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Abstract

We discuss precise assumptions entailing Bayesianism in the line of investigations
started by Cox, and relate them to a recent critique by Halpern. We show that every
finite model which cannot be rescaled to probability violates a natural and simple
refinability principle. We characterize the acceptable ways to handle uncertainty
in infinite models based on Cox’s assumptions. Certain closure properties must be
assumed before all the axioms of ordered fields can be satisfied. Once this is done,
a proper plausibility model can be embedded in an ordered field containing the
reals, namely either standard probability (field of reals) for a real valued plausibility
model, or extended probability (field of reals and infinitesimals) for an ordered
plausibility model.

1 Introduction

Several ways are possible for dealing with uncertainty and ignorance in AI and
other applications. It has not been possible to find a unique correct way to
handle it. This is because it is not a purely mathematical question but, since
the time of Aristotle, a central problem in philosophy. Bayesianism, claiming
that all types of uncertainty must be described by probabilities, is one possible
way that has been tried in many application areas and with convincing results.

We will here show assumptions that are strong enough to strictly imply
Bayesianism and at the same time convincing in a subjective way (common
sense). The background is given in section 2, and our assumptions and their
algebraic consequences are discussed in section 3. In section 4, an example of
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non-rescalability is discussed and a theorem is shown saying that for a plau-
sibility model with finite domain, natural refinements are possible if and only
if the plausibility measure is rescalable to probability.

An example shows that some new assumption is required for the infinite case
and we give one, separability, that is both necessary and sufficient. We in-
troduce the concept of extended probability models which have infinitesimal
probabilities. We define the concept of a closed plausibility model and show
that a model that can be closed in the real numbers is rescalable to a proba-
bility model. If we are content with a totally ordered domain of plausibilities,
extended probability is inevitable under our assumptions, and with a partially
ordered domain of plausibilities we get sets of extended probability distribu-
tions.

2 Arguments for the Inevitability of the Bayesian View

In 1946, R.T. Cox published his findings [6] on some properties required by
any good calculus of plausibility of statements. A very lucid elaboration of
Cox’s findings can be found in E.T. Jaynes posthumous manuscript [9, Ch. 2].
He stated three requirements:

I: Divisibility and comparability- The plausibility of a statement is a real num-
ber between 0 (for false) and 1 (for true) and is dependent on information
we have related to the statement.

II: Common sense - Plausibilities should vary sensibly with the assessment of
plausibilities in the model.

III: Consistency - If the plausibility of a statement can be derived in two ways,
the two results must be equal.

After introducing the notation A|C for the plausibility of statement A given
that we know C to be true, he finds the governing functional equation for
defining the plausibility of a conjunction: AB|C = F (A|BC,B|C) must hold
for some function F . Since ABC|D ≡ (AB)C|D ≡ A(BC)|D, F must satisfy
the equation of associativity: F (F (x, y), z) = F (x, F (y, z)), for x = A|BCD,
y = B|CD and z = C|D. At this point [6] and most other authors analyzing
this problem assume that F is associative[13] on a dense domain where it is also
differentiable or continuous. The result, under one of a couple of alternative
assumption sets, is that no matter what our choice of A|C is, there must
be a function w such that w(AB|C) = w(A|C)w(B|AC). The existence of a
function that translates the plausibility measure to another measure satisfying
the rules of probabilities will be called rescalability, and the main topic of
investigation in this note is under what reasonable and precise assumptions
rescalability obtains. From rescalability all the machinery of Bayesian analysis
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follows, except the way to assign prior probabilities.

A more precise derivation of rescalability with significantly weaker assump-
tions was published by Aczél[1]. He relaxed the differentiability assumption of
Cox and introduced the function G with the use: A ∨ B|C = G(A|C,BA|C).
It is then only necessary to assume continuity of G, associativity and that
F distributes over G, to prove rescalability. The use of the auxiliary func-
tion G describing disjunction instead of Cox’s function S describing logical
complement (negation) turns out to simplify the analysis.

3 Common sense assumptions

Halpern[7] gave a non-rescalable example. The example is a finite model, and
the function F is not associative. Its plausibility is thus not rescalable to prob-
ability. Whether or not this example really is a counterexample to a theorem
of Cox is discussed in [13], but is not the topic of this note.

A person interested in finite models would not find an assumption that models
are infinite very compelling. But models are in practice crafted incrementally
by refinement of simpler models, and a refinability assumption seems more
acceptable: There is a standard method for developing probability models by
splitting cases into subcases and assigning probabilities conditional on such
subcases, to the degree required for an application. This method is an informa-
tive refinement method, sometimes known as ’extending the discussion’[14,8],
and it is equally fundamental in a plausibility model. A weaker form of model
refinement is a non-informative refinement where we do split cases into sub-
cases, but do not assign new plausibilities of existing events contingent on the
new subcases. Such refinements should never change the information obtain-
able from the model, nor should they render a consistent model inconsistent.
We also want to have at our disposal the possibility of claiming that two
statements are independent in a given context, so that knowledge of one does
not change the plausibility of the other. We thus argue that a well-informed
method choice can be obtained by considering questions like these:

• Refinability: If we have already made a particular splitting of a statement
into sub-cases, by adding new statements implying it, should it then always
be possible to refine another statement in the same way, and with the same
plausibilities in the new refinement? As an example, if we defined A′ with
A′ → A and A′|A = a, should we for any existing statement B be allowed
to define B′ as a new symbol with B′ → B and B′|B = a?
• Information Independence: If a statement is refined by several new sym-

bols, should it then be possible to state that they are information indepen-
dent, so that knowledge of one does not affect the plausibility of the other?
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As an example, if A and B are introduced as refinements of C, should we
be permitted to claim that A|BC = A|C and B|AC = B|C?
• Strict Monotonicity: Will it always be the case that the plausibility of

a conjunction is less than those of the conjuncts, if these are independent
and their plausibilities are not 0 or 1?

We mean that ’yes’ answers to all are minimal precise conditions that en-
tail Bayesianism for finite models. For infinite models there turns out to be
another possibility that Cox apparently did not realize, namely plausibilities
taking values in an ordered field of reals and infinitesimals. This possibility
was eventually noticed by Adams[2] and recently elaborated by Wilson[15].

3.1 Associativity and strict monotonicity

If we accept refinability and information independence as reasonable assump-
tions, associativity and other algebraic laws for F and G follow: if a model
has a violation of associativity for F , then there exists a simple and finite
refinement (in three steps) that is arbitrarily blocked. If we have worked out
a model where F (a, F (b, c)) 6= F (F (a, b), c) for some plausibilities a, b and c,
then we take an arbitrary statement S (not false) and refine with Sa, Sb and Sc
such that Sa|Sb = a, Sb|Sc = b and Sc|S = c. Now the value SaSbSc|S can be
computed in two ways giving different results, as (SaSb)Sc|S = F (F (a, b), c)
and as Sa(SbSc)|S = F (a, F (b, c)). Similar arguments can be used to show
that F is bound by common sense to be symmetric, that G is associative and
symmetric for arguments where it is defined, and that F distributes over G in
the sense that if G(x, y) is defined, then F (z,G(y, x)) = G(F (z, x), F (z, y)).
In other words, refinability and information independence ensures that these
laws are inherited by F and G from the corresponding laws of propositional
logic. It is also reasonable to argue that F must be strictly monotone when
none of its arguments represents falsity (i.e., if x is not falsity and u > v,
then F (u, x) > F (v, x) and F (x, u) > F (x, v)). It is assumed in most related
analyses, including [1,6]. We summarize:

Claim 1 In order to satisfy natural requirements on consistency being pre-
served by non-informative refinements of models, we must work with models
where F and G are partially specified in such a way that they do not violate the
laws of associativity and symmetry, and moreover that F will distribute over
G. It is reasonable to assume that the functions F and G of a plausibility model
are strictly monotone for non-zero arguments, and that F (x, y) < min(x, y)
and G(x, y) > max(x, y) for non-trivial plausibility values of x and y.
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4 The finite case

If an appropriate rescaling to probabilities exists, we can find it by solving
a finite linear system of equations and inequalities for the log probabilities
li = logw(xi) excluding the value for falsity. The system has an equation
li + lj = lk for each triple xk = F (xi, xj) and an inequality li < lj for every
pair with xi < xj, and an equality li = lj when xi = xj.

If a partially specified function can be completed to a full function over the
support points (and some more points) satisfying associativity, symmetry and
strict monotonicity, then the system is solvable. A simple case where the par-
tially specified function triples satisfy the laws, but no completion over the
support points does so, is the following:

F (x4, x4) = a (1)

F (x3, x5) = a (2)

F (x2, x4) = b (3)

F (x1, x5) = b (4)

F (x4, x6) = c (5)

F (x3, x7) = c (6)

F (x2, x6) = d (7)

F (x1, x8) = d (8)

Here we have assumed that the xi quantities are ordered increasingly in the
open interval (0, 1), but the quantities a, b, c and d can have any values. If the
plausibilities were scalable to log probabilities li, there should be a solution to
the system:

l4 + l4 = la (9)

l3 + l5 = la (10)

l2 + l4 = lb (11)

l1 + l5 = lb (12)

l4 + l6 = lc (13)

l3 + l7 = lc (14)

l2 + l6 = ld (15)

l1 + l8 = ld, (16)

together with the conditions li < li+1.

If we now add together the equations (9-16) multiplied with the coefficient
sequence (1,−1,−1, 1,−1, 1, 1,−1), we find after cancelling that they imply
l7 = l8, contrary to the condition l7 < l8.
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But if it were possible to complete the partially specified F so that it satisfies
symmetry and associativity, we can reach the same conclusion by composing,
with the function F , equations (1-8), after first swapping the equations with
negative coefficient. The resulting equation is F (F (x4, x4), F (a, F (F (x1, . . .))))
= F (F (x3, x5), F (a, F (F (x2, . . .)))), and thus by symmetry and associativity
we can rearrange it to F (x7, F (a, F (b, . . .))) = F (x8, F (a, F (b, . . .))), where
the omitted (dotted) parts of the left and right sides are equal. This entails,
because of strict monotonicity and because no variable is zero, that x7 = x8,
contrary to the assumption that x7 < x8. This also means that it is pos-
sible to add a finite set of statements by refinement with plausibilities that
leads to inconsistency in the plausibility assignment. In this example we can
add statements {Ai}7

i=1, B4 and C, with Ai|C = xi and B4|C = x4. If the
Ai and B4 are independent given C, the statement A1A2A3A4B4A5A6A7|C
can be shown to have two different plausibilities, F (q, x7) and F (q, x8) for
q = F (a, F (b, F (c, F (d, x1, F (x2, F (x3, F (x4, F (x4, F (x5, x6) · · ·).

We can now state that rescalability of the F function is equivalent to finite
refinability. The argument goes as follows: If rescalability obtains, it is trivial to
extend F to an associative, symmetric and strictly monotone function over the
dense interval (0, 1) which covers any refinement. If rescalability does not hold,
then this is equivalent to non-solvability of a linear program. But this means
that a dual program has a solution and it so happens that this solution defines
a refinement that is a proof of non-compliance of F with strict monotonicity.
It is also possible to modify Aczéls analysis[1] of Cauchy’s equations to prove
simultaneous rescalability of F to ∗ and G to +:

Definition 2 An extension base B of a sequence X of length L is a se-
quence (ni) of length L of non-negative integers, multiplicities. A set of par-
tial functions can be extended to B if the partial functions can be extended
to a domain such that every nested expression in the function symbols with
arguments in X has a defined value if, for all i, the number of occurrences of
xi in the expression is not larger than the corresponding multiplicity ni in B.

Theorem 3 Let X = (xi)
L
i=1 be an increasing sequence in the open interval

(0, 1), and S = {1, . . . , L}. Given two sets of triples TF , TG ⊂ S3 interpreted
as specifications of two partial functions F and G satisfying also F (1, xi) = xi,
F (0, xi) = 0 and G(0, xi) = xi. Then the following are equivalent:

(i) There is a finite extension base B of X to which F and G cannot be jointly
extended as symmetric, associative and increasing functions satisfying joint
distributivity.

(ii) There is no increasing sequence of real numbers in (0, 1) (pi)
L
i=1 such that if

(i, j, k) ∈ TF , then pi ∗ pj = pk, and if (i, j, k) ∈ TG, then pi + pj = pk.
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5 Infinite models

Infinite models, without regularity assumptions on F and G, are more com-
plex. We first introduce the assumption of separability, under which any con-
sistently refinable model must be rescalable to a probability model, and then
we find a richer probability model family into which all models that can be
closed are rescalable.

5.1 Separability

Finite refinability is insufficient for infinite domains, as shown by the following
consideration: in a probability model, if x < y then the union of the intervals
[xi, yi] is a finite set of disjoint intervals, since the intervals will overlap for large
i. But the number of intervals is invariant under strictly monotone rescaling.
So a model where the union of such intervals (exponent now denoting iteration
of F , so that x1 = x and xn+1 = F (x, xn)) is an infinite set of disjoint intervals
cannot be rescalable.

As an example with an infinite number of intervals thus not being rescalable,
consider a domain generated from two statements with plausibilities b = 1/4
and a = 1/5. Let exponents of plausibilities denote iteration of the F function.
The model is defined by: F (bj, ak) = 1/(3(j + k) + (j + 2k)/(j + k)). Now
ap = 1/(3 ∗ p+ 2), bp = 1/(3 ∗ p+ 1), and separation is not obtained, because
no bp+1 is larger than ap for any positive integer p, and therefore all intervals
are disjoint. There appears to be no finite argumentation for the inadequacy
of this model, at least not using reasonable refinability arguments.

Suppose instead that a model is defined, and its F function is completed to a
minimal function that already covers all refinements. Which are the properties
required for rescalability of such a function? If the domain and range of F is D
and R, respectively, and R ⊂ D, then we need only one new condition before
we can prove rescalability, at least for the function F , and this is that the set
of intervals defined above is finite! We call this property separability, for the
following reason: if the condition obtains, then for any non-trivial plausibility c
in the model, and for every non-trivial plausibilities x and y with x < y, there
are integers p and q such that yp < cq ≤ xp, i.e., some power of c separates
some (equal) powers of x and y.

Definition 4 Two non-trivial elements a, b of a plausibility model are called
separable if a < b and ap < bp+1 or b < a and bp < ap+1 for some natu-
ral number p where the powers in the condition exist. A value a is separable
from 0 or 1 if a and F (a, a) are separable. Otherwise the elements are non-
separable. A plausibility model is separable if all distinct plausibility values
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are separable.

Non-separability is easily seen to be an equivalence relation: It is obviously
reflexive and symmetric. It is also transitive: If a, b and c are plausibility
values, a < b < c, and bp+1 < ap and cp+1 < bp for all p > 0, then cp+2 < ap,
i.e., F (cq+1, cq+1) < F (aq, aq) for 2q = p and by strict monotonicity of F we
have cq+1 < aq for all integers q > 0. The following is proved in the appendix:

Theorem 5 Let the function ◦ : D2 → R have the following properties: R ⊂
D, {0, 1} ⊂ D and D ⊂ [0, 1]; Associativity; Strict monotonicity on D − {0};
Symmetry; 0 ◦ x = 0 and 1 ◦ x = x; Model is separable.

Then for x, y ∈ (D − {0})2, x ◦ y = f(f−1(x) + f−1(y)), for a partial strictly
monotone function f whose inverse is a strictly monotone function f−1.

5.2 Extended probability models

Definition 6 An extended probability model is a model based on proba-
bilities taking values in an ordered field generated by the reals and an ordered
set of infinitesimals. An infinitesimal is a non-zero element smaller in mag-
nitude than any positive real.

For algebraic terminology used from now, see [11]. Extended probability was
studied by Wilson[15] as a way to handle conditioning on rare events. It is
closely related to Adams’s proposal for the logic of conditionals[2]. The non-
separable example in section 5.1 can be mapped into an extended probability
model by mapping a to 1/2 and b to 1/2+ε, where ε is a non-negative infinites-
imal. We will show that such a mapping can always be found for a consistently
refinable and closed model.

Definition 7 A plausibility model satisfying strict monotonicity, refinability
and information independence assumptions can be closed if its functions F
and G can be extended to an ordered domain D, still satisfying refinability,
information independence and strict monotonicity in the following way: The
domain D of F contains its range. Likewise, on the domain D there is a
function S with the property G(x, S(x)) = 1, and G(x, y) is defined when
x ≤ S(y). The range of G is contained in D. Closing a plausibility model
results in a closed plausibility model.

Theorem 8 Every plausibility model that can be closed can be rescaled to an
extended probability model.

Conway derives the structure of transfinite numbers using a real ordered field
No that he shows[5, Th. 28, 29] universal, i.e., every other ordered field is
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(isomorphic to) a subfield of No. This field contains all real numbers and is
an extended probability model: Assume No contains some non-real element
e between 0 and 1. This element is associated with a real number re, the
least upper bound on reals smaller than e. The solution to x ⊕ re = e is an
infinitesimal, a non-zero element smaller in magnitude than any positive real.
Thus, every element of the model is generated by its infinitesimals and reals.
Thus it suffices to show that every closed plausibility model can be embedded
in an ordered field. An proof sketch is in the appendix.

Corollary 9 Every plausibility model which can be closed in the domain of
the reals, can be rescaled to a standard probability model.

Indeed, the closed model has a function F satisfying the premises of The-
orem 5, except possibly the separability condition. We know by Theorem 8
that our model can be rescaled into an extended probability model. If F is
not separable the model cannot be embedded in the field of reals, otherwise
it can: the embedding process described in the proof of Theorem 8 does not
introduce infinitesimals into a separable and closed model.

Finally, if we accept an ordered instead of a real domain in Jayne’s desideratum
I, we arrive rather painlessly at extended probability as canonical uncertainty
measure, with the added insight that extended probability is required only
in infinite models (although it can be motivated pragmatically also for finite
models, as is done in default and other non-monotonic reasoning frameworks).
Moreover, if we allow a set of plausibility values that are only partially ordered,
our assumptions would lead to uncertainty management schemes where un-
certainty is modelled by a set (via the set of total orderings compatible with
the partial order) of extended probability distributions.

6 Conclusions

We proposed to weaken the common sense assumptions used previously to
prove rescalability, from domain denseness and continuity of auxiliary func-
tions to refinability and allowing information independence. We showed such
assumptions sufficient for finite models. For the infinite case, we can only show
rescalability to extended probability. Several contemporary reasoning schemes
are related (shown more or less equivalent) to infinitesimal or extended proba-
bility in [4]. Thus, for any scheme that cannot be described as based on sets of
extended probability distributions, it would be interesting to see what is lost
by violating our assumptions, and what is gained in terms of alternative good
properties. As an example, there is a current example in epidemiology, where
there seems to be an incompatibility in a non-parametric inference problem
between coherence and frequentist coverage, even asymptotically[12].
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A Proofs of Theorems

Lemma 10 (Kuhn[10]) The system of equations Ax = 0 has a positive so-
lution x > 0 if there is no u such that ATu ≥ 0 and u 6= 0.

Lemma 11 Let F be a linear subspace of Rn. The following conditions are
equivalent:

(i) There is no element in F with all components positive.
(ii) There is a non-negative non-zero vector d orthogonal to F .

PROOF.

(ii)→(i): This direction is obvious, since a vector orthogonal to a non-zero and
non-negative one cannot have all components positive.

(i)→(ii): Assume (i): There is no element in F of Rn with all components
positive. Let F be the space spanned by the rows of matrix B, F = {BTy :
y ∈ Rk}. Let the rows of A be a base for the orthogonal co-space of F ,
ABT = 0. Thus, F = {x : Ax = 0} and Ax = 0 has no positive solution x
by our assumption that (i) is the case. Since Ax = 0 has no positive solution,
by Lemma 10 there is a u such that ATu ≥ 0 and u 6= 0. Now uTA is a non-
negative vector, and it is orthogonal to every vector in F because ABT = 0
and thus (uTA)(BTx) = 0 for all x ∈ Rk. So (ii) applies, i.e., (i)→(ii).

Lemma 12 Let X = (xi)
L
i=1 be an increasing sequence of real values. Let

S = {1, . . . , L} and T◦ ⊂ S3 be a finite set of triples. The partial function ◦
satisfies xi ◦ xj = xk, for all (i, j, k) ∈ T◦. Then the following conditions (i)
and (ii) are equivalent:

(i) There is a finite extension base B of X to which ◦ cannot be extended as a
symmetric, associative and increasing function.

(ii) There is no increasing sequence of numbers (fi)
L
i=1 such that if (i, j, k) ∈ T◦,

then fi + fj = fk.

PROOF.

(i)→(ii) : If (ii) is not the case, there exist appropriate fi. Define l(x) by
interpolation to an increasing function between the constraints l(xi) = fi.
The function x ◦ y = l−1(l(x) + l(y)) is associative, symmetric and increasing.
So also (i) is not the case, which shows (i)→(ii).

(ii)→(i): Assume (ii) is the case. Define the |T◦| by L matrix M to have one
row for each tuple in T◦. For such a tuple (i, j, k), the row has the value 1 in
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columns i and j, the value -1 in column k, and zero otherwise. Matrix D is
L−1 by L and has value D = I ′−I ′′ where I ′ and I ′′ is the L by L unit matrix
with the first and last row, respectively, deleted. From now on we regard f as
a sequence of variables fi. Since (ii) is the case, there is no L-vector solution f
to Mf = 0 that also satisfies Df > 0, since such a solution would contradict
non-existence of the fi.

The solution space F of Mf = 0 is such that the linear subspace DF is orthog-
onal to some non-zero vector d with non-negative components, by Lemma 11.
In other words, a linear equation dTDf = 0 for f can be derived from Mf = 0
only, i.e., the null space {f : Mf = 0} of M is included in the null space
{f : dTDf = 0} of dTD, and dTD = cTM for some vector c. Since M and D
have integer elements, and the condition is homogeneous in d, we can assume
that d consists of natural numbers and c of integers. Thus, a linear equality
dTDf = 0 for f can be obtained as a linear combination with integer coeffi-
cients of the linear equalities given by the rows of the system Mf = 0. But
each row r of M is derived from a constraint xk = xi◦xj for the function ◦. By
composing these constraints with the associative and commutative operator ◦
in the pattern indicated by c we can derive a functional constraint on x◦y, and
at last obtain a functional constraint corresponding to the linear constraint
dTDf = 0. We compose the constraints coded by a triple of T◦ a number of
times given by the magnitude of the corresponding coefficient ci of the linear
combination, reversing the equation if the coefficient is negative. In this way
we derive a functional constraint:

a1 ◦ a2 ◦ · · · ◦ am = b1 ◦ b2 ◦ · · · ◦ bn. (A.1)

The corresponding linear constraint dTDf = 0 can be written as

d1f1 + d2f2 + · · · dL−1fL−1 = d1f2 + d2f3 + · · · dL−1fL, (A.2)

where no di is negative and at least one is positive. But (A.2) results from
the linear form of (A.1) by cancelling certain elements in both sides. Thus,
n = m and either ai = bi (for quantities cancelling in the linear combination)
or ai < bi (for quantities remaining in (A.2), with at least one strict inequality
since at least one di is non-zero.

But then, from strict monotonicity, we must also have: a1 ◦ a2 ◦ · · · ◦ am <
b1 ◦ b2 ◦ · · · ◦ bn.

There can thus not be an increasing extension of ◦ to an extension base defined
by the union of the (ai) and (bi) sequences, in other words (i) is the case.

Lemma 13 (Aczél[1]) The solutions to Cauchy’s equation f(x+y) = f(x)+
f(y), when constrained to be bounded and monotone, are f(x) = kx.
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Proof of Theorem 3 Lemma 12 applies both to the function F and the
function G of a consistently refinable plausibility model, since these functions
are both, by Claim 1, associative, symmetric and increasing. For the function
F , the numbers fi must be negative, since we assumed F (x, y) < min(x, y)
and there is an equation fi + fL = fj as well as inequalities fj < fi < fL in
our system. The fi can thus be taken as log probabilities. For the function G,
the fi must for analog reasons be positive. They can be taken as probabilities
after some normalizing linear scaling. Assume thus that the plausibility mea-
sure has been scaled taking G to +. The distributivity equation (Claim 1) is
transformed to a family of Cauchy equations, F (x+ y, z) = F (x, z) +F (y, z).
By Lemma 13 1 and Claim 1, the solution has the form F (x, z) = xc(z) for
some monotone function c. But since F (1, z) = z we must have c(z) = z on
the domain, i.e., F (x, y) = xy.

Proof of Theorem 5. Define the function family φm(x) inductively by φ0(x) =
1, and φm+1(x) = x ◦ φm(x), for m ≥ 0. The family is well-defined since the
range of ◦ is included in its domain. It is not necessarily continuous. Now,
φm1(x) ◦ φm2(x) = φm1+m2(x) and φm1(φm2(x)) = φm1m2(x), and φm(x) is a
strictly monotone function of x when m 6= 0, going from 0 to 1 as x does so.
The symmetry assumption also leads to the law φm(x◦x′) = φm(x)◦φm(x′). For
a rational number r = p/q and x, y ∈ D, we define y = φr(x) if φq(y) = φp(x).
Now, φr is a partial strictly monotone function. Select some c ∈ D − {0, 1}
and let f(r) = φr(c) . As a function of r, f(r) = φr(c) is a strictly monotone
decreasing partial function. We extend f by defining its inverse f−1 to a total
function from D into the reals by a direct limit process of interval bisection:
For x ∈ D − {0, 1}, define f−1(x) as the limit of pi/qi, when qi = 2i and
φpi+1(c) < φqi(x) ≤ φpi(c). There is always a unique solution sequence pi, be-
cause φ0(c) = 1, so the right inequality can be satisfied, and the left inequality
can be satisfied because the separability condition makes limn→∞ φn(x) inde-
pendent of x if 0 < x < 1. The sequence pi/qi will converge to a real number,
since the sequence pj/qj for j > i is contained in the interval [pi/qi, (pi+1)/qi],
whose length goes to 0. Thus, f−1 : (D−{0})→ [0,∞) is a strictly monotone
total function on D (strictly because of separability). Its range is closed under
addition, as can be seen by comparing two bisection sequences {pi} and {p′i}
converging to f−1(x) = r and f−1(y) = r′ with the one, {p′′i }, for d = x ◦ y
converging to f−1(x ◦ y) = r′′.

The relations φpi+1(c) < φqi(x) ≤ φpi(c) and φp′i+1(c) < φqi(y) ≤ φp′i(c) imply,
because of symmetry of ◦, φqi(d) ≤ φpi+p′i(c) and φqi(d) > φpi+p′i+2(c). This
implies that p′′i = pi + p′i or p′′i = pi + p′i + 1 for all i and thus r′′ = r+ r′. But
then f−1(d) = f−1(x ◦ y) = f−1(x) + f−1(y), or x ◦ y = f(f−1(x) + f−1(y))
for all x, y ∈ (D − {0}), which finishes the proof.

1 This lemma assumes the function to be defined on a dense interval, whereas we
have a partial function assumed to be extensible. This technicality is solved in [3].
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Proof of Theorem 8

We show how a closed plausibility model is embedded in an ordered field. We
have the closed model defined by the ordered domain D with smallest and
largest elements 0 and 1. The functions F , G and S, where F and G satisfy
the rules of · and + for a commutative ring on their domains of definition, 0
and 1 are unit elements of G and F , respectively. Let D+ = (D − {0}).

The function S : D → D maps its argument x to the solution y of the equa-
tion G(x, y) = 1. The function F is defined on D2, and G on {(x, y) : (x, y) ∈
D2 ∧ x ≤ S(y)}. We must extend D while defining the rules for ◦ and ⊕ as
extensions of F and G. We do this in three steps, using the standard technique
of defining an extension as the quotient of a set of pairs by an equivalence re-
lation, and indicating which element of the extension that corresponds to each
element of the original domain. We use the notation [a]∼ for the equivalence
class of ∼ containing a. It is easy, in each step, to define the functions ◦ and
⊕ on the extensions and verify that they are indeed functions and extensions,
that their laws are preserved, as well as to verify that no two elements of
the old domain become equivalent in the new domain. Details of this verifica-
tion are omitted. First, note that for every sequence (ai)

n
1 there is a non-zero

cn depending only on n such that G(F (cn, a1), G(F (cn, a2), . . . F (cn, an) . . .) is
defined (for any non-trivial plausibility value e, choose c = min(e, S(e)) and
cn = cdlogne).

The first embedding step introduces non-negative rationals and is similar to
the standard quotient construction for integral domains. Let D(1) = (D ×
D+/ ∼, where, for a, c ∈ D and b, d ∈ D+, (a, b) ∼ (c, d) iff F (a, d) = F (b, c).
Use notation [a, b] for [(a, b)]∼. An element d ∈ D is identified with [d, 1] ∈
D(1). Define <, ◦ and ⊕ as total functions by [a, b] < [c, d] iff F (a, d) < F (c, b),
[a, b] ◦ [c, d] = [F (a, c), F (b, d)], and [a, b] ⊕ [c, d]) = [G(F (a, d, e), F (b, c, e)),
F (b, d, e)] for suitably small e. The rational number 2/3 is identified with
[G(x, x), G(x,G(x, x))] for some 0 < x < c3, and the other non-negative ratio-
nals are similarly defined. In this extension the rules for a field are satisfied,
except that we have not yet an additive inverse (or negative values).

Our second embedding step introduces subtraction and negative values: Let
D(2) = (D(1) × (D(1))/ ≈, where, for a, b, c, d ∈ D(1), (a, b) ≈ (c, d) iff a⊕ d =
b⊕ c. Use notation [[a, b]] for [(a, b)]≈. An element d ∈ D(1) is identified with
[[d, 0]] ∈ D(2). Define <, · and + in this extension by [[a, b]] < [[c, d]] iff
a⊕d < c⊕ b, [[a, b]] · [[c, d]] = [[a◦ c⊕ b◦d, a◦d⊕ b◦ c]], and [[a, b]] + [[c, d]]) =
[[a ⊕ c, b ⊕ d]]. The structure (D(2), <, ·,+, 1, 0) is now an ordered ring and
indeed an ordered integral domain (because of strict monotonicity). Like all
ordered integral domains it can be embedded in an ordered field[11, Ch V.2,
Theorem 6]. This field embeds the closed plausibility model. This finishes the
embeddability proof.
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