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Abstract. We discuss precise assumptions entailing Bayesianism in the line of
investigations started by Cox, and relate them to a recent critique by Halpern. We
show that every finite model which cannot be rescaled to probability violates a
natural and simple refinability principle. A new condition, separability, was found
sufficient and necessary for rescalability of infinite models. We finally character-
ize the acceptable ways to handle uncertainty in infinite models based on Cox’s
assumptions. Certain closure properties must be assumed before all the axioms of
ordered fields are satisfied. Once this is done, a proper plausibility model can be
embedded in an ordered field containing the reals, namely either standard proba-
bility (field of reals) for a real valued plausibility model, or extended probability
(field of reals and infinitesimals) for an ordered plausibility model. The end result
is that if our assumptions are accepted, all reasonable uncertainty management
schemes must be based on sets of extended probability distributions and Bayes
conditioning.

1. Introduction

Several ways are possible for dealing with uncertainty and ignorance in AI and
other applications. It has not been possible to find a unique correct way to handle
it. This is because it is not a purely mathematical question but, since the time of
Aristotle, a central problem in philosophy. Bayesianism, claiming that all types
of uncertainty must be described by probabilities, is one possible way that has
been tried in many application areas and with convincing results. One family of
arguments consists of observations that even if other ways to deal with uncertainty
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are possible, they either have some easily stated deficiency or are equivalent to
Bayesianism.

Indeed, such arguments have been put forward, but they have not been unan-
imously accepted. This also would follow from Bayesianism itself, since prior prej-
udices are predicted by the theory to outweigh every informal argumentation, and
there is no proof method relating to real-world phenomena with the persuasiveness
of pure logic and mathematics. This note was inspired by a recent critique [1] of
[2] and [3].

We will here show assumptions, mainly refinability, that are strong enough
to strictly imply Bayesianism and at the same time convincing in a subjective
way (common sense). A proposed counterexample to Cox’s argument is shown in
section 3 and discussed sin section 4, where a theorem is shown saying that for a
plausibility model with finite domain, natural refinements are possible if and only
if the plausibility measure is rescalable to probability.

We discuss the extension to infinite but non-dense domains in section 5. We
show with an example that some new assumption is required for the infinite case
and give one, separability, that is both necessary and sufficient. We introduce the
concept of extended probability models which have infinitesimal probabilities. We
define the concept of a closed plausibility model and show that a model that can be
closed in the real numbers is rescalable to a probability model. If we are content
with a totally ordered domain of plausibilities, extended probability emerges as
canonical uncertainty measure. If we weaken the assumptions and accept partially
ordered plausibility values, we end up with sets of extended probability distribu-
tions.

2. Arguments for the Inevitability of the Bayesian View

In 1946, R.T. Cox published his findings [2] on some properties required by any
good calculus of plausibility of statements. A very lucid elaboration of Cox’s find-
ings can be found in E.T. Jaynes posthumous manuscript [3, Ch. 2]. He stated
three requirements:

I: Divisibility and comparability- The plausibility of a statement is a real number
and is dependent on information we have related to the statement.

II: Common sense - Plausibilities should vary sensibly with the assessment of
plausibilities in the model.

III: Consistency - If the plausibility of a statement can be derived in two ways,
the two results must be equal.

After introducing the notation A|C for the plausibility of statement A given
that we know C to be true, he finds the governing functional equation for defin-
ing the plausibility of a conjunction: AB|C = F (A|BC, B|C) must hold for some
function F . Since ABC|D ≡ (AB)C|D ≡ A(BC)|D, F must satisfy the equa-
tion of associativity: F (F (x, y), z) = F (x, F (y, z)), for x = A|BCD, y = B|CD
and z = C|D. At this point [2] and most other authors analyzing this problem
assume that F is associative[4] on a dense domain where it is also differentiable
or continuous. The result, under one of a couple of alternative assumption sets,
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is that no matter what our choice of A|C is, there must be a function w such
that w(AB|C) = w(A|C)w(B|AC). The existence of a function that translates the
plausibility measure to another measure satisfying the rules of probabilities will
be called rescalability, and the main topic of investigation in this note is under
what reasonable and precise assumptions rescalability obtains. From rescalabil-
ity all the machinery of Bayesian analysis follows, except the way to assign prior
probabilities.

It must be said that neither Cox nor Jaynes are completely rigorous in defining
their assumptions, and recent critiques can be found in [5,1]. Halpern notes that all
variations of the derivation of rescalability theorems make an assumption on the
denseness of the domain of plausibility and some type of regularity assumption on
the functions F and S. The critiques can be taken as evidence that Cox’s common
sense assumptions are not the only ones possible. We do not think anyone would
argue against the desirability of the three general conditions I, II and III as given
above. However, they must be interpreted to fine detail, and they may conflict
with other desirable conditions. Particularly, common sense is a rather open-ended
condition and it can certainly be debated what is required by common sense, and
what is not.

The first condition I has been characterized as the ’dogma of precision’ and
is sometimes found unacceptable essentially by arguments saying that we cannot
know which exact real numbers to use. Several alternatives based on intervals
instead of numbers have been designed and motivated, by [6] and others. This
may in turn lead to problems in choosing the exact real values used as end-points
of the intervals. Although some interval based schemes can be seen as multiple-
context Bayesian inference in analogy with multiple-criteria decision making, they
are usually not presented as such. The insistence on consistency is only halfway
to ’correctness’, and one can argue that a consistent somewhat arbitrary method
is no better than an inconsistent method that ’works in practise’. Floating point
computation is a good example of such a method, but the analysis of which errors
we make with floating point computation is also a major research field in numerical
analysis. There are many possible objections, but here we will concentrate on how
the density assumption in [2] and its followers can be relaxed. We will not give a
full account of the background to the discussions and developments of Cox’s ideas.

A more precise derivation of rescalability with significantly weaker assumptions
was published by Aczél[7]. He relaxed the differentiability assumption of Cox and
introduced the function G with the use: A∨B|C = G(A|C, BA|C). It is then only
necessary to assume continuity of G, and associativity and joint distributivity of
F and G, to prove rescalability. The use of the auxiliary function G describing
disjunctions instead of Cox’s function S describing logical complement (negation)
turns out to simplify the analysis.

3. Halpern’s Example

The consistency assumption only says that associativity holds for values actually
occurring as plausibilities of statements A|BCD, B|CD and C|D. A small world is
analyzed in [1] where there are no 4-tuples of statements to which the associativity
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condition could apply. In the notation of [2], the example consists of four groups
of three statements each(→ stands for implication):

A, B, C, where A → B and B → C hold
D, E, G, where D → E and E → G hold
H, I, J , where H → I and I → J hold
K, L, M , where K → L and L → M hold

C, G, J and M exclude each other, so only one of them can hold. Plausibilities
are assigned to these statements as follows:

D|EG = H|IJ = 3/5
E|G = A|BC = 5/11
B|C = L|M = 11/19
A|C = I|J = 5/19
D|G = K|LM = 3/11
K|M = 3/19
H|J = 3/19 − δ, for some small δ > 0.

From the above we find 5/19 = A|C = AB|C = F (A|BC, B|C) = F (5/11, 11/19)
and 3/11 = D|G = DE|G = F (D|EG, E|G) = F (3/5, 5/11). Moreover, 3/19 =
K|M = KL|M = F (K|LM, L|M) = F (3/11, 11/19), but 3/19 − δ = H|J =
HI|J = F (H|IJ, I|J) = F (3/5, 5/19). It is easy to see that these plausibilities are
consistent in all ways, as shown by the detailed model in [1]. With the exception of
H|J , all quantities could have been probabilities. The function F is not associative,
because F (3/11, 11/19) = F (F (3/5, 5/11), 11/19) = 3/19, but F (3/5, 5/19) =
F (3/5, F (5/11, 11/19) = 3/19 − δ.

4. Common sense assumptions

Halpern’s example is a finite model, and the function F is not associative. Its
plausibility is thus not rescalable to probability. What happens in the example is
that the same plausibility values are assigned to seemingly unrelated conditional
statements. Therefore, a violation of associativity yields no immediate inconsis-
tency. Whether or not this example really is a counterexample to a theorem of
Cox is discussed in [4], but is not of our concern here.

A person interested in finite models would not find an assumption that models
are infinite very compelling. But models are in practice crafted incrementally by re-
finement of simpler models, and it is completely plausible that such a person would
insist that refinements should not be arbitrarily and unnecessarily restricted. In-
deed, when and where to stop the refinement process cannot be known in advance.
There is a standard method for developing probability models by splitting cases
into subcases and assigning probabilities conditional on such subcases, to the de-
gree required for an application. This method is an informative refinement method,
sometimes known as ’extending the discussion’[8,9], and it is equally fundamental
in any plausibility model. A weaker form of model refinement is a non-informative
refinement where we do split cases into subcases, but do not assign new plausibil-
ities of existing events contingent on the new subcases. Such refinements should
never change the information obtainable from the model, nor should they render
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a consistent model inconsistent. We also want to have at our disposal the possi-
bility of claiming that two statements are independent in a given context, so that
knowledge of one does not change the plausibility of the other. This condition we
call information independence. We argue that a well-informed method choice can
be obtained by considering questions like these:

− Refinability: If we have already made a particular splitting of a statement
into sub-cases, by adding new statements implying it, should it then always
be possible to refine another statement in the same way, and with the same
plausibilities in the new refinement? As an example, if we defined A′ with
A′ → A and A′|A = a, should we for any existing statement B be allowed to
define B′ as a new symbol with B′ → B and B′|B = a?

− Information Independence: If a statement is refined by several new sym-
bols, should it then be possible to state that they are information indepen-
dent, so that knowledge of one does not affect the plausibility of the other?
As an example, if A and B are introduced as refinements of C, should we be
permitted to claim that A|BC = A|C and B|AC = B|S?

− Strict Monotonicity: Will it always be the case that the plausibility of a
conjunction is less than those of the conjuncts, if these are independent and
their plausibilities are not 0 or 1?

We mean that ’yes’ answers to all are minimal precise conditions that en-
tail Bayesianism for finite models. We also mean that they reflect common sense
desiderata on a calculus for uncertainty better than the alternatively used asso-
ciativity, density and regularity assumptions. For infinite models there turns out
to be another possibility that Cox apparently did not realize, namely plausibili-
ties taking values in an ordered field of reals and infinitesimals. This possibility
was eventually (around 1965) noticed by Adams[10] and recently elaborated by
Wilson[11].

4.1. ASSOCIATIVITY AND STRICT MONOTONICITY

If we accept refinability and information independence as reasonable assumptions,
associativity and other algebraic laws for F and G follow: if a model has a vio-
lation of associativity for F , then there exists a simple and finite refinement (in
three steps) that is arbitrarily blocked. If we have worked out a model where
F (a, F (b, c)) �= F (F (a, b), c) for some plausibilities a, b and c, then we take an ar-
bitrary statement S (not false) and refine with Sa, Sb and Sc: Sa|Sb = a, Sb|Sc = b
and Sc|S = c. Now the value SaSbSc|S can be computed in two ways giving dif-
ferent results, as (SaSb)Sc|S = F (F (a, b), c) and as Sa(SbSc)|S = F (a, F (b, c)).
In Halpern’s example, it would be perfectly reasonable that one wants to add a
new statement A′ to the model, and such that A′ → A. Moreover, it would be
reasonable to allow any value to be assessed for the plausibility A′|A, because
there is no link to the rest of the model. In particular, we have already refined
E by defining a sub-statement D with D → E and D|E = 3/5, so it should be
safe to do the same thing with A and say A′|A = 3/5 for a new statement A′

with A′ → A. Thus far we have not introduced any informative change in the
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model, and we would expect that nothing has happened. But we actually have got
a violation of the associativity law for the statement A′AB|C, which can now be
proved to have plausibility both 3/19 (the value of (A′A)B|C) and 3/19 − δ (the
value of A′(AB)|C). One can claim that this effect is a violation of common sense.
It involves nothing that is infinite. Similar arguments can be used to show that F
is bound by common sense to be symmetric, that G is associative and symmetric,
and that they are jointly distributive:

Observation 1 In order to satisfy natural requirements on consistency being pre-
served by non-informative refinements of models, we must work with models where
F and G are partially specified in such a way that they satisfy the laws of associa-
tivity and symmetry, as well as joint distributivity.

It is also reasonable to argue that F must be strictly monotone when none of
its arguments represents falsity (i.e., if x is not falsity and u > v, then F (u, x) >
F (v, x) and F (x, u) > F (x, v)). The requirement of strict monotonicity is stated
in [3]: ”If A|C becomes more plausible, and B|AC is not falsity, then AB|C also
becomes more plausible, if nothing else (namely B|AC) changes”. This statement
can certainly not be verified mathematically, but is something you have to believe
to accept. It is assumed in most related analyses, including [7,2]. We summarize:

Observation 2 It is reasonable to assume that the functions F and G of a plau-
sibility model are strictly monotone for non-zero arguments, and that F (x, y) <
min(x, y) and G(x, y) > max(x, y) for non-trivial plausibility values of x and y.

4.2. THE FINITE CASE

It remains to consider whether any partially specified function can be extended
to an associative function if it is associative on its range of definition. This is
not generally the case, even if it also satisfies the other properties that will be
required from the completed function: strict monotonicity and symmetry. If an
appropriate rescaling to probabilities exists, we can find it by solving a finite
linear system of equations and inequalities for the log probabilities li = log w(xi)
excluding the value for falsity. The system has an equation li + lj = lk for each
triple xk = F (xi, xj) and an inequality li < lj for every pair with xi < xj , and an
equality li = lj when xi = xj .

We are now ready to state that rescalability of the F function is equivalent
to finite refinability. The argument goes as follows: If rescalability obtains, it is
trivial to extend F to an associative, symmetric and strictly monotone function
over the dense interval (0, 1) which covers any refinement. If rescalability does not
hold, then this is equivalent to non-solvability of a linear program. But this means
that a dual program has a solution and it so happens that this solution defines a
refinement that is a proof of non-compliance of F with strict monotonicity. It is
also possible to modify Aczéls analysis of Cauchy’s and Euler’s equations to prove
simultaneous rescalability of F to ∗ and G to +. The following is proved in [12]:

Definition 3 An extension base B of a sequence X of length L is a sequence
(ni) of length L of non-negative integers, multiplicities. A set of partial functions
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can be extended to extension base B if the partial functions can be extended to
a domain such that every nested expression in the function symbols with arguments
in X has a defined value if, for all i, the number of occurrences of xi in the
expression is not larger than the corresponding multiplicity ni in B.

Theorem 4 Let X = (xi)L
i=1 be an increasing sequence of distinct values in the

open interval (0, 1), and S = {1, . . . , L}. Given two sets of triples TF , TG ⊂
S3 interpreted as specifications of two partial functions F and G satisfying also
F (1, xi) = xi , F (0, xi) = 0 and G(0, xi) = xi.

The following are equivalent:

(i) There is a finite extension base B of X to which F and G cannot be jointly
extended as symmetric, associative and strictly increasing functions satisfying
joint distributivity.

(ii) There is no increasing sequence of real numbers (pi)L
i=1 such that if (i, j, k) ∈

TF , then pi ∗ pj = pk, and if (i, j, k) ∈ TG, then pi + pj = pk.

5. Infinite models

Infinite models, without regularity assumptions on F and G, are more complex.
We first introduce the assumption of separability, under which any consistently
refinable model must be rescalable to a probability model, and then we find a richer
probability model family into which all models that can be closed are rescalable.

5.1. SEPARABILITY

Finite refinability is insufficient for infinite domains, as shown by the following
consideration: in a probability model, if x < y then the union of the intervals
[xi, yi] is a finite set of disjoint intervals, since the intervals will overlap for large
i. But the number of intervals is invariant under strictly monotone rescaling. So
a model where the union of such intervals (exponent now denoting iteration of F ,
so that x1 = x and xn+1 = F (x, xn)) is an infinite set of disjoint intervals cannot
be rescalable.

As an example with an infinite number of intervals thus not being rescalable,
consider a domain generated from two statements with plausibilities b = 1/4 and
a = 1/5. Let exponents of plausibilities denote iteration of the F function. The
model is defined by: F (bj , ak) = 1/(3(j+k)+(j+2k)/(j+k)). Now ap = 1/(3∗p+2),
bp = 1/(3 ∗ p + 1), and separation is not obtained, because no bp+1 is larger than
ap for any positive integer p, and therefore all intervals are disjoint. There appears
to be no finite argumentation for the inadequacy of this model, at least not using
reasonable refinability arguments.

Instead of generalizing Theorem 4 to infinite dimension, we solve a slightly
easier problem: Suppose that a model is defined, and its F function is completed
to a minimal function that already covers all refinements. Which are the properties
required for rescalability of such a function? If the domain and range of F is D and
R, respectively, and R ⊂ D, then we need only one new condition before we can
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prove rescalability, at least for the function F , and this is that the set of intervals
defined above is finite! We call this property separability, for the following reason:
if the condition obtains, then for any non-trivial plausibility c in the model, and
for every non-trivial plausibilities x and y with x < y, there are integers p and q
such that yp < cq ≤ xp, i.e., some power of c separates some (equal) powers of x
and y.

Definition 5 Two non-trivial elements a, b of a plausibility model are called sep-
arable if a < b and ap < bp+1 or b < a and bp < ap+1 for some natural number p
where the powers in the condition exist. A value a is separable from 0 or 1 if a and
F (a, a) are separable. Otherwise the elements are non-separable. A plausibility
model is separable if all distinct plausibility values are separable.

Non-separability is easily seen to be an equivalence relation: It is obviously reflexive
and symmetric. It is also transitive: If a, b and c are plausibility values, a < b < c,
and bp+1 < ap and cp+1 < bp for all p > 0, then cp+2 < ap, i.e., F (cq+1, cq+1) <
F (aq, aq) for 2q = p and by strict monotonicity of F we have cq+1 < aq for all
integers q > 0. The following can be proved by modifying the analysis of the
equation of associativity found in [7]:

Theorem 6 Let the function ◦ : D2 → R have the following properties: R ⊂
D, {0, 1} ⊂ D and D ⊂ [0, 1]; Associativity; Strict monotonicity on D − {0};
Symmetry; 0 ◦ x = 0 and 1 ◦ x = x; Model is separable.

Then for x, y ∈ (D − {0})2, x ◦ y = f(f−1(x) + f−1(y)), for a partial strictly
monotone function f whose inverse is a strictly monotone function f−1.

Once we have accepted assumptions strong enough to ensure rescalability of
F (or G), the arguments for joint rescalability of F to ∗ and G to + are the
same as before, based on the analysis Cauchy’s or Euler’s equation. If we insist
that separability is not an appropriate common sense assumption, we cannot claim
rescalability to the standard probability model. Previous work like [7] shows that
continuity is an adequate assumption. We will now see what we can achieve without
continuity or separability, in the next section. We introduce closure assumptions
which makes the analysis amenable to standard algebraic methods.

5.2. EXTENDED PROBABILITY MODELS

We define an extended probability into which we can always rescale a well-constructed
plausibility model:

Definition 7 An extended probability model is a model based on probabili-
ties taking values in an ordered field generated by the reals and an ordered set of
infinitesimals. An infinitesimal is a non-zero element smaller in magnitude than
any positive real.

Extended probability was studied by Wilson[11] as a way to handle conditioning
on rare events. It is closely related to Adams’s proposal for the logic of condition-
als[10]. The intuition behind extended probability models is that the probability
value given by a real number is ’accompanied’ by a set of probabilities that are
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ranked different but do not have measurably different values. The non-separable
example in section 5.1 can be mapped into an extended probability model by map-
ping a to 1/2 and b to 1/2 + ε, where ε is a non-negative infinitesimal. We will
show that such a mapping can always be found for a consistently refinable model.

Definition 8 A plausibility model satisfying strict monotonicity, refinability and
information independence assumptions can be closed if its functions F and G
can be extended to a domain D, still satisfying refinability, information indepen-
dence and strict monotonicity in the following way: The domain D of F contains
its range. Likewise, on the domain D there is a function S with the property
G(x, S(x)) = 1, and G(x, y) is defined when x ≤ S(y). The range of G is con-
tained in D. Closing a plausibility model results in a closed plausibility model.
The domain D of the closed model must be ordered but need not be contained in
the reals. Our arguments for associativity, symmetry and distributivity follow from
refinability also for closed models.

Theorem 9 Every plausibility model that can be closed can be rescaled to an ex-
tended probability model.

The proof of this theorem becomes embarrassingly complex. It is based on the
fact that there is exactly one way to minimally complete the model to a field. An
intuitive argument is that every computation in the extension can be mirrored in
the plausibility model, by the rule of distributivity. As an example, the expression
a + b in the field, where a and b are plausibility values, corresponds to the expres-
sion G(F (e, a), F (e, b)) in the plausibility model for some e. This expression must
be defined for a sufficiently small non-zero e, for example min(f, S(f)) for any
non-trivial plausibility value f . Technically, one has to extend the domain by a se-
quence of constructions similar to the quotient construction taking a commutative
ring without zero divisors to a field[13]. In each step one has to verify in detail
that an embedding has been produced, and that all relevant algebraic laws (sym-
metry, associativity, etc.) and strict monotonicity have been preserved. Somewhat
surprisingly, the resulting ordered field does not necessarily have a unique minimal
extension to a field containing all real numbers. So we need a somewhat complex
argumentation to show that every ordered field contains an extended probability
model:

Conway derives the structure of transfinite numbers using a real ordered field
No that he shows[14, Th. 28, 29] universal, i.e., every other ordered field is (isomor-
phic to) a subfield of No. This field contains all real numbers and is an extended
probability model: Assume No contains some non-real element e between 0 and 1.
This element is associated with a real number re, the least upper bound on reals
smaller than e. The solution to x ⊕ re = e is an infinitesimal, a non-zero element
smaller in magnitude than any positive real. Thus, since e = re ⊕x, every element
of the model is generated by its infinitesimals and reals. Thus Theorem 9 follows,
since we already explained why every closed plausibility model can be embedded
in an ordered field.

If the closed model can be embedded in the real numbers, then it must be a
subfield of the field of real numbers, since only these subfields of No have least
upper and greatest lower bounds on all bounded sets:



10 STEFAN ARNBORG AND GUNNAR SJODIN

Corollary 10 Every plausibility model which can be closed in the domain of the
reals, can be rescaled to a standard probability model.

Indeed, the closed model has a function F satisfying the premises of Theorem 6,
except possibly the separability condition. We know by Theorem 9 that our model
can be rescaled into an extended probability model. If F is not separable the model
cannot be embedded in the field of reals, otherwise it can, because the embedding
process described in the proof of Theorem 9 does not introduce infinitesimals.

Finally, if we accept an ordered domain instead of a real valued domain in
Jayne’s desideratum I, we arrive rather painlessly at extended probability as canon-
ical uncertainty measure, with the added insight that extended probability is re-
quired only in infinite models (although it can be motivated pragmatically also
for finite models, as is done in default and other non-monotonic reasoning frame-
works).

6. Conclusions

We proposed to weaken the common sense assumptions used previously from do-
main denseness and continuity of auxiliary functions to refinability and allowing
information independence, and showed such assumptions sufficient for finite mod-
els. That our proposal uses truly weaker assumptions is shown by its inadequacy for
the infinite case, where we proposed an assumption weaker than denseness, namely
separability, which entails rescalability to standard probability. Without separabil-
ity we can only show rescalability to extended probability. Several contemporary
reasoning schemes are related (shown more or less equivalent) to infinitesimal or
extended probability in [15], so our result seems to re-concile Bayesianism and
non-monotonic reasoning. We finally observe that our techniques seem to apply
also to weakening the assumptions of the justifications of Bayesianism published
by Savage[16] and Lindley[17].

The end result of this analysis is that, under our assumptions of refinability,
information independence, strict monotonicity and closability, every well founded
uncertainty management methodology must be equivalent to a system where un-
certainty is completely described by a set of extended probability distributions,
a system we might call Extended Robust Bayes, and where conditioning is made
by Bayes’s rule. This approach has indeed been proposed, by Wilson[18]. Our as-
sumptions are much weaker than thoses based on coherence or consistent betting
behaviour, since there we end up with a single standard probability distribution
and we can also apply the result to infinite-dimensional and non-parametric in-
ference situations which we cannot reach with Cox’s approach. This might be a
strength of our analysis, since it is known that standard Bayes analysis, being a
method satisfying the strict likelihood principle, gives unwanted results in certain
such problems[19]. Needless to say, those authors advocating standard Bayesianism
have not been strengthened or weakened by our analysis, since their approach can
still be defended by pragmatic considerations. Extended probability, for example,
was introduced for pragmatic reasons where standard probability gives unwanted
effects in applications where one wants to condition on rare events (like in sys-
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tems reliability studies), but if we take probability as a betting rate we can hardly
expect to measure differences between probabilities an infinitesimal apart. The Ro-
bust approach was introduced where one does not want to weight together different
subjective probability assessments[20], but on the other hand in most cases where
interval-based plausibilities are proposed the documented evidence only calls for
probability volatility estimates, and these can be used, e.g., to decide whether or
not to wait for more information when a decision is called for[21,22].
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