability statements applied to samples or populations in
the form of a posterior distribution: the distribution of the unknown pa-
rameters after observing the data and updating the model. These summary
quantities include quantiles of this posterior distribution, the probability of
occupying some region of the sample space, the predictive quantities from
the posterior, and Bayesian forms of confidence intervals, the credible set

and the highest posterior density region.
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The essentials of Bayesian thinking are contained in three general steps:

1. Specify a probability model that includes some prior knowledge about

the parameters if available for unknown parameter values.

2. Update knowledge about the unknown parameters by conditioning this
probability model on observed data.

3. Evaluate the fit of the model to the data and the sensitivity of the

conclusions to the assumptions.

Notice that this process does not include the unrealistic and artificial step
of making a contrived decision based on some arbitrary quality threshold.
The value of a given Bayesian model is instead found in the description of
the distribution of some parameter of interest in probabilistic terms. Also,
there is nothing about the process contained in the three steps above that
cannot be repeated as new data are observed.

There are key assumptions required in the basic Bayesian setup. The first
is that a specific parametric form is specified for the unknown parameters.*
Secondly, since unknown parameters are treated as having distributional
qualities rather than being fixed, it is assumed to be appropriate to specify
an initial unconditional distribution on these parameters based on previous
substantive knowledge.

Typically (but not always) data values are assumed to be exchangeable;
the model results are not changed by reordering the data values. This prop-
erty is more general than, and implied by, the standard assumption that the
data are independent and identically distributed (iid): independent draws
from the same distribution, and also implies a common mean and variance
for the data values (Leonard and Hsu 1999, p. 41). Exchangeability allows
us to say that the data generation process is conditional on the unknown
model parameters in the same way for every data value (de Finetti 1974,
Draper et al. 1993, Lindley and Novick 1981). Details about exchangeability
are given in Chapter 10.

* Nonparametric Bayesian modeling is a large and growing field, but exists beyond the
scope of the basic setup.



4 BACKGROUND AND INTRODUCTION

1.3 Why Are We Uncertain about Probability?

It should be easy to define probability. In fact, it is relatively easy to math-
ematically define the properties of a probability function: (1) it is bounded
by zero and one, (2) it sums or integrates to one, and (3) the sum or inte-
gral of the probability of disjoint events is equal to the probability of the
union of these events (the Kolmogorov axioms (1933), simplified). The real
problem lies in describing the actual meaning of probability statements.
This difficulty is, in fact, at the heart of traditional disagreements between
Bayesians and non-Bayesians.

The frequentist statistical interpretation of probability is that it is a
limiting relative frequency: the long-run behavior of a nondeterministic
outcome or just an observed proportion in a population. This idea can be
traced back to Laplace (1814), who defined probability as the number of
successful events out of trials observed. Thus if we could simply repeat
the experiment or observe the phenomenon enough times, it would become
apparent what the future probability of reoccurrence will be. This is an
enormously useful way to think about probability but the drawback is that
frequently it is not possible to obtain a large number of outcomes from
exactly the same event-generating system (Kendall 1949, Placket 1966).

A competing view of probability is called “subjective” and is often associ-
ated with the phrase “degree of belief.” Early proponents included Keynes
(1921) and Jeffreys (1961), who observed that two people could look at
the same situation and assign different probability statements about fu-
ture occurrences. This perspective is that probability is personally defined
by the conditions under which a person would make a bet or assume a risk
in pursuit of some reward. Subjective probability is closely linked with the
idea of decision-making as a field of study (c.f. Bernardo and Smith 1994,
Chapter 2) and the principle of selecting choices that maximize personal
utility (Berger 1985).

These two characterizations are necessarily simplifications of the perspec-
tives and de Finetti (1974, 1975) provides a much deeper and more detailed
categorization. To de Finetti, the ultimate arbiter of subjective probabil-
ity assignment is the conditions under which individuals will wager their
own money. In other words, a person will not violate a personal probability

assessment if it has financial consequences. Good (1950) makes this idea
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more axiomatic by observing that people have personal probability assess-
ments about many things around them rather than just one, and in order
for these disparate comparative statements to form a body of beliefs they
need to be free of contradictions. For example, if a person thinks that A is
more likely to occur than B, and B is more likely to occur than C, then
this person cannot coherently believe that C is more likely than A (tran-
sitivity). Furthermore, Good adds the explicitly Bayesian idea that people
are constantly updating these personal probabilities as new information is

observed.

The position underlying nearly all Bayesian work is the subjective prob-
ability characterization, although there have been many attempts to “ob-
jectify” Bayesian analysis (see Chapter 5). Prior information is formalized
in the Bayesian framework and this prior information can be subjective in
the sense that the researcher’s experience, intuition, and theoretical ideas
are included. It is also common to base the prior information on previ-
ous studies, experiments, or just personal observations and this process is
necessarily subject to a limited (although possibly large) number of obser-
vations rather than the infinite number assumed under the frequentist view.
We will return to the theme of subjectivity contained in prior information
in Chapter 5 and elsewhere, but the principle point is that all statistical
models include subjective decisions, and therefore we should ceteris paribus
prefer one that is the most explicit about assumptions. This is exactly the
sense that the Bayesian prior provides readers with a specific, formalized
statement of currently assumed knowledge in probabilistic terms.

There are some simple but important probability principles and nota-
tional conventions that must be understood before proceeding. We will not
worry much about the underlying probability theory or measure theory and
the concerned reader is directed to the first chapter of any mathematical
statistics text or the standard reference works of Billingsley (1986), Chung
(1974), and Feller (1990, Volumes 1 and 2). Abstract events are indicated
by capital Latin letters: A, B, C, etc. A probability function corresponding
to some event A is indicated by p(A). The complement of the event A is de-
noted A, and it is a consequence of Kolmogorov’s axioms listed above that
P(A¢) =1—P(A). The union of two events is indicated by AUB and the in-
tersection by ANB. For any two events: P(AUB) = P(A)+P(B)—P(ANB).
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Two events are independent if P(AN B) = P(A)P(B) holds; that is, if the
joint distribution can be expressed as the product of the individual marginal
distributions.

Central to Bayesian thinking is the idea of conditionality. If an event
B is material to another event A in the sense that the occurrence or non-
occurrence of B affects the probability of A occurring, then we say that A is
conditional on B. It is a basic tenet of Bayesian statistics that we update our
probabilities as new relevant information is observed. This is done with the
definition of conditional probability given by: P(A|B) = P(AN B)/P(B),
which is read as “the probability of A given B is equal to the probability
of A and B divided by the probability of B.”

1.4 Bayes’ Law

The Bayesian statistical approach is based on updating information using
what is called Bayes’ law from his famous 1763 essay.” Like Bayes, Laplace
assumed a uniform (equal probability) distribution for the unknown pa-
rameter, but he worried much less than Bayes about the consequences of
this assumption.

Suppose there are two events of interest A and B, which are not inde-
pendent. We know from basic axioms of probability that the conditional
probability of A given that B has occurred is given by:

p(A[B) = % (1.1)

where p(A|B) is read as “the probability of A given that B has occurred,
p(A, B) is the “the probability that both A and B occur,” and p(B) is just
the unconditional probability that B occurs. Expression (1.1) gives the
probability of A after some event B occurs. If A and B are independent
then p(A4, B) = p(A)p(B) and (1.1) becomes very uninteresting.

* The Reverend Thomas Bayes was an amateur mathematician whose only contribution
was an essay found and published two years after his death by his friend Richard Price.
The enduring association of an important branch of statistics with his name actually is
somewhat of an exaggeration of the generalizability of this work (Stigler 1982). Bayes
was the first to explicitly develop this famous law, but it was Laplace (1774, 1781)
who (apparently independently) provided a more detailed analysis that is perhaps more
relevant to the practice of Bayesian statistics today. See Stigler (1986) for an interesting
historical discussion and Sheynin (1977) for a detailed technical analysis.
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We can also define a different conditional probability in which A occurs

first:
_p(B,4)

p(4)
Since the probability that A and B occur is the same as the probability
that B and A occur (p(A, B) = p(B, A)), then we can rearrange (1.1) and
(1.2) together in the following way:

p(B|A)

(1.2)

p(a1B) = L5p(84). (1.3)

The last line is the famous Bayes’ law. This is really a device for “inverting”
conditional probabilities. Notice that we could just as easily produce p(B|A)
in the last line above by moving the unconditional probabilities to the left-
hand side in the last equality.

How is this useful? As an example, hypothetically assume that 2% of
the population of the United States are members of some extremist Militia,
group (p(M) = 0.02), a fact that some members might attempt to hide and
therefore not readily admit to an interviewer. A survey is 95% accurate on
positive Classification, p(C|M) = 0.95, and the unconditional probability
of classification (i.e., regardless of actual militia status) is given by p(C) =
0.05.* Using Bayes’ law, we can now derive the probability that someone
positively classified by the survey as being a militia member really is a
militia member:

p(M|C) = %p((ﬂM) = %(0.95) =0.38. (1.4)
The startling result is that although the probability of correctly classifying

an individual as a militia member given they really are a militia member

* To illustrate how p(C) is really the normalizing constant obtained by accumulating
over all possible events, we will stipulate the additional knowledge that the survey is 97%
accurate on negative classification (P(C¢|M¢) = 0.97). The unconditional probability of
classifying a respondent as a militia member results from accumulation of the probability
across the sample space of survey events using the Total Probability Law: P(C) = P(Cn
M)+P(CNM°) = P(C|M)P(M)+[1—-P(C°|M°)]P(M°) = (0.95)(0.02)+(0.03)(0.98) =<
0.05.
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is 0.95, the probability that an individual really is a militia member given
that they are positively classified is only 0.38.

The highlighted difference between the order of conditional probability
is often substantively important in a policy or business context. Consider
the problem of designing a home pregnancy test. Given that there exists
a fundamental business tradeoff between the reliability of the test and the
cost to consumers, no commercially viable product will have perfect or
near-perfect test results. In designing the chemistry and packaging of the
test, designers will necessarily have to compromise between the probability
of PRegnancy given positive Test results, p(PR|T), and the probability of
positive test results given pregnancy, p(T'|PR). Which one is more impor-
tant? Clearly, it is better to maximize p(T'|PR) at the expense of p(PR|T),
as long as the reduction in the latter is reasonable: it is preferable to give
a higher number of false positives, sending women to consult their physi-
cian to take a more sensitive test, than to fail to notify many pregnant
women. This reduces the possibility that a woman who does not realize
that she is pregnant might continue unhealthy practices such as smoking,
drinking, and maintaining a poor diet. Similarly, from the perspective of
general public health, it is better to have preliminary tests for deadly con-
tagious diseases designed to be similarly conservative with respect to false

positives.

1.4.1 Ezample: Monty Hall

The well-known Monty Hall problem can be analyzed using Bayes’ law.
Suppose that you are on the classic game show Let’s Make a Deal with its
personable host Monty Hall, and you are to choose one of three doors, A,
B, and C. Behind two of the doors are goats and behind the third door
is a new car with each door equally likely to provide the car. Thus, the
probabilities of selecting the car for each door at the beginning of the game

are simply:
1 1 1
p(A):g, p(B):g,
After you have picked a door, say A, before showing you what is behind
that door Monty opens another door, say B, revealing a goat. At this point,

Monty gives you the opportunity to switch doors from A to C if you want
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to. What should you do? The psychology of this approach is to suggest the
idea to contestants that they must have picked the correct door and Monty
is now trying induce a change. A naive interpretation is that you should be
indifferent to switching due to a perceived probability of 0.5 of getting the
car with either door since there are two doors left. To see that this is false,
recall that Monty is not a benign player in this game. He is deliberately
trying to deny you the car. Therefore consider his probability of opening
door B. Once you have picked door A, success is clearly conditional on
what door of the three possibilities actually provides the car since Monty

knows this. So we can define the three conditional probabilities:

The probability that Monty opens door B,

given the car is behind A: D(Baronty|A) = %
The probability that Monty opens door B,
given the car is behind B: P(Bumonty|B) =0
The probability that Monty opens door B,
given the car is behind C: P(Baronty|C) = 1.

Using the definition of conditional probability, we can derive the following

three joint probabilities:

1 1 1
P(Buontys A) = p(Buonty|A)p(A) = 5 x 7 = ~
2 3 6

1
p(BMontyaB) :p(BMonty|B)p(B) =0x § =0
1 1
p(BMonty;C) :p(BMonty|C)p(C) =1x g - g

Because there are only three possible events that cover the complete sample
space, and these events are nonoverlapping (mutually exclusive), they form
a partition of the sample space. Therefore the sum of these three events
is the unconditional probability of Monty opening door B using the Total
Probability Law:

p(BMonty) = p(BMonty) A) p(BMonty> B) + p(BMontya C)

_+_
—1+0+1—1
6 32
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Now we can apply Bayes’ law to obtain the two probabilities of interest:

p(A) o1

AlB on =—p(B on A== - = —
p( | M ty) p(BMonty)p( M ty| ) % 8 2 3
p(C) 3 2

C|Bpyronty) = Brronty|C) = = x1 = —.
p( | M ty) p(BMonty)p( M ty| ) % X 3

Therefore you are twice as likely to win the car if you switch to door C!
This example demonstrates that Bayes’ law is a fundamental component
of probability calculations, and the principle will be shown to be the basis

for an inferential system of statistical analysis.

1.5 Bayes’ Law and Conditional Inference

To make the discussion more concrete and pertinent, consider a simple
example in sociology and crime studies. One quantity of interest to policy-
makers is the recidivism rate of prisoners released after serving their sen-
tence. The quantity of interest is the probability of committing an addi-
tional crime and returning to prison. Notice that this is very elusive. Not
only are there regional, demographic, and individualistic differences, but
the aggregate probability is constantly in flux, given entries and exits from
the population as well as exogenous factors (such as the changing condition
of the economy).

The traditional analytical approach is to assume that there is some fixed
value of the recidivism probability and that it can be estimated with a
single point. Conversely, the Bayesian perspective is that this is an un-
known quantity that is described in probabilistic terms by a distribution,
giving probabilities across allowable values. Therefore, the model provides
a probabilistic interpretation of the unknown recidivism value.

Looking at data from previous periods, we might have some reasonable
guess about the distribution of this probability parameter, p(A). This is the
prior distribution discussed above. It is termed prior because it is selected
before incorporating data into the model.

In all parametric statistical inference, a model is proposed and tested
in which a data value has some probability of occurring given a specific
value of the parameter. This is the case for both Bayesian and traditional

approaches, and is just a recognition that the researcher must specify a
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data generation model. Call this quantity p(B|A), meaning the probability
of generating a data value at B, given that the parameter value is set at
A. For example, the probability of observing the event heads, B = heads,
in a single toss of a fair coin, A = 0.5, is p(B|A) = 0.5.

Now consider a third quantity, the unconditional probability of generat-
ing given a data value: p(B). This is the probability of observing B without
regarding, or averaging over, other facts. So it does not provide any relevant
information about more or less likely values of the parameter of interest,
A. Stated another way, once the data are observed, information that would
lead to good guesses at the likely value of A are contained only in prob-
abilistic statements using both A and B. Second, if we could recover this
value later, it might be more convenient to ignore p(B) for now and use
it later in Bayesian inference to make the conditional probability p(A|B)
sum to one (details on this process are discussed in Chapter 3).

Starting with Bayes’ law (1.3), we can calculate p(A|B) = ngp(BVl).

»(
If we temporarily ignore p(B), then:

p(A[B) o p(A)p(B|A), (1.5)

where “oc” means “proportional to” (i.e., the relative probabilities are pre-
served). So the final estimated probability of recidivism (in our running
example) given some observed behavior, is proportional to prior notions
about the distribution of the probability times the parametric model as-
sumed to be generating the new observed data. The conditional probability
of interest on the left-hand side of (1.5) is a balance between things we have
already seen or believe, p(A), and the new observations, p(B|A). This is an
ideal paradigm for inference in the social and behavioral sciences, since it is
consentaneously desirable to build models that test theories with newly ob-
served data, but also based on previous research and knowledge. We never
start a data analysis project with absolutely no a priori notions whatsoever
about the state of nature (or at least we shouldn’t!).

The story actually gets better. As the size of the data increases, p(B|A)
becomes progressively more influential in determining p(A|B). That is, the
greater the number of our new observations, the less important are our
previous convictions: p(A). Also, if either of the two distributions, p(A)

and p(B|A), are widely dispersed relative to the other, then this distribu-
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tion will have less of an impact on the final probability statement. This
natural weighting suitably reflects relative levels of uncertainty in the two
quantities.

Getting back to our running example, suppose in the past that the recidi-
vism rate was centered around 0.2 and never varied outside of [0.15:0.25].
We then notice that the current data shows great variance in individual be-
havior but are only able to collect the data for a relatively small number of
individuals. This would certainly be evidence that the prior recidivism rate
should be trusted more than the currently observable data, which may be
an atypical manifestation. Conversely, if the previous recidivism rate varied
widely, say 0.1 to 0.9, and the data at hand was very tightly compacted
around some value, then we would expect to place more credence in the
current data in assigning a distribution to the recidivism parameter. Unlike
the built-in machinery of Bayesian statistics, there is no explicit process in
classical statistics for making such a tradeoff.

The statistical role of the quantities in (1.5) has not yet been identified.
The goal of inference is to make claims about unknown quantities using
information currently in hand. Suppose that we designate a generic Greek
character to denote an unobserved parameter that is the objective of our
analysis. As is typical in these endeavors, we will use 6 for this purpose.
What we usually have available to us is generically (and perhaps a little
vaguely) labeled D for data. Therefore, the objective is obtain a probabilis-
tic statement about 6 given D: p(f|D).

Inferences in this book, and in the majority of Bayesian and non-Bayesian
statistics, are done by first specifying a parametric model for the data gen-
erating process. This defines what the data should be expected to look like
given a specific probabilistic function conditional on unknown variable val-
ues. These are the common probability density functions (continuous data)
and probability mass functions (discrete data) that we already know such
as normal, binomial, chi-square, etc. Model specifications indicate the prob-
ability of seeing specific data values given fixed parameter values: p(D|6).*

* There is a little fudging here as the probability of obtaining any specific data value
with continuous forms is zero. Instead, we should be talking about the density value for
a given point, but this distinction will not be relevant to us in practice.
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Now we can relate these two conditional probabilities using (1.5):

p(8|D) o< p(0)p(DI6). (1.6)

But there remains one unknown quantity, p(f), the unconditional proba-
bility of . Where can we get this? There is nothing in this particular term
that implies a dependency on the data that we have, and the answer to
the question is at the core of Bayesian thinking. The expression p(f) is a
formalized statement of previous knowledge about € before observing the
data. The basic idea is to specify a prior distribution for 6 that describes
what we know in probabilistic terms and therefore overtly specifying both
prior information and uncertainty. If we know little, then this should be a
vague probabilistic statement and if we know a lot then this should be a
very narrow and specific claim.

The right-hand side of (1.6) implies that the post-data inference for 6 is
a compromise between prior information and the information provided by
the new data. The left-hand side of (1.6) is called the posterior distribution
of @ since it provides the updated distribution for 8 after conditioning on
the data.

In Chapter 3, we go into much greater detail about the mathematical and
probabilistic setup of Bayesian inference. The purpose of this brief discus-
sion is to highlight the fact that conditional probability underlies the abil-
ity to update previous knowledge about the distribution of some unknown
quantity. This is precisely in line with the iterative scientific method that
postulates theory improvement through repeated specification and testing
with data. The Bayesian approach combines a formal structure of rules
with the mathematical convenience of probability theory to develop a pro-
cess that learns from the data. The result is a powerful and elegant tool for

scientific progress in many disciplines.

1.6 Historical Comments

Statistics is a relatively new field of scientific endeavor. In fact, for much
of its history it was subsumed to various natural sciences as a combina-
tion of fosterchild and household maid: unwanted by its natural parents
(mathematics and philosophy), yet necessary to clean things up. Beginning
with the work of Laplace (1774, 1781), Gauss (1809, 1823, 1855), Legen-
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dre (1805), and de Morgan (1837, 1838, 1847), statistics began to emerge
as a discipline worthy of study on its own merits. The first renaissance
occurred around the turn of the last century due to the monumental ef-
forts of Galton (1869, 1875, 1886, 1892), Fisher (1921, 1925a, 1925b, 1934),
Neyman and Pearson (1928a, 1928b, 1933a, 1933b, 1936a, 1936b), Gos-
sett (as Student, 1908a, 1908b), Edgeworth (1892a, 1892b, 1893a, 1893b),
and Pearson (1892, 1900, 1907, 1920). Left out of the twin intellectual
developments of frequentist inference from Neyman and Pearson and like-
lihood inference from Fisher (see Chapter 3, Section 3.3 for details), was
the Bayesian paradigm. Sir Thomas Bayes’ famous (and only) essay was
published in 1763, two years after his death (he chose to perish before pub-
lishing). This ingenious work, that precipitated a philosophy about how

researcher specified models are fit to data, is the subject of this book.

Fisher in particular was hostile to the Bayesian approach and was often
highly critical, though not always with substantiated claims: Bayesianism
“which like an impenetrable jungle arrests progress towards precision of sta-
tistical concepts.” (1922, p. 311). Fisher also worked to discredit Bayesian-
ism and inverse probability (Bayesianism with an assumed uniform prior)
by pressuring peers and even misquoting other scholars (Zabell 1989). Yet
Fisher (1935) develops fiducial inference, which is an attempt to apply
inverse probability without uniform priors, but this approach fails; Efron
(1998, p. 105) calls this “Fisher’s biggest blunder.” In fact, Lindley (1958)
later proved that fiducial inference is consistent only when it is made equiv-
alent to Bayesian inference with a uniform prior. The Neyman-Pearson
paradigm was equally unkind to the development of Bayesian statistics,
albeit on a less vindictive level. If one is willing to subscribe to the idea of
an infinite series of samples, then the Bayesian prior is unimportant since
the data will overwhelm this prior. Although there are scenarios where this
is a very reasonable supposition, generally these are far more difficult to

come by in the social and behavioral sciences.

Although Bayesianism had suffered “a nearly lethal blow” from Fisher
and Neyman by the 1930s (Zabell 1989), it was far from dead. Scholars such
as Jeffreys (1961), Good (1950), Savage (1954, 1962), de Finetti (1972, 1974,
1975), and Lindley (1961, 1965) reactivated interest in Bayesian methods

in the middle of the last century in response to observed deficiencies in
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classical techniques. Unfortunately many of the specifications developed
by these modern Bayesians, while superior in theoretical foundation, led to
mathematical forms that were intractable.* Fortunately, this problem has
been largely resolved in recent years by a revolution in statistical computing
techniques, and it can be argued that this has led to a second renaissance.

Markov chain Monte Carlo (MCMC) techniques solve a lingering problem
in Bayesian analysis. Often Bayesian model specifications considered either
interesting or realistic produced inference problems that were analytically
intractable because they led to high-dimension integral calculations that
were impossible to solve analytically. Beginning with the foundational work
of Metropolis et al. (1953), Hastings (1970), Peskun (1973), Geman and
Geman (1984), and the critical synthesizing essay of Gelfand and Smith
(1990), there is now a voluminous literature on Markov chain Monte Carlo.
In fact, modern Bayesian statistical practice is intimately and intrinsically
tied to stochastic simulation techniques and as a result, these tools are an
integral part of this book.

The basic principle behind MCMC techniques is that if an iterative chain
of consecutive values, generated computationally, can be set up carefully
enough and run long enough, then empirical estimations of integral quan-
tities of interest can be obtained from the later chain values. These Markov
chains are successive quantities that depend probabilistically only on the
value of their immediate predecessor. In general, it is possible to set up
a chain to estimate multidimensional probability structures (i.e., desired
probability distributions), by starting a Markov chain in the appropriate
sample space and letting it run until it settles into the target distribution.
Then when it runs for some time confined to this particular distribution,
we can collect summary statistics such as means, variances, and quantiles
from the simulated values. This idea has revolutionized Bayesian statistics
by allowing the empirical estimation of probability distributions that could
not, be analytically calculated.

Currently the most popular method for generating samples from pos-
terior distributions using Markov chains is the WinBUGS program and its

Unix-based precursor BUGS . This is a pseudo-acronym for Bayesian infer-

* This led one observer (Evans 1994) to compare Bayesians to “unmarried marriage
guidance counsellors.”
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ence Using Gibbs Sampling, referring to the most frequently used method
for producing Markov chains. In what constitutes a notable contribution to
the Bayesian statistical world, the Community Statistical Research Project
at the MRC Biostatistics Unit and the Imperial College School of Medicine
at St. Mary’s, London provide this high-quality software to users free
of charge at: (http://www.mrc-bsu.cam.ac.uk/bugs/), and have even
made available at the same site extensive documentation by Spiegelhal-
ter, Thomas, Best, and Gilks (1996).

1.7 The Scientific Process in Our Social Sciences

This is a book about the scientific process of discovery in the social and
behavioral sciences. Data analysis is best practiced as a theory-driven ex-
ploration of collected observations with the goal of uncovering important
and unknown effects. This is true regardless of academic discipline. Yet
some fields of study are considered more rigorously analytical in this pur-
suit than others.

The process described herein is that of inference: making probabilistic
assertions about unknown quantities. It is important to remember that “in
the case of uncertain inference, however, the very uncertainty of uncertain
predictions renders question of their proof or disproof almost meaningless.”
(Wilkinson 1977). Thus, confusion sometimes arises in the interpretation
of the inferential process as a scientific, investigative endeavor.

Are the social and behavioral sciences truly “scientific”? This is a ques-
tion asked about fields such as sociology, political science, economics, an-
thropology, and others. It is not a question about whether serious, rigorous,
and important work has been done in these endeavors; it is a question about
the research process and whether it conforms to the empirico-deductive
model that is historically associated with the natural sciences. From a sim-
plistic view, this is an issue of the conformance of research in the social and
behavioral sciences to the so-called scientific method. Briefly summarized,
the scientific method is characterized by the following steps:

e Observe or consider some phenomenon.

e Develop a theory about the cause(s) of this phenomenon and articulate

it in a specific hypothesis.
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e Test this hypothesis by developing a model to fit experimentally gener-

ated or collected observational data.

e Assess the quality of the fit to the model and modify the theory if nec-

essary, repeating the process.

This is sometimes phrased in terms of “prediction” instead of theory devel-
opment, but we will use the more general term. If the scientific method as
a process were the defining criterion for determining what is scientific and
what is not, then it would be easy to classify a large proportion of the re-
search activities in the social and behavioral sciences as scientific. However
useful this typology is in teaching children about empirical investigation,
it is a poor standard for judging academic work.

Many authors have posited more serviceable definitions. Braithwaite
(1953, p. 1) notes:

The function of a science, in this sense of the word, is to establish general laws

covering the behavior of the empirical events or objects with which the science in

question is concerned, and thereby to enable us to connect together our knowledge

of the separately known events, and to make reliable predictions of events as yet

unknown.

The core of this description is the centrality of empirical observation and
subsequent accumulation of knowledge. Actually, “science” is the Latin
word for knowledge. Legendary psychologist B. F. Skinner (1953, p. 11)
once observed that “science is unique in showing a cumulative process.”
It is clear from the volume and preservation of published research that
social and behavioral scientists are actively engaged in empirical research
and knowledge accumulation (although the quality and permanence of this
foundational knowledge might be judged to differ widely by field). So what
is it about these academic pursuits that makes them only suspiciously sci-
entific to some? The three defining characteristics about the process of
scientific investigation are empiricism, objectivity, and control (Singleton
and Straight 1988). This is where there is lingering and often legitimate
criticism of the social and behavioral sciences as being “unscientific.”

The social and behavioral sciences are partially empirical (data-oriented)
and partially normative (value-oriented), the latter because societies de-
velop norms about human behavior, and these norms permeate academic

thought prior to the research process. For instance, researchers investi-
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gating the onset and development of AIDS initially missed the effects of
interrelated social factors such as changes in behavioral risk factors, per-
sonal denial, and reluctance to seek early medical care on the progress of
the disease as a sociological phenomenon (Kaplan et al. 1987). This is par-
tially because academic investigators as well as health professionals made
normative assumptions about individual responses to sociological effects.
Specifically, researchers investigating human behavior, whether political,
economic, sociological, psychological, or otherwise, cannot completely di-
vorce their prior attitudes about some phenomenon of interest the way a
physicist or chemist can approach the study of the properties of thorium:
atomic number 90, atomic symbol Th, atomic weight 232.0381, electron
configuration [Rn]7°26d%. This criticism is distinct from the question of
objectivity; it is a statement that students of human behavior are them-
selves human.

We are also to some extent driven by the quality and applicability of
our tools. Many fields have radically progressed after the introduction of
new analytical devices. Therefore, some researchers may have a temporary
advantage over others, and may be able to answer more complex questions:
“It comes as no particular surprise to discover that a scientist formulates
problems in a way which requires for their solution just those techniques
in which he himself is especially skilled.” (Kaplan 1964). The objective of
this book is to “level the pitch” by making an especially useful tool more

accessible to those who have thus far been accordingly disadvantaged.

1.7.1 Bayesian Statistics as a Scientific Approach to Social and
Behavioral Data Analysis

The standard frequentist interpretation of probability and inference as-
sumes an infinite series of trials, replications, or experiments using the
same research design. The “objectivist” paradigm is typically explained
and justified through examples like multiple tosses of a coin, repeated mea-
surements of some physical quantity, or samples from some ongoing process
like a factory output. This perspective, which comes directly from Neyman
and Pearson, is combined with an added Fisherian fixation with p-values

in typical inference in the social and behavioral sciences (Gill 1999).
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Very few, if any, social scientists would be willing to argue that human be-
havior fits this objectivist long-run probability model. Ideas like “personal

utility,” “legislative ideal points,” “

cultural influence,” and “principal-agent
goal discrepancy” do not exist as parametrically uniform phenomena in
some physically tangible manner. In direct contrast, the Bayesian or “sub-
jectivist” conceptualization of probability is the degree of belief that the
individual researcher is willing to personally assign and defend. This is the
idea that an individual personally assigns a probability measure to some
event as an expression of uncertainty about some event that may only be

relevant to one observational situation or experiment.

The central idea behind subjectivist probability is the assignment of a
prior probability based on what information one currently possesses and
under what circumstances one would be willing to place an even wager.
Naturally, this probability is updated as new events occur, therefore in-
corporating serial events in a systematic manner. The core disagreement
between the frequentist notion of objective probability and the Bayesian
idea of subjective probability is that frequentists see probability measure
as a property of the outside world and Bayesians view probability as a
personal internalization of observed uncertainty. The key defense of the
latter view is the inarguable point that all statistical models are subjec-
tive: decisions about variable specifications, significance thresholds, func-
tional forms, and error distributions are completely nonobjective.” In fact,
there are instances when Bayesian subjectivism is more “objective” than
frequentist objectivism with regard to the impact of irrelevant information
and arbitrary decision rules (c.f. Edwards, Lindman, and Savage 1963, p.
239).

Given the existence of subjectivity in all scientific data analysis en-

* As a brief example, consider common discussions of reported analyses in social science
journals and books that talk about reported model parameters being “of the wrong sign.”
What does this statement mean? The author is asserting that the statistical model has
produced a regression coefficient that is positive when it was a priori expected to be
negative or vice versa. What is this statement in effect? It is a prior statement about
knowledge that existed before the model was constructed. Obviously this is a form of
the Bayesian prior without being specifically articulated as such.
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deavors*, one should prefer the inferential paradigm that gives the most
overt presentation of model assumptions. This is clearly the Bayesian sub-
jective approach since both prior information and posterior uncertainty
are given with specific, clearly stated model assumptions. Conversely, fre-
quentist models are rarely presented with caveats such as “Caution: the
scientific conclusions presented here depend on repeated trials that were
never performed,” or “Warning: prior assumptions made in this model are
not discussed or clarified.” If there is a single fundamental scientific tenet
that underlies the practice and reporting of empirical evidence, it is the
idea that all important model characteristics should be provided to the
reader. It is clear then which of the two approaches is more “scientific” by
this criterion.

These ideas of what sort of inferences social scientists make are certainly
not new or novel. There is a rich literature to support the notion that the
Bayesian approach is more in conformance with widely accepted scientific
norms and practices. Poirer (1988, p. 130) stridently makes this point in
the case of prior specifications:

I believe that subjective prior beliefs should play a formal role so that it is easier to

investigate their impact on the results of the analysis. Bayesians must live with such

honesty whereas those who introduce such beliefs informally need not.

The core of this argument is the idea that if the prior contains informa-
tion that pertains to the estimation problem, then we are foolish to ignore
it simply because it does not neatly fit into some familiar statistical pro-
cess. This notion is not particularly controversial among statisticians, as
observed by Samaniego and Reneau (1994, p. 957):
If a prior distribution contains “useful” information about an unknown parameter,
then the Bayes estimator with respect to that prior will outperform the best frequen-
tist rule. Otherwise, it will not.
A more fundamental advantage to Bayesian statistics is that both prior
and posterior parameter estimates are assumed to have a distribution and
therefore give a more realistic picture of uncertainty that is also more useful

in applied work:

* See Press and Tanur (2001) for a fascinating account of the role of researcher-
introduced subjectivity in a number of specific famous scientific breakthroughs, including
discoveries by Galileo, Newton, Darwin, Freud, and Einstein.
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With conventional statistics, the only uncertainty admitted to the analysis is sam-
pling uncertainty. The Bayesian approach offers guidance for dealing with the myriad

sources of uncertainty faced by applied researchers in real analyses.

Western (1999, p. 20). Lindley (1986, p.7) expresses a more biting statement
of preference:

Every statistician would be a Bayesian if he took the trouble to read the literature

thoroughly and was honest enough to admit he might have been wrong.

This book rests on the perspective, sampled above, that the Bayesian ap-
proach is not only useful for social and behavioral scientists, but it also
provides a more compatible methodology for analyzing data in the man-
ner and form in which it arrives in these disciplines. As we describe in
subsequent chapters, Bayesian statistics establishes a rigorous analytical
platform with clear assumptions, straightforward interpretations, and so-
phisticated extensions. For more extended discussions of the advantages of
Bayesian analysis over alternatives, see Berger (1986), Dawid (1982), Efron
(1986), Good (1976), Jaynes (1976), and Zellner (1985).
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1.9 A Note on the Exercises

At the end of each chapter is a set of exercises of varying difficulty. Each
exercise is assigned a difficulty code. This scheme, borrowed from Knuth
(1973), gives the level of effort required on a logarithmic scale according to

the following categories:
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01-09 Trivial
10-19 Simple
20-29 Moderate effort required
30-40 Difficult, significant effort required
40-49 Term project
50 Graduate thesis.

Some of these exercises are also assigned a code (C) indicating whether
or not the use of a statistical computing package is required. The actual
difficulty levels have been produced by the following Bayesian process: my
first guess as to the work involved (the prior), updated by comments and
complaints from graduate students at the University of Florida and at the
ICPSR Summer Program at the University of Michigan (the data). This is
not a perfect process and too much weight may have been placed on the
assigned prior since I had dictatorial control.

Consider the following simple exercises:
1.1. [01] Who was Bayes?
1.2. [05] Prove Bayes Theorem.
1.3. [04] Restate the three general steps of Bayesian inference from page 3

in your own words.

1.4. [09] Restate Bayes’ law when the two events are independent. How do
you interpret this?

1.5. [10] Suppose f(6]X) is the posterior distribution of 6 given the data
X. Describe the shape of this distribution when the mode, mgmxf(0|X),
is equal to the mean, [,0f(0X)df.

1.6. [C10] Run the Gibbs sampling function given below in R. What effect
do you seen in varying the B parameter? What is the effect of producing
5,000 sampled values instead of 5007

1.10 Computational Addendum: Simple Gibbs Sampling in R

As a means of continuing the discussion about conditional probability and
covering some basic principles of the R language, this addendum introduces
the Gibbs sampler (a Markov chain Monte Carlo technique that will be
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shown in later chapters to be quite important). The idea behind a Gibbs
sampler is to get a marginal distribution for each variable by iteratively con-
ditioning on interim values of the others in a continuing cycle until samples
from this process empirically approximate the desired marginal distribu-
tion. There will be much more on this topic in Chapter 9 and elsewhere,
but here we will implement a trivial but instructive example.

As suggested by Example 2 in Casella and George (1995), suppose that

we have two conditional distributions:
f(zly) o yexp[—yz], f(y|z) o< zexp[-zy], 0<z,y <B <oo. (L.7)

These conditional distributions are both exponential probability density
functions (see Chapter 3, Reference Addendum for details). The upper
bound, B, is important since without it there is no finite joint density
and the Gibbs sampler will not work. It is possible, but not particularly
pleasant, to perform the correct integration steps to obtain the desired
marginal distributions: f(x) and f(y). Instead we will let the Gibbs sampler
do the work.

The Gibbs sampler is “a transition kernel defined by full conditional dis-
tributions” that allows us to run a Markov chain that eventually settles
into the desired limiting distribution that characterizes the marginals. In
plainer language, it is an iterative process that cycles through conditional
distributions until it reaches a stable status whereby future samples charac-
terize the desired distributions. For two parameters, z and y, this involves
a starting point, [zo, yo], and the cycles defined by drawing random values
from the conditionals according to:

z1 ~ f(z|yo), y1 ~ f(ylz1)
z2 ~ f(zly1), Y2 ~ f(ylz2)
z3 ~ f(z|y2), ys ~ f(ylzs)
T ~ F(T|Ym—1), Ym ~ f(Y|Tm)-

If we are successful, then after some reasonable period the values z;, y;

are safely assumed to be empirical samples from the correct marginal dis-
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tribution. There are many theoretical and practical concerns that we are
ignoring here, and the immediate objective here is to give a rough overview.

The following R function performs the Gibbs sampler for this problem
by the following algorithm:

e Set the initial values: B = 5, k = 15, m = 500, and the set of accepted
values (z,y) as an empty object. B is the parameter that ensures that
the joint distribution is finite, and m is the desired number of total
values for z and y. The variable k is the length of the subchains after
the starting point, and we will run m separate chains of length k& and
take the last value as recommended by Gelfand and Smith (1990).

e Run m = 500 chains of length £ + 1 = 16 where the extra value is
the uniformly distributed starting point (uniform in [0 : B]). Use only
sampled exponential values that are less than B and repeat the sampling

procedure until such an acceptable value is sampled.

e Add the last value from the z and y series, 16 and yi6 to the list of

chain values until 500 of each are obtained.

e Describe the marginal distributions of z and y with these empirical val-

ues.

This leads to the following R code, which can be retyped verbatim to
replicate this example:

B <- 5; k <- 15; m <- 500; x <- NULL; y <- NULL
while (length(x) < m) A
x.val <- c(runif(1,0,B),rep((B+1),length=k))
y.val <- c(runif(1,0,B),rep((B+1),length=k))
for (j in 2:(k+1)) {
while(x.val[j] > B) x.val[j] <- rexp(l,y.val[j-1])
while(y.val[j] > B) y.val[j] <- rexp(l,x.valljl)
}
x <- c(x,x.val[(k+1)])
y <= c(y,y.vall[(k+1)]1)

These samples are summarized by histograms of the empirical results
for z and y in Figure 1.1. It is clear from the figure that the marginal
distributions are exponentially distributed. We can recover parameters by

using the empirical draws to calculate sample statistics. This part of the
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Figure 1.1 GIBBS SAMPLING DEMONSTRATION, EXPONENTIALS

0.20
|

0.15
|

0.10
|

0.05
|

0.00
L
0.00

T T T 1
4 5 0 1 2

0 1 2

HHHHHHHHHHHHHHHHHHH il e

1
4 5

Marginal Distribution of x Marginal Distribution of y

MCMC process is actually quite trivial once we are convinced that there
has been convergence of the Markov chain. In later chapters we will see this
process in a more realistic, and therefore detailed, setting. This example is
only intended to give an indication of activities to come and to reinforce

the linkage between modern Bayesianism and statistical computing.



