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Bernoulli (1713) – The Art of Conjecture 

Suppose we have a set of equally possible cases (events or outcomes) { }1 2, ..., nx x x . This defines 
the hypothesis space, H0. Now suppose we have some proposition of interest, A, defined as being 
true on some specified subset H(A) of M points of H0, false on the others. M, the number of ways 
in which A could be true, is called the multiplicity of A, and the probability of A is defined as the 
proportion ( ) /p A M N= . The rules of reasoning consist of finding the probabilities p(A), p(B) 
etc of different propositions by counting the number of ways they can be true. Moreover, if we 
learn that A is true, our hypothesis space contracts to H(A) and the probability of B is changed to 
the proportion of H(A) on which B is true.  

James Bernoulli also discussed Nature’s hypothesis space HN of possibilities: in many situations, 
it is impossible to determine the true hypothesis space and assign probabilities. However, we 
may probe HN  by making repeated observations of some event A. Bernoulli proved the first 
mathematical connection between frequency and probability: the weak law of large numbers : 

If we make n repeated observations and find A true m times, the observed frequency 
( ) /f A m n=  is to be compared with the probability ( ) /p A M N= . In the limit of large n, it it 

becomes practically certain that f(A) is close to p(A). Laplace showed later that as n tends to 
infinity, the probability remains more than 0.5 that f(A) is in the shrinking interval ( )p A q± , 

where 2 (1 ) /q p p n= − . 

Bayes (1763)  

“An essay towards solving a Problem in the Doctrine of Chances” by Rev. Thomas Bayes was 
published posthumously in 1763. 

Laplace 

In 1774, Laplace published a work that re-discovered Bayes’ principle in greater clarity and 
generality, as follows: 

Denoting various propositions by A, B, C etc, let: 



AB   def=  “both A and B are true”  the logical product AND 

A B+   def=  “either A or B is true”  the logical sum OR 

 A   def=  “ A is false”    the denial  NOT 

 \A B   def=  “the probability that A is true given B is true” or “A give B” 

Then the basic rules of probability are: 

The Product Rule 

( \ ) ( \ ) ( \ )P AB C P A BC P B C=      (1) 

The Sum Rule 

( \ ) ( \ ) 1P A B P A B+ =       (2) 

From these we derive what is known as Bayes’ theorem (although Bayes never wrote it): 

( \ ) ( \ )
( \ )

( \ )
p A C p B AC

p A BC
p B C

=      (3) 

This become useful in the case where A represents some hypothesis whose truth we wish to 
determine, B represents some new data from some observation and C represents what we knew 
about A getting the data B. We call ( \ )p A C the prior probability of A, when we know only C. 

( \ )p A BC  is the posterior probability, updated as a result of knowing B.  

Note: 

1. This assumes that there is some prior information before we obtain the data B. 

2. We can apply Bayes’ theorem repeatedly as new pieces of information B1,  B2,… are 
obtained. 

Laplace also published (1812) a two-volume treatise on probability theory. The first volume 
contains, in his methods for solving finite difference equations, almost all of the mathematics we 
find today in the theory of digital filters. Yet, because some difficult concepts were ill-explained 
by Laplace, Bayesian analysis was no well-accepted for more than a century after his work was 
published. 

Jeffreys 

Sir Harold Jeffreys re-discovered the work of Laplace in the early 19th century, and explained it 
much more clearly in the 1930s. He later published  "Theory of probability" (Oxford University 
Press, 1961) 

Some notes on assigning priors 

If our hypothesis space is large enough to accommodate repetitions, we can calculate the 
probability of an event by counting the frequency with which it occurs. But note that “a 
probability is an abstract concept, a quantity we assign theoretically, for the prupose of 
representing a state of knowledge, or that we calculate from previously assigned probabilities 
using the rules (1)-(3) of probability theory. A frequency is, in situations where it makes sense to 



speak of repetitions, a factual property of the real world, that we measure or estimate. So instead 
of committing the error of saying that the probability is the frequency, we ought to calculate the 
probability p(f)df that the frequency lies in certain intervals df – just a Bernoulli did.” 

Cox 

R. T. Cox (1946) published a paper that showed that any set of rules for inference, in which we 
represent degrees of plausibility by real numbers, is necessarily either equivalent to the Laplace-
Jeffreys rules, that is (1)-(3), or inconsistent. 

Shannon 

Claude Shannon (1948) used Cox’s method. He sought a measure of the “amount of uncertainty” 
in a probability distribution.  The conditions of consistency again took the form of functional 
equations whose general solution he found. The resulting measure proved to be log( )i ip p∑ . 

Shannon’s work gives us the means to escape from Bernoulli and Laplace’s assumption that 
events in the hypothesis space be equally possible, that is to construct non-uniform prior 
distributions. We can define a hypothesis space H0 by enumerating some perceived possibilities 
{ }1 2, ..., nx x x ; but we do not regard them as equally likely, because we have some additional 
evidence E. It is not useable as the data B in Bayes’ theorem, because E is not an event and does 
not have a “sampling distribution” ( \ )p E C . But E leads us to impose some constraint on the 
probabilities ( )i ip p x= that we assign to the elements of H0, which forces them to be 
nonuniform, but does not fully determine them (the number of constraints is less than N).  

We interpret Shannon’s theorem as indicating that, out of all of the distributions pi that agree 
with the constraints, the one that maximizes the Shannon entropy represents the “most honest” 
description of our state of knowledge, in the following sense: it expresses the enumeration of the 
possibilities, the evidence E; and assumes nothing beyond that. 
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