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Abstract

We discuss the justifications of Bayesianism by Cox and Jaynes, and relate them to a
recent critique by Halpern(JAIR, vol 10(1999), pp 67–85). We show that a problem with
Halperns example is that a finite and natural refinement of the model leads to inconsisten-
cies, and that the same is the case with every model in which rescalability to probability
cannot be done. We also discuss other problems with the justifications and assumptions
usually made on the function F describing plausibility of conjunction. We note that the
commonly postulated monotonicity condition should be strengthened to strict monotonicity
before Cox justification becomes convincing. On the other hand, we note that the com-
monly assumed regularity requirements on F (like continuity) or its domain (like denseness)
are unnecessary.

1. Introduction

Several ways are possible for dealing with uncertainty and ignorance in AI applications and
the correct way of dealing with it cannot be proved, since this is not a purely mathematical
question. Bayesianism is one possible way that has been tried in so many application
areas and with so convincing results that its proponents have claimed it superior to all
its alternatives and for all applications. Such claims are easier to justify with some very
fundamental scientific argument. One such argument could be that even if other ways to
deal with uncertainty are possible, they either have some easily stated deficiency or are
equivalent to Bayesianism.

Indeed, such arguments have been put forward and they have not been unanimously
accepted. This also would follow from Bayesianism itself, since prior prejudices are predicted
by the theory to outweigh every informal argumentation, and there is no proof method
relating to real-world phenomena with the persuasiveness of pure logic and mathematics.
This note was inspired by a recent critique (Halpern, 1999) of (Cox, 1946) and (Jaynes,
1996). We try to identify the separating point and propose a solution to the riddle posed
by Halpern.

We try to find assumptions that are strong enough to strictly imply Bayesianism and
at the same time convincing in a subjective way (common sense). In section 2 we give a
short outline of Cox arguments and introduce the function F relating the plausibility of a
conjunction to the plausibilities of its conjuncts. In section 3 we describe Halperns example.
In section 4 we discuss the problem raised by the difference between the conclusions of the
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two papers. In subsection 4.1, we show that a simple and natural refinement of Halperns
example leads to inconsistency, and that the same will be the case if the function F has a
violation of associativity or symmetry. In 4.2 we observe that the difference between prob-
ability and possibility is the insistence on strict monotonicity instead of monotonicity of F .
In 4.3 we show that even if there is no direct violation of strict monotonicity, associativity or
symmetry, there can be problems in a model that surface after a number of refinement steps,
and we describe a theorem (proved in the appendix) saying that for a finite domain, natural
refinements are possible if and only if the plausibilities are rescalable to probabilities. In 4.4
we discuss the extension to infinite domains. We give conditions under which rescalability is
possible. These conditions are related to a common sense description of desirable features.
We do not find purely technical conditions such as continuity or some dense type of domain
among these conditions. Theorems justifying our conclusions are proved in the appendix.

2. Arguments for the Inevitability of the Bayesian View

In 1946, R.T. Cox published his findings(Cox, 1946) on some properties required by any
good calculus of plausibility of statements. He stated three requirements (the following is
actually from Jaynes, but very similar):

I: Divisibility and comparability- The plausibility of a statement is a real number and
is dependent on information we have related to the statement.

II: Consistency - If the plausibility of a statement can be derived in two ways, the two
results must be equal.

III: Common sense - Aristotelian deductive logic should be the special case of reasoning
only with statements known to be true or known to be false, and plausibilities should
vary sensibly with the assessment of plausibilities of inputs.

The paper is very appealing to believers in Bayesianism, but sometimes more has been
put in it than there is, and sometimes less. A very lucid elaboration of Cox findings
can be found in Chapter 2 of E.T. Jaynes posthumous manuscript(Jaynes, 1996). After
introducing the notation A|C for the plausibility of statement A given that we know C to
be true, he finds, using propositional logic, the governing functional equation for defining
the plausibility of a conjunction: AB|C = F (A|BC,B|C) must hold for some function
F . Since ABC|D ≡ (AB)C|D ≡ A(BC)|D, F must satisfy the equation of associativity:
F (F (x, y), z) = F (x, F (y, z)), with x = A|BCD, y = B|CD and z = C|D. If this were true
for all x, y, and z (this is the key element in Halperns critique), we could solve the equation
after postulating some regularity condition on F . Solving the equation is non-trivial, but
the result is that no matter what our choice of A|C is, there must be a function w such
that w(AB|C) = w(A|C)w(B|AC). This follows, e.g., by assuming F defined on a dense
interval and twice continuously differentiable. By letting the constituent statements in the
relation w(AB|C) = w(A|C)w(B|AC) take on various combinations of truth and falsity,
we find that we can, without loss of generality, demand that w(A) goes from 0 when A is
falsity, monotonically to 1 when A is truth.

There must also be a function S with the property S(w(A|C)) = w(A|C). By ma-
nipulating this equation with the rules of propositional logic we find that S must satisfy
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xS(S(y)/x) = yS(S(x)/y) for y ≥ S(x). This is also a fairly difficult functional equa-
tion for S, but it is relatively easy to verify that one family of solutions is given by
S(x)m + xm = 1, for real number m > 0. These are also the only solutions. Conse-
quently, every type of reasoning with the plausibility of statements satisfying I, II and III
above is equivalent to computing with probabilities after the rescaling of the plausibility
measure to w(x)m. The two laws we found are (switching now to the familiar notation
P for probability) P (AB|C) = P (A|C)P (B|AC) and P (A|C) = 1 − P (A|C). Bayes rule
P (A|BC) = P (B|AC)P (A|C)/P (B|C) is an immediate consequence of the probability rule
for conjunction and commutativity of conjunction.

From this all the machinery of Bayesian analysis follows, except the way to assign
prior probabilities. Thus, Bayesian analysis is equivalent to every way of reasoning with
plausibility satisfying the criteria I, II and III, as interpreted by Cox and Jaynes. A similar
derivation (more related to de Finettis work, so the probabilities are derived from consistent
gambling behaviour) is (Lindley, 1982). The accompanying discussion is recommended
reading as an illustration of how difficult this topic is. It must be said that neither Cox
nor Jaynes are completely rigorous in defining their assumptions, and a recent critique can
be found in (Halpern, 1999). It is clear that Halpern and Cox/Jaynes interpret condition
III differently, since Cox solves a differential equation whereas Halpern gives a discrete
counterexample. In his example the function F is not associative and whence his plausibility
measure cannot be rescaled to probabilities, because non-associativity must be preserved by
scaling. Cox/Jaynes do not state theorems in their texts. Therefore, Halperns paper cannot
give a counterexample to a theorem by Cox, as the title of Halperns paper suggests. But it
can be taken as evidence that Cox common sense assumptions are not the only ones possible.
We do not think anyone would argue against the desirability of the three conditions I, II
and III as given above. However, they may conflict with other desirable conditions. In
particular, common sense is a rather open-ended condition and it can certainly be debated
what is required by common sense, and what is not.

The first condition I has been characterized as the ’dogma of precision’ and is sometimes
found unacceptable essentially by arguments saying that we cannot know which exact real
numbers to use. Several alternatives based on intervals instead of numbers have been
designed and motivated, by see, e.g., (Walley, 1996) and others. This may in turn lead to
problems in choosing the exact real values used as end-points of the intervals. Although some
interval based schemes can be seen as multiple-context Bayesian inference in analogy with
multiple-criteria decision making, they are usually not presented as such. There are many
possible objections, but here we will concentrate on a set of problems discussed by Halpern.
We will not give a full account of the background to the discussions and developments of Cox
ideas. There is a fairly comprehensive discussion in (Halpern, 1999). For more far-reaching
discussions, see, e.g., (Jaynes, 1996), (Walley, 1991) and (Fine, 1973). Paris gives a full-
fledged proof of rescalability (Paris, 1994) that does not use differentiability assumptions,
but insists on an often omitted density assumption of the set of probability values (which
cannot hold on a finite setting).

Many approaches were analysed in the imprecise probabilities project(Walley, 1999).
Particularly, there are many ways to resolve the difficult distinction between ignorance and
uncertainty by making hierarchical models involving both possibility and probability. This
is not a central theme of this note, however.
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3. Halperns Example

It only follows from the argument of Cox/Jaynes (referring to condition III) that associa-
tivity holds for values actually occurring as plausibilities of statements A|BCD, B|CD and
C|D. Halpern designs a small world where there are no 4-tuples of statements to which the
associativity condition could apply. In the notation of Cox, the example consists of four
groups of three statements each(→ stands for implication):

A,B,C, where A → B and B → C hold
D,E,G, where D → E and E → G hold
H, I, J , where H → I and I → J hold
K,L,M , where K → L and L → M hold

C, G, J and M exclude each other, so only one of them can hold. Plausibilities are assigned
to these statements as follows:

D|EG = H|IJ = 3/5
E|G = A|BC = 5/11
B|C = L|M = 11/19
A|C = I|J = 5/19
D|G = K|LM = 3/11
K|M = 3/19
H|J = 3/19 − δ, for some small δ > 0.

From the above we find 5/19 = A|C = AB|C = F (A|BC,B|C) = F (5/11, 11/19) and
3/11 = D|G = DE|G = F (D|EG,E|G) = F (3/5, 5/11). Moreover, 3/19 = K|M =
KL|M = F (K|LM,L|M) = F (3/11, 11/19), but 3/19−δ = H|J = HI|J = F (H|IJ, I|J) =
F (3/5, 5/19). It is easy to see that these plausibilities are consistent in all ways, as shown
by the detailed model in (Halpern, 1999). With the exception of H|J , all quantities could
have been probabilities. The function F is not associative, because F (3/11, 11/19) =
F (F (3/5, 5/11), 11/19) = 3/19, but F (3/5, 5/19) = F (3/5, F (5/11, 11/19) = 3/19 − δ.

4. Discussion

What happened in the example is that the same plausibility values were assigned to seem-
ingly unrelated conditional statements. Therefore, a violation of associativity yields no
immediate inconsistency. It appears quite clear that there is a difference in the assumptions
made by Cox and those made by Halpern: Cox assumes implicitly that F is a universal
function, to be used for all possible models. This is not entirely unreasonable if the anal-
ogy between F and the truth table for conjunction is seen - we seldom let propositional
connective truth tables be model dependent. Halpern on the other hand - also implicitly -
assumes that every model could have its own function F . This is also quite reasonable, and
there is for example the even more relaxed condition that several F functions can be used
in the same model. But we do not want to leave this problem without a somewhat deeper
analysis. Instead of discussing contrived technical conditions under which Bayesianism can
be recovered, we argue that a well-informed method choice can be obtained in a dialogue
around desirable properties of an uncertainty measure and methodology. Such a dialogue
can focus on questions like these, after a general consensus about conditions I and II of
Jaynes:
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• Refinability: Assume we have a consistent model with some statement S. Should it
be possible to refine S into two parts S′ and S′′, so that any value already appearing
in the model could be given to the plausibility S′|S?

• Strict Monotonicity: Will it always be the case that the plausibility of a conjunction
is less than those of the conjuncts, if these are independent and their plausibilities are
not 0 or 1?

• Separability: Is there a ’separating plausibility’ c in the model with the following
property: Consider any two plausibilities x and y of the model, x < y < 1. Consider
three refinement sequences Xi, Yi and Ci such that the plausibility of Xi+1|Xi is
constant x, Yi+1|Yi is constant y, and Ci+1|Ci is constant c. Are there then always
integers p and q such that Xp|X0 < Cq|C0 ≤ Yp|Y0?

This dialogue might lead to discussions of what is meant by independence, represen-
tativity, ignorance and uncertainty, and also of which the space is to which plausibilities
are assigned. But the questions above are relevant. We mean that ’yes’ answers to them
are minimal precise conditions that entail Bayesianism. No purely technical conditions,
introduced just to make the proof go through, are necessary.

4.1 Refinability

Halpern takes his example as an indication that the ’proof’ of Cox only applies to infinite
domains with a particular type of (dense) plausibility assignment, and observes that such
cases are unusual (indeed non-existent) in practice. There are, however, more conditions
that can be extracted from the desideratum of common sense. One such can be called
refinability - it can be claimed reasonable that certain types of refinements of the model
should be possible, and not depend a lot on somewhat arbitrary details designed into other
parts of the model. In the example, it would be perfectly reasonable that one wants to add
a new statement A′ in the C part of the model, and such that A′ → A. Moreover, it would
be reasonable to allow any value to be assessed for the plausibility A′|A, because there is no
link to the rest of the model. But there is one value, namely 3/5, that cannot be assigned,
because this would give a violation of the associativity law for the statement A′AB|C,
which could be proved to have plausibility both 3/19 and 3/19 − δ. One can claim that
this effect is a violation of common sense. It involves nothing that is infinite. It is readily
seen that it is generally valid: if a model has a violation of associativity, then there exists a
simple and finite refinement (in three steps) that is arbitrarily blocked. A similar argument
can be used to show that F is bound by common sense to be symmetric: It is reasonable
that one should be able to add two conditionally independent statements (by independence
we mean, of course, that A|BC = A|C and B|AC = B|C) with any plausibilities to the
model, and then symmetry of F follows from commutativity of conjunction. Symmetry
was never assumed by Cox, but followed from the differentiability properties assumed for
F . The above is meant to suggest that it is quite reasonable to require that the function
F is associative and symmetric for all values that appear in a given model. These are the
properties postulated for the similar functions T-norms used in (Bonissone & Wood, 1989)
and by many others. These functions were also postulated to be monotonic, however.

5



S. Arnborg, G. Sjödin

4.2 Strict Monotonicity

Another point raised by Halpern is the status of Dubois-Prades possibilistic system where F
is proposed to be the minimum function. There are important uses of this function(Benferhat,
Dubois, & Prade, 1997), but not as the function F in Bayesianism. One must ask if there
is a common sense reason to exclude it rather than finding various contrived technical con-
ditions that block it. The min function arises naturally from a common sense observation:
it is reasonable to assume that AB|C = F (A|BC,B|C) ≤ min(A|BC,B|C). The min func-
tion is thus an upper bound for possible F functions. Cox states that he assumes F to
be twice continuously differentiable. But this is just a contrived condition required for his
proof method. It seems unreasonable to exclude the min function for the reason that it
is not twice continuously differentiable, or at least to argue that common sense prescribes
differentiability. It is somewhat easier to argue that F must be strictly monotone when none
of its arguments represents falsity (i.e., if x is not falsity and u > v, then F (u, x) > F (v, x)
and F (x, u) > F (x, v)). Jaynes states the requirement of strict monotonicity, although
he does not mention when he uses it: ”If A|C becomes more plausible, and B|AC is not
falsity, then AB|C also becomes more plausible, if nothing else (namely B|AC) changes”.
This statement can certainly not be verified mathematically, but is something you have to
believe to accept. But it tallies well with numerous observations describing the relation-
ship between uncertainty and ignorance(Wakker, 1999), and seems closely related to the
additivity assumption used in de Finettis and Lindleys framework.

If possibility is related to ignorance, as many claim, ought one not be able to use a func-
tion F that is not strictly monotone, like the min function? This is certainly not excluded.
But in practice it seems as if two-stage approaches are very successful for problems with
both ignorance and uncertainty. Thus, the standard Bayesian hierarchical models(Carlin
& Louis, 1997) can be described as probability distributions over probability distributions.
Robust Bayesian methods use sets of probability distributions(Berger, 1994), and the sets of
desirable gambles(Walley, 1999) are quite similar and considered a candidate for a most gen-
eral framework of imprecise probability. Belief functions are probabilities over possibilities
(or, more precisely, probabilities of sets(Wakker, 1999)).

4.3 Completion

A last question raised by Halpern is whether any partially specified function can be ex-
tended to an associative function if it is associative on its range of definition. This is not
generally the case, even if it also satisfies the other properties that will be required from the
completed function: strict monotonicity and symmetry. The rescaling operation defined by
Cox involves an arbitrary (non-negative) function H(x) :

w(x) ≡ exp(
∫ x dx

H(x)
)

that he shows to exist for all associative and twice continuously differentiable functions F
(we may have to add strict monotonicity or improve the proof). If we take this function H
to be piecewise constant between the points appearing in the model, we get an extension
to an associative and piecewise twice continuously differentiable function by solving a finite
linear system of equations and inequalities for the quantities li = log w(xi) excluding the
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value for falsity. The system has an equation li + lj = lk for each triple xk = F (xi, xj) and
an inequality li < lj for every pair with xi < xj , and an equality li = lj when xi = xj .

If a partially specified function can be completed to a full function over the support
points (and some more points) satisfying associativity, symmetry and strict monotonicity,
then the system is solvable. Its solution set is either unbounded or empty, and it is empty
only if there is no completion satisfying associativity, symmetry and strict monotonicity.
Let us give a slightly more complex example showing how this works – the formal part is
given in Theorem 3 of the appendix. A simple case where the partially specified function
triples satisfy the laws, but no completion over the support points does so, is the following:
Assume the partial specification satisfies

F (x4, x4) = F (x3, x5) = a (1)
F (x2, x4) = F (x1, x5) = b (2)
F (x4, x6) = F (x3, x7) = c (3)
F (x2, x6) = F (x1, x8) = d (4)

Here we have assumed that the xi quantities are ordered increasingly in the open interval
(0, 1), but the quantities a, b, c and d can have any values. If the plausibilities were scalable
to log probabilities li, there should be a solution to the system:

l4 + l4 = l3 + l5 (5)
l2 + l4 = l1 + l5 (6)
l4 + l6 = l3 + l7 (7)
l2 + l6 = l1 + l8, (8)

together with the conditions li < li+1. We would be able to decide from (5) and (6) that
l4− l2 = l3− l1 and thus F (x1, x4) = F (x3, x2) by simple elimination, and we could similarly
work out the consequence l7 = l8, contrary to the condition l7 < l8. But if it were possible
to complete the partially specified F so that it satisfies symmetry and associativity, we can
reach the same conclusion by observing that the first two equations can be combined with
F to yield: F (F (x4, x4), F (x1, x5)) = F (F (x3, x5), F (x2, x4)) and thus by symmetry and
associativity F (F (x4, x5), F (x1, x4)) = F (F (x4, x5), F (x2, x3)), which entails, because of
strict monotonicity and 0 < F (x4, x5) < 1, that we have F (x1, x4) = F (x2, x3). Continuing
in the same fashion we obtain from (1) and (3): F (x4, x7) = F (x5, x6), from (2) and
(4): F (x4, x8) = F (x5, x6), and finally F (x4, x7) = F (x4, x8) and x7 = x8, contrary to
the assumption that x7 < x8. This also means that it is possible to add a finite set of
independent events with their plausibilities to the model that leads to inconsistency in the
plausibility assignment. In this example we can add statements {Ai}7

i=1, B4 and C, with
Ai|C = xi and B4|C = x4. If the Ai and B4 are independent given C, the statement
A1A2A3A4B4A5A6A7|C can be shown to have two different plausibilities, F (q, x7) and
F (q, x8) for q = F (x1, F (x2, F (x3, F (x4, F (x4, F (x5, x6)))))). Theorem 3 shows that all
finite refinement sequences of a consistent finite model are consistent if and only if the
plausibility measure is rescalable to probability. We need not consider arbitrarily long
sequences, since the length of a shortest inconsistent sequence can be bounded in terms of
the size of the original model.
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The above means that we can assign plausibilities in two different ways: either we
choose a function F that has the required properties and use it for assigning plausibilities of
conjunctions, or else we assign plausibilities on the fly but check always (by solving an LP
problem) that no newly defined triple (arguments and function value) violates the required
properties. In both cases it would be better to work with probabilities.

4.4 Separability

We finish the discussion by noting that Aczél, in another of his numerous books, has stated
weaker conditions than twice continuous differentiability under which the solutions F to
the equation of associativity can be expressed by l(F (x, y)) = l(x) + l(y) (think of l as
the logarithm of w). These conditions are continuity and cancelability (Kürzbarkeit): if
F (u, x) = F (v, x) or F (x, u) = F (x, v), and x �= 0, then it must be the case that u =
v ((Aczél, 1961), section 6.2). Cancelability and continuity leads immediately to strict
monotonicity, as well as strict monotonicity independently of continuity entails cancelability.
For completeness, the proof that our interpretation of common sense, with a universal
function F with dense domain [0, 1], leads to Bayesianism, is given as Theorem 4 in the
appendix. This proof is a specialized version of the proofs in the work of Aczél on functional
equations. This makes it easier to read and one will not have to consider the many special
cases that can occur in general. Several authors have referred to these proofs as long and
complex. This is unfortunate, because what is required for the Bayesian connection is easy.

The replacement of continuity and associativity assumptions by strict monotonicity and
refinability entails Bayesianism in finite domains. Now it remains to consider non-finite
domains. There seem to be no principled reason that Theorem 3 should not work in infinite
domains. However we have not analyzed this problem, and in particular we do not think that
finite refinability is sufficient for infinite domains. Instead we solve a slightly easier problem:
Suppose that a model is defined, and its F function is completed to a minimal function that
already covers all refinements. Which are the properties required for rescalability of such a
function? If the domain and range of F is D and R, respectively, and R ⊂ D, then we need
only one new condition before we can prove rescalability(Theorem 5 of the appendix), and
this is the Separability condition of section 4! The Separability condition is only relevant
for infinite domains, and there it has the consequence that there must be an accumulation
point in the domain at the low end (typically 0). The Separability condition seems related
to the Archimedean order axiom of (Fine, 1973), in the sense that it binds the domain
together. One can certainly question the common sense inevitability of separability. But it
is an easily stated condition that is much weaker but more robust than continuity and the
accompanying domain denseness, which seem to us rather fragile conditions.

5. Conclusions

The Bayesian method of dealing with uncertainty is an important achievement of 20th
century philosophy of science. It is based on very fundamental and inescapable principles.
But its supremacy cannot be proved, only made plausible. In particular, Cox’ argument is
not in itself an argument for the three conditions of numerical plausibility, consistency and
common sense.
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We proposed to weaken Halperns proposed restriction for deriving Cox’ result from
infinite domains to the requirement of finite refinability. This implies that the triples for F
used in a finite model must satisfy the requirements of associativity, symmetry and strict
monotonicity, and it should be possible to extend the model with any finite set of statements
that are independent and have the same plausibilities as those of the original model. The
requirement of strict monotonicity is suggested by common sense, although it is in no way
inevitable. The same holds for our refinability requirement, but it seems rather artificial to
ignore it and one would like to see a plausible reason to drop it before doing so.

In an infinite model, the refinability condition means that a function F must be used
which is associative, symmetric and strictly monotone. If we add the condition that the
plausibility of an iterated conjunction approaches 0 if the conjuncts are of equal plausibility
and independent, we can prove that Bayesianism rules.

As an interesting continuation of this line of inquiry, one can investigate what the
exact consequences would be of replacing the strict monotonicity assumption with just
monotonicity.

We would finally like to thank the referees for helpful comments.
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Appendix A. Rescalability Theorems

We now return to the discrete case and show how a partially specified function F can be
completed to a function allowing rescaling to Bayesian probabilities. Although one would
maybe expect this to be a rather easy consequence of linear algebra, it turned out not to
be quite as easy in its full generality. Halpern gives an example of a model that is not
associative even on the original support set, but our example (section 4.3) is an example
where non-extensibility to some finite extension base follows from the following theorem.
More complex examples can easily be designed, once the mechanisms are grasped. First
some definitions: We use the infix operator notation x ◦ y for F (x, y), which is convenient
for associative and symmetric functions. An extension base B of a sequence X of length L
is a sequence (ni) of length L of non-negative integers. A partial function that is associative
and symmetric on X2, where X = (xi), can be extended to extension base B if it can be
extended to an associative and symmetric function on a domain such that the expression
v1 ◦ v2 ◦ · · · ◦ vn and all its subexpressions have values if every vi is equal to some xj , and
for all i, the number of occurences of xi is not larger than the corresponding number ni in
B.

The following is a result in duality theory of linear programming((Kuhn, 1956), Corollary
1A, case (i)):

Lemma 1 (Kuhn) The system of equations Ax = 0 has a positive solution x > 0 if there
is no u such that AT u ≥ 0 and u �= 0.

We can now prove:

Lemma 2 Let F be a linear subspace of Rn. The following conditions are equivalent:

(i) There is no element in F with all components positive.

10
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(ii) There is a nonzero vector d with non-negative components that is orthogonal to F .

Proof.

(ii)→(i) : This direction is obvious, since a vector orthogonal to a non-zero and non-negative
one cannot have all components positive.

(i)→(ii) : Assume (i): There is no element in F of Rn with all components positive. Let F
be the space spanned by the rows of matrix B, F = {BT y : y ∈ Rk}. Let the rows
of A be a base for the orthogonal co-space of F , ABT = 0. Thus, F = {x : Ax = 0}
and Ax = 0 has no positive solution x by out assumption that (i) is the case. Since
Ax = 0 has no positive solution, by Lemma 1 there is a u such that AT u ≥ 0 and
u �= 0. Now uT A is a non-negative vector, and it is orthogonal to every vector in
F because ABT = 0 and thus (uT A)(BT x) = 0 for all x ∈ Rk. So (ii) applies, i.e.,
(i)→(ii).

Conditions (i) and (ii) are thus equivalent.
�

Theorem 3 Let X = (xi)Li=1 be an increasing sequence of distinct values in the open in-
terval (0, 1). Let S = {1, . . . , L} and T ⊂ S3 be a finite set of triples. The partial function
◦ satisfies xi ◦ xj = xk, for all (i, j, k) ∈ T , and xi ◦ 1 = xi for all i ∈ S.

Then the following conditions (i) and (ii) are equivalent:

(i) There is a finite extension base B of X to which ◦ cannot be extended as a symmetric,
associative and strictly monotone function.

(ii) There is no increasing sequence of positive numbers (fi)Li=1 such that if (i, j, k) ∈ T ,
then fi + fj = fk.

Proof.

(i)→(ii) If (ii) is not the case, there exists appropriate fi. Define l(x) by interpolation
to a strictly monotone function between the constraints l(xi) = fi, l(1) = 0 and
limx→0 l(x) = ∞. The function x ◦ y = l−1(l(x) + l(y)) is associative, symmetric and
strictly monotone on (0, 1]. So also (i) is not the case, which shows (i)→(ii).

(ii)→(i) Assume (ii) is the case. Define the |T | by L matrix M to have one row for each tuple
in T . For such a tuple (i, j, k), the row has the value 1 in columns i and j, the value
-1 in column k, and zero otherwise. Matrix D is L−1 by L and has value D = I ′− I ′′

where I ′ and I ′′ is the L by L unit matrix with the first and last row, respectively,
deleted. Since (ii) is the case, there is no positive L-vector solution f to Mf = 0 that
also satisfies Df > 0, since such a solution would contradict non-existence of the fi.

The solution space F of Mf = 0 is such that the linear subspace DF is orthogonal to
some non-zero vector d with non-negative components, by Lemma 2. In other words,
a linear equation dT Df = 0 for f can be derived from Mf = 0 only, dT D = cT M

11
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for some vector c. Since M and D have integer coefficients, and the condition is
homogeneous in d, we can assume that d consists of natural numbers and c of integers.
Thus, a linear equality for f can be obtained as a linear combination with integer
coefficients of the linear equalities encoded by the rows of M . But each row of M is
derived from a constraint on the function x ◦ y. By composing these constraints in
the same pattern we can derive functional constraints on x ◦ y, and at last obtain a
functional constraint corresponding to the linear constraint dT Df = 0. We compose
the constraints coded by a triple of T a number of times given by the corresponding
coefficient ci of the linear combination, reversing the equation if the coefficient is
negative. In this way we can derive functional constraints for x ◦ y.

The linear constraint dT Df = 0 can be written as d1f1 + d2f2 + · · · dL−1fL−1 =
d1f2 + d2f3 + · · · dL−1fL, where no di is negative and at least one is positive. This
translates to a1 ◦ a2 ◦ · · · ◦ am = b1 ◦ b2 ◦ · · · ◦ bm, where either ai = bi or ai < bi, with
at least one strict inequality since at least one di is non-zero.

But then, from strict monotonicity, we must also have: a1◦a2◦· · ·◦am < b1◦b2◦· · ·◦bm.

There can thus not be a strictly monotone extension of ◦ to an extension base defined
by the union of the (ai) and (bi) sequences, in other words (ii) is the case.

So (i) and (ii) are equivalent. �

An immediate corollary of Theorem 3 is that a model defined with a partial function
◦ satisfying the premises of Theorem 3, and which cannot be rescaled to a probability
function, cannot consistently be refined by addition of a set of independent statements with
plausibilities given by the quantities ai and bi whose existence were shown in the proof.

The following theorem is a simplified and tailored version of theorems due to Aczél(Aczél,
1961), which shows that Cox assumption that F is two times continuously differentiable
can be replaced by continuity and strict monotonicity. The assumptions in this theorem are
applicable if we regard ◦ as a universal function to be used in all models. The continuity
and denseness assumptions will turn out to be technical conditions only needed because of
the chosen proof method.

Theorem 4 Let the function ◦ : [0, 1]2 → [0, 1] have the following properties:

• Associativity: (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ [0, 1];

• Strict monotonicity: if u < v and z �= 0, then u ◦ z < v ◦ z and z ◦ u < z ◦ v;

• Continuity

• 0 ◦ x = x ◦ 0 = 0 and 1 ◦ x = x ◦ 1 = x

Then x ◦ y = f(f−1(x) + f−1(y)) for an invertible function f .

Proof. Define the function family φm(x) inductively by

• φ0(x) = 1

12
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• φ1(x) = x

• φm+1(x) = x ◦ φm(x), for m > 1.

Abbreviate ’continuous and strictly monotone’ by csm. By the associativity of ◦, we find
φm1(x) ◦ φm2(x) = φm1+m2(x) and φm1(φm2(x)) = φm1m2(x). Since ◦ is csm, φm(x) is
a csm function of x when m �= 0, going from 0 to 1 as x does so. Therefore, we can
define φ1/m(x) as the unique solution y to the equation φm(y) = x. This is also a csm
function, with limm→∞ φ1/m(x) = 1. For every rational number r = p/q, the function
φr is defined by φr(x) = φp(φ1/q(x)). This is a well-defined function since φpn/(qn)(x) =
φp(φ1/q(φn(φ1/n(x)))) = φp/q(x).

We now have φr1(x) ◦ φr2(x) = φr1+r2(x) and φr1(φr2(x)) = φr1r2(x). Moreover, if
x < 1, then limm→∞ φm(x) = 0, for if the limit is larger, say ax < 1, then we would have
ax = F (ax, ax) = F (1, ax), violating strict monotonicity and continuity of ◦.

Select c ∈ (0, 1) and let f be defined for rational number r ≥ 0 by f(r) = φr(c). The
function f is strictly decreasing on the rational numbers. For any rational number r = p/q
there can thus be a limit from below, f(r−0), a limit from above, f(r+0), and the function
value f(r). For a real number t, it can be defined as the limit of a non-decreasing sequence
ri = pi/qi and a non-increasing sequence r′i = p′i/qi, with pi + 1 = p′i. Then f(ri) ◦ φ1/qi

(c)
has limit f(t−0)◦1 = f(t−0), by the continuity of F , but is also equal to f(r′i) which goes
to f(t + 0). Thus, f(t − 0) = f(t + 0) and hence f is continuous also for irrational number
t > 0. Therefore, f can be uniquely extended to a csm function over the positive reals.

The function f obeys the law f(r1)◦f(r2) = f(r1 +r2), from which the theorem follows,
since f(r1) ◦ f(r2) = φr1(c) ◦ φr2(c) = φr1+r2(c) = f(r1 + r2) for rational numbers, and by
continuity also for real numbers r1 and r2. �

If the continuity restriction on ◦ is dropped, we cannot be sure that φm is continuous
or that φ1/m(x) exists, and thus f may be a partial function and f−1 discontinuous.

However, strict monotonicity is a strong condition on ◦, and it can only have an enu-
merable set of discontinuities on a path along which it is monotone. This is a standard
result, and easy to verify by considering the list of discontinuites ordered by the jump
magnitude. There can only be finitely many discontinuities for any jump magnitude, thus
the whole list can be ordered. Indeed, we can prove that the continuity assumption, but
not that of strict monotonicity, can essentially be dropped. By essentially we mean that
we must introduce a symmetry assumption (motivated by common sense above) and the
Separability assumption. We can see in the proof below that the Separability assumption
appears truly required not only for the proof, but also for the theorem to hold, since it
’binds’ the domain together. It may of course be replaceable by some simpler condition.
It follows from the proof that one separating plausibility is enough to prove rescalability,
and with rescalability every non-trivial plausibility is separating. It is also evident that
if there is a non-separating plausibility, then the model is not rescalable. As an example
violating the Separability condition and not being rescalable, consider a domain gener-
ated from three statements with plausibilities C = 1/3, Y = 1/4 and X = 1/5. Let
Ci ◦ Y j ◦ Xk = 1/(1 + 3(i + j + k) + (j + 2k)/(i + j + k + 1)). Now Xp = 1/(3 ∗ p + 2),
Y p = 1/(3 ∗ p + 1), and Cq = 1/(3 ∗ q), and separation is not obtained, beacuse no Cq
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appears in any [Xp, Y p]-interval. Dropping the integrality constraint on i, j, k makes the
domain dense but the model inconsistent, so it is no counterexample to Theorem 4. An
interesting observation on this model is that each of its finite subsets is rescalable.

The proof of Theorem 5 is quite simple, and even though we have not seen the result in
the reference literature it may well be known in the research literature of functional equa-
tions. Recall our argument for associativity and symmetry: if one of these is violated, there
is an inconsistent model obtainable by three refinement steps (with three new statements,
each having a plausibility already occuring somewhere in the original model).

Theorem 5 Let the function ◦ : D2 → R have the following properties:

• R ⊂ D, {0, 1} ⊂ D and D ⊂ [0, 1];

• Associativity;

• Strict monotonicity on D − {0};

• Symmetry;

• 0 ◦ x = x ◦ 0 = 0 and 1 ◦ x = x ◦ 1 = x

• Separability: There is a c ∈ D such that for all x, y ∈ D −{0, 1} and y < x, there are
integers p, q such that yp < cq ≤ xp.

Then for x, y ∈ (D − {0})2, x ◦ y = f(f−1(x) + f−1(y)), for a partial strictly monotone
function f whose inverse is a strictly monotone function f−1.

Proof. Define the function family φm(x) on D as before. It is well-defined since the range
of ◦ is included in its domain. It is not necessarily continuous. As before, φm1(x)◦φm2(x)) =
φm1+m2(x) and φm1(φm2(x)) = φm1m2(x), and φm(x) is a strictly monotone function of x
when m �= 0, going from 0 to 1 as x does so. The symmetry assumption also leads to
the law φm(x ◦ x′) = φm(x) ◦ φm(x′). For a rational number r = p/q and x, y ∈ D, we
define y = φr(x) if φq(y) = φp(x). Now, φr is a partial strictly monotone function. Let
f(r) = φr(c) for some c ∈ D−{0, 1}. As a function of r, f(r) = φr(c) is a strictly monotone
decreasing partial function. We extend the inverse f−1 to real arguments by a direct limit
process of interval bisection: For x ∈ D − {0, 1}, define f−1(x) as the limit of pi/qi, when
qi = 2i and φpi+1(c) < φqi(x) ≤ φpi(c).

There is always a unique solution sequence pi, because φ0(c) = 1, so the right inequality
can be satisfied, and the left inequality can be satisfied because the separability condition
makes limn→∞ φn(x) independent of x if 0 < x < 1. The sequence pi/qi will converge to a
real number, since the sequence pj/qj for j > i is contained in the interval [pi/qi, (pi+1)/qi],
whose length goes to 0. Thus, we have defined f−1 : (D − {0}) → [0,∞) as a strictly
monotone function (strictly because of separability). Its range is closed under addition, as
can be seen by comparing two bisection sequences {pi} and {p′i} converging to f−1(x) = r
and f−1(y) = r′ with the one, {p′′i }, for d = x◦y converging to f−1(x◦y) = r′′. The relations
φpi+1(c) < φqi(x) ≤ φpi(c) and φp′i+1(c) < φqi(y) ≤ φp′i(c) imply, because of symmetry of ◦,
φqi(d) ≤ φpi+p′i(c) and φqi(d) > φpi+p′i+2(c). This implies that p′′i = pi+p′i or p′′i = pi+p′i+1
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for all i and thus r′′ = r + r′. But then f−1(d) = f−1(x ◦ y) = f−1(x) + f−1(y), or
x ◦ y = f(f−1(x) + f−1(y)) for all x, y ∈ (D − {0}), which finishes the proof. �
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